05 Магнитные свойства прессованных нанопорошков гексаферрита бария

© А.В. Тимофеев, В.Г. Костишин, Д.Б. Макеев, Д.Н. Читанов

Национальный исследовательский технологический университет "МИСиС", 119049 Москва, Россия e-mail: andtim2011@gmail.com

Поступило в Редакцию 28 декабря 2018 г. В окончательной редакции 28 декабря 2018 г. Принято к публикации 29 апреля 2019 г.

> Методами магнитно-силовой микроскопии и магнитометрии исследованы магнитные характеристики прессованных наноразмерных порошков BaFe₁₂O₁₉. Порошки были получены методом химического соосаждения. Обнаружена магнитная анизотропия типа "легкая плоскость", образованная после операции прессования. Обсуждена природа появления анизотропии.

Ключевые слова: гексаферрит бария, нанопорошки, прессование, химическое соосаждение.

DOI: 10.21883/JTF.2019.10.48173.450-18

Введение

Феррит бария с гексагональной молекулярной структурой типа М ВаFe₁₂O₁₉ — широко известный на сегодняшний день высокопроизводительный постоянный магнитный материал, занимающий большую долю на рынке твердых магнитных материалов. Его главными характерными особенностями являются: довольно большая магнитокристаллическая анизотропия, высокая температура Кюри, относительно большая намагниченность, а также превосходная химическая и антикоррозионная стойкость [1,2].

Чтобы в полной мере проявлять свои исключительные свойства, частицы феррита бария должны быть монодоменными с хорошей химической однородностью и с небольшим разбросом по размерам. Особенный интерес к этим наноразмерным частицам заключается в возможности влиять на их физические свойства путем манипулирования размером, составом, расстоянием между частицами. Недавние исследования показали, что технологии обработки существенно влияют на физические свойства наночастиц [3]. Поскольку размер кристаллитов, размер частиц и межчастичное расстояние оказывают наибольшее влияние на магнитные свойства, идеальный метод синтеза должен обеспечивать контролируемость этих параметров [4–7]. Известно множество способов получения как порошков гексаферритов, так и готовых изделий в виде брикетов различных форм.

Цель настоящей работы — оценить влияние прессования наноразмерных порошков гексаферрита бария типа М, имеющих анизотропную форму, на свойства прессовок.

1. Экспериментальная часть

1.1. Подготовка образцов

Синтез порошка гексаферрита бария типа М проводили методом химического соосаждения. Использованная технология синтеза детально описана в работе [8]. Наночастицы имели характерную анизотропную форму с диапазоном размеров от 70 до 240 nm. Далее навески порошка весом 0.2 g были помещены в пресс-форму. Затем с помощью гидравлического пресса были сформированы таблетки диаметром 7 mm и толщиной 2 mm. Усилие сжатия составляло 300 kgf/cm². Целостность образцов нарушена не была.

После прессования образцы были уложены в специальные керамические кюветы. Кюветы, в свою очередь, были помещены в высокотемпературную муфельную печь для последующего спекания в течение 2 h при 1100°С. После спекания половину образцов вынимали из рабочей зоны (закаленные образцы), а оставшиеся образцы остывали в камере печи вместе с печкой в течение 6 h (выдержанные образцы). Сделано это было для того, чтобы выяснить, как именно резкое охлаждение (закалка) повлияет на физические и магнитные характеристики образцов.

1.2. Методика экспериментальных исследований

Спрессованные образцы были исследованы при помощи сканирующего зондового микроскопа (C3M) NT-MDT ИНТЕГРА Прима с целью выявления топографических особенностей поверхности и дальнодействующих приповерхностных магнитных сил. Данный СЗМ позволяет проводить исследования как в воздушной среде, так и в вакууме. Измерения проводятся при помощи специального кантилевера MFM01 с резонансной частотой 53 kHz, покрытого тонкой магнитной пленкой СоСг. Зонд перемещался вдоль исследуемой поверхности в бесконтактном или полуконтактном режиме. На кантилевер падает лазерный луч, который, отражаясь от него, попадает на фотодетектор. Магнитный кантилевер, взаимодействуя с поверхностью, меняет свое положение

Рис. 1. Характерная топография поверхности спрессованного образца (с температурной выдержкой) размерами 2.5 × 2.5 µm (*a*) и распределение градиента поверхностных магнитных сил при $D_z = 750$ nm (*b*).

Рис. 2. Характерная топография поверхности спрессованного образца (закаленного) размерами $1 \times 1 \, \mu$ m (*a*) и распределение градиента поверхностных магнитных сил при $D_z = 500$ nm (*b*).

Основные магнитные х	арактеристики	полученных	гексагональных	фер	ритовых	образцов	BaFe ₁₂	O ₁₉
----------------------	---------------	------------	----------------	-----	---------	----------	--------------------	-----------------

Полученные образцы ВаFe ₁₂ O ₁₉	Намагниченность насыщения <i>M_s</i> , emu/g	Остаточная намагниченность <i>M_r</i> , emu/g	Коэрцитивная сила по намагниченности <i>H</i> _c , Oe
Нанопорошок	29.23	18.1	3490
Спрессованный, без температурной выдержки (закаленный)	37.46	24.12	3838
Спрессованный, выдержанный в печке	60.71	39.2	3885

и отклоняет луч. Программное обеспечение Nova Px, обрабатывая получаемый фотодетектором сигнал, преобразует его в изображение. В двухпроходной методике зонд сначала регистрирует сигнал поверхности образца, а затем поднимается на некоторое расстояние D_z над поверхностью, выдерживая его в постоянном режиме, и реагирует только на магнитные силы.

Магнитные параметры объектов исследования изучались на модернизированном вибрационном магнитометре ВМ-07 при комнатной температуре и нормальном атмосферном давлении. Принцип работы устройства базируется на измерении магнитного момента образца, который колеблется в однородном магнитном поле. Модернизация вибромагнитометра заключалась в том, что двухкоординатный самописец был заменен на электронный регистратор сигналов и селективный усилитель, соединенные с персональным компьютером для автоматизации процесса измерения.

2. Результаты и обсуждение

Результаты исследования методом атомно-силовой микроскопии поверхностей спрессованных нанопорошков представлены на рис. 1, *a*, 2, *a*. Видно, что зерна на поверхностях обоих образцов вытянуты вдоль плоскости таблетки и имеют характерную ориентацию, перпендикулярную оси прессования. Таким образом, достигается равновесное положение. Размеры микрочастиц и морфология обусловлены разными способами охлаждения после спекания. Так, бо́льшими геометрическими размерами обладают зерна образцов, которые остывали вместе с печью: по длине 135–340 nm против 110–290 nm и по ширине 65–190 nm против 60–130 nm соответственно. Также им присуща более сильная анизотропия кристаллитов.

На рис. 1, b-2, b представлены изображения, полученные методом магнитно-силовой микроскопии. Хоть регистрация сигнала воздействия приповерхностных магнитных сил на намагниченный кантилевер проводилась при разных расстояниях D_7 и при разных масштабах, более сильные отклонения зонда, учитывая опять же расстояние D_z , наблюдаются для спрессованных образцов с температурной выдержкой. Усиление взаимодействия кантилевера с комплексом поверхностных магнитных сил происходит, когда кантилевер сканирует низменности между микрочастицами — такие области на снимках являются светлыми. Когда кантилевер находится только над зерном в топографической высоте, отсутствует вклад межзеренных магнитных взаимодействий — такие области показаны темным. Исходя из вышесказанного, можно предположить, что вектора намагниченности лежат в плоскости спеченных таблеток.

Для подтверждения этого заключения петли магнитного гистерезиса образцов регистрировались в двух геометриях: в магнитном поле, перпендикулярном (\bot) и параллельном (||) плоскости таблетки.

Рис. 3. Петля гистерезиса образца в поперечном магнитном поле ($\mathbf{H} \perp$ плоскости таблетки).

Рис. 4. Петля гистерезиса наноразмерного порошка, спеченного при 1000°С.

Результаты этого исследования представлены на рис. 3. На нем видно, что прикладываемого поля 15 kOe не хватает для намагничивания образца до насыщения в геометрии $\mathbf{H} \perp$ плоскости образца, следовательно, ось легкого намагничивания в данном направлении отсутствует.

Характерные петли магнитного гистерезиса и основные магнитные характеристики исследованных образцов представлены в таблице и на рис. 4, 5.

Все изготовленные материалы достигают насыщения примерно при 10 000 Ое. Выдержанный в печи образец и закаленный показывают значительно лучшие характеристики в сравнении с нанопорошком. Так, у обоих образцов значительно выросла коэрцитивная сила H_c : на 645 и на 598 Ое для выдержанного и закаленного образцов соответственно. Для образца с выдержкой произошло более чем двукратное увеличение магнитного момента в насыщенном состоянии M_s и значения остаточной намагниченности M_r , а именно в 2.08 раз и в 2.17 раз соответственно. Для образца без выдержки рост был менее значительным: в 1.28 раз в намагниченности.

Рис. 5. Петли гистерезиса: a — выдержанного образца и b — образца без выдержки (**H** || плоскости пленки).

Таким образом, спрессованный порошок, состоящий из наночастиц гексаферрита бария $BaFe_{12}O_{19}$ и не испытывающий жестких перепадов температур сразу после спекания (закаливания), обладает наилучшими магнитными свойствами.

Заключение

Магнитная анизотропия объектов исследования возникла вследствие прессования наноразмерного порошка гексагонального феррита бария типа М. Данные СЗМ показали, что вытянутые частицы гексаферрита характерно ориентированы в плоскости спрессованной таблетки, и магнитные всплески наблюдаются в низовых областях поверхности между зернами. Показано проявление анизотропии при разных направлениях намагничивания относительно плоскости образца. Установлено, что ось легкого намагничивания располагается вдоль плоскости прессования. Показано, что после прессования и спекания первичный нанопорошок BaFe₁₂O₁₉ демонстрирует значительный рост своих характеристик, а плавное охлаждение образцов в печи обеспечивает высокое качество готового продукта.

Благодарности

Авторы благодарны профессору Шипко М.Н. за обсуждение результатов работы.

Финансирование работы

Работа выполнена в рамках гранта президента № МК-1041.2017.8.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] Куничев А.В., Подольский А.В., Сидоров И.Н. Ферриты. Магниты и магнитные системы. М.: ЛИК, 2004. 358 с.
- [2] Летюк Л.М., Костишин В.Г., Гончар А.В. Технология ферритовых материалов магнитоэлектроники. М.: МИСиС, 2005. 352 с.
- [3] *Pullar R.C.* // Prog. Mater. Sci. 2012. Vol. 57. N 7. P. 1191–1334. DOI: 10.1016/j.pmatsci.2012.04.001
- [4] Makovec D., Primc D., Sturm S., Korde A., Hanzel D., Drofenik M. // J. Solid State Chem. 2012. Vol. 196. P. 63–71. DOI: 10.1016/j.jssc.2012.07.043
- [5] El Shater R.E., El-Ghazzawy E.H., El-Nimr M.K. // J. Alloys Compd. 2018. Vol. 739. P. 327–334.
 DOI: 10.1016/j.jallcom.2017.12.228
- [6] Liu C., Liu X., Feng S., Rehman K.M.U., Li M., Zhang C., Li H., Meng X. // J. Supercond. Nov. Magn. 2018. Vol. 31. P. 933–937. DOI: 10.1007/s10948-017-4283-2
- [7] Li Y, Xia A., Jin C. // J. Mater. Sci.: Mater. Electron. 2016.
 Vol. 27. N 10. P. 10864–10868.
 DOI: 10.1007/s10854-016-5195-9
- [8] Костишин В.Г., Тимофеев А.В., Читанов Д.Н. // Хим. техн. 2018. № 1. С. 11–15.