$_{07.2;07.3}$ Гетероструктуры Ga_xIn_{1-x}As_yBi_zSb_{1-y-z}/InSb для фотоприемных устройств ($\lambda = 6-12 \mu$ m)

© Л.С. Лунин¹, М.Л. Лунина¹, А.С. Пащенко^{1,2}, Д.Л. Алфимова¹, О.С. Пащенко¹

¹ Федеральный исследовательский центр Южный научный центр РАН, Ростов-на-Дону, Россия

² Южно-Российский государственный политехнический университет (НПИ) им. М.И. Платова, г. Новочеркасск, Россия E-mail: lunin_ls@mail.ru

Поступило в Редакцию 30 апреля 2019 г. В окончательной редакции 8 мая 2019 г. Принято к публикации 13 мая 2019 г.

> Методом зонной перекристаллизации градиентом температуры получены изопараметрические гетероструктуры $Ga_x In_{1-x} As_y Bi_z Sb_{1-y-z}/InSb$ для фотоприемных устройств, работающих в диапазоне длин волн 6–12 μ m. Введение висмута в твердый раствор GaInAsSb позволяет осуществить уменьшение ширины запрещенной зоны E_g и соответственно расширить спектральный диапазон до 12 μ m, а также сдвинуть максимум фоточувствительности в длинноволновую область.

> Ключевые слова: изопараметрические гетероструктуры, фотоприемники, ИК-детекторы, абсолютная спектральная чувствительность, вольт-ваттная характеристика.

DOI: 10.21883/PJTF.2019.16.48152.17863

Прогресс инфракрасной оптоэлектроники обусловливает необходимость поиска технологических режимов получения гетероструктур со спектрами пропускания в области менее 0.15 eV. Такие структуры перспективны в качестве элементной базы диодов, работающих в дальней ИК-области ($\lambda > 8 \mu m$). Приборы на их основе могут успешно использоваться в волоконной оптике, технике регистрации слабых излучений, тепловизорах и т.д.

Уменьшение ширины запрещенной зоны E_g и соответствующий сдвиг максимума фоточувствительности в длинноволновую область можно осуществлять с использованием в гетероструктурах изовалентных компонентов (таких как висмут), активно влияющих на зонную структуру твердых растворов, что открывает широкие возможности в управлении спектром люминесценции [1,2].

Возможность получения положительного эффекта с Ві была подтверждена экспериментально на примере выращенных эпитаксиальных слоев InAsBiSb на InSb [3–6]. Однако в данном случае в качестве лимитирующих технологических факторов выступают ограничение растворимости висмута в растворах-расплавах A^3B^5 и рост числа структурных дефектов, обусловленных различием подложки и слоя по параметрам решетки и коэффициенту термического расширения (КТР). Достаточно эффективным решением этой проблемы является введение в твердый раствор InAsBiSb пятого компонента — галлия.

Цель настоящей работы состоит в получении и исследовании твердых растворов GaInAsBiSb, изопараметрических антимониду индия, для фотоприемных устройств ($\lambda = 6-12 \,\mu$ m).

Гетероструктуры GaInAsBiSb/InSb были получены методом зонной перекристаллизации градиентом температуры (ЗПГТ). Метод ЗПГТ характеризуется предельно малыми пересыщениями на фронте кристаллизации, высокой изотермичностью процесса и низкими значениями концентрационного переохлаждения [7]. Отличительной особенностью ЗПГТ является наличие твердого источника, с помощью которого происходит непрерывная подпитка жидкой фазы в процессе роста эпитаксиального слоя. Поэтому метод ЗПГТ позволяет выращивать высокосовершенные слои простых и сложных полупроводников с заданным распределением компонентов и примесей и не использовать при этом толстые слои жидкой фазы. Кроме того, при ЗПГТ легирование и кристаллизационная очистка происходят одновременно. Кристалл очищается вдоль траектории зоны от примесей, которых в жидкой фазе первоначально достаточно мало, и легируется атомами элементов, входящих в состав зоны, если достаточно мала их концентрация в твердой фазе. В определенных случаях конечный результат легирования и очистки методом ЗПГТ проявляется в виде комбинированного эффекта, в котором оба процесса непрерывно связаны. Поэтому очень важно контролировать распределение примесей в эпитаксиальных слоях, которое оказывает существенное влияние на электрофизические параметры гетероструктуры. Взаимодействие их электронных спектров с энергетической структурой многокомпонентного эпитаксиального слоя (GaInAsBiSb) и определяет эксплуатационные характеристики материалов.

Для определения типа проводимости, концентрации основных носителей (n) и их подвижности (μ) использовалась стандартная методика холловских измерений.

В таблице приведены электрические характеристики твердого раствора $Ga_x In_{1-x} As_y Bi_z Sb_{1-y-z}/InSb$. Из таблицы следует, что электрические характеристики твердого раствора существенно зависят от содержания висмута, что, по-видимому, объясняется различными механизмами вхождения его атомов в кристаллическую решетку. Как показали эксперименты, при T = 300 K по-

$X_{\rm Bi}^{\rm S}$, mol. frac.	$T = 77 \mathrm{K}$		$T = 300 \mathrm{K}$	
	$n \cdot 10^{-16}, \mathrm{cm}^{-3}$	$\mu \cdot 10^{-4}, \mathrm{cm}^2/(\mathrm{V}\cdot\mathrm{s})$	$n \cdot 10^{-16}, \mathrm{cm}^{-3}$	$\mu \cdot 10^{-4}$, cm ² /(V · s)
0.005	1.2	89	1.4	2.8
0.008	1.2	106	1.5	3.0
0.010	1.5	136	2.0	3.3
0.012	1.8	172	2.3	3.5
0.014	1.9	180	2.5	3.7
0.016	2.1	188	2.5	3.8
0.018	2.2	198	2.7	3.9

Значения концентрации (n) и подвижности (μ) носителей в гетероструктуре Ga_xIn_{1-x}As_yBi_zSb_{1-y-z}/InSb при различном содержании висмута в твердой фазе X_{Bi}^{S}

Рис. 1. Распределение концентрации электронов по толщине эпитаксиального слоя $Ga_x In_{1-x} As_y Bi_z Sb_{1-y-z}/InSb$.

движность электронов незначительно зависит от концентрации примеси. Распределение концентрации электронов по толщине гетерослоя показано на рис. 1. В области d < 30 µm наблюдается слабый рост концентрации, в интервале 30 < d < 35 µm имеет место изгиб кривой. Это обусловлено накоплением атомов Ві в междоузлиях приповерхностных участков слоя.

Для максимальной спектральной чувствительности и быстродействия фотоприемников важно обеспечить в первую очередь высокое качество гетероструктуры $Ga_x In_{1-x} As_y Bi_z Sb_{1-y-z}/InSb.$

Поэтому актуальной является задача исследования распределения упругих напряжений в эпитаксиальных слоях GaInAsBiSb(InSb). Исследования проводились на основе стандартного поляризационно-оптического метода. Использовался инфракрасный микроскоп МИК-11 с электронно-оптическим преобразователем ЭОП-4 в поляризованном свете. Анализ лучей проходящего света показал, что упругие напряжения концентрируются в области < 5 µm от гетерограницы и принимают в объеме слоя значения, не превышающие 2 · 10⁶ Ра. Величина напряжений в подложке и слое зависит от состава твердого раствора. Результаты расчетов $\sigma(X^{S}_{\mathrm{Sb}})$ в подложке и слое при фиксированном x = 0.05, а также $\sigma(X_{Ga}^S)$

при y = 0.03 представлены на рис. 2 (X_{Sb}^S и X_{Ga}^S — мольные доли сурьмы и галлия в твердой фазе соответственно). Значение z = 0.02 во всех случаях отвечало пределу растворимости висмута в растворе. Основным компонентом, влияющим на величину упругих напряжений, является галлий. В области составов $X_{Ga}^S > 0.05$ величина напряжений не превышает 1 · 10⁶ Ра по всей толщине слоя. Следовательно, введение в твердый раствор InAsBiSb(InSb) пятого компонента (галлия) улучшает согласование параметров решеток и КТР слоя и подложки и уменьшает величину упругих напряжений (рис. 2, b).

Спектры фоточувствительности GaInAsBiSb(InSb) при температуре 300 К представлены на рис. 3, а. Для определения чувствительности гетероструктуры изме-

Рис. 2. Зависимость величины упругих напряжений от состава твердой фазы сурьмы (a) и галлия (b). 1 — подложка, 2 — эпитаксиальный слой.

28

Рис. 3. Спектральные характеристики гетероструктуры GaInAsBiSb/InSb. a — зависимость фоточувствительности $R_v(\lambda)$, b — зависимость обнаружительной способности $D(\lambda)$. $I - X_{Bi}^S > 0.012$, $2 - X_{Bi}^S > 0.02$.

рялась вольт-ваттная чувствительность с использованием модели черного тела по методике [8]. На основе спектральных зависимостей фотопроводимости и спектрального распределения мощности излучения черного тела определялась величина абсолютной спектральной чувствительности фотоприемника. Величина максимальной интегральной чувствительности составила 96 V/W. Значения монохроматической чувствительности при $\lambda = 10\,\mu{
m m}$ для $X^S_{
m Bi} > 0.012$ и $\lambda = 11\,\mu{
m m}$ для $X_{Bi}^{S} > 0.02$ (рис. 3, *a*) оказались равными 160 и 180 V/W соответственно. Для определения обнаружительной способности фотоприемников были измерены напряжения шумов детектора при различных значениях приложенного напряжения. Измерения проводились на частоте, при которой определялась вольт-ваттная чувствительность (1 kHz). При соотношении сигнал/шум, равном 10, интегральная обнаружительная способность фотоприемников достигала величины $7.5 \cdot 10^9 \text{ Hz}^{1/2} \cdot \text{W}^{-1}$. Спектральная зависимость детектирующей способности D имеет вид, показанный на рис. 3, b. Кривые этой зависимости сходны по виду с кривыми вольт-ваттной чувствительности и имеют максимумы при тех же длинах волн, что и спектральная чувствительность. Следует отметить, что с увеличением концентрации висмута в гетероструктурах GaInAsBiSb/InSb расширяется до 12 μ m спектральный диапазон как чувствительности $R_v(\lambda)$, так и обнаружительной способности $D(\lambda)$ (рис. 3, *a*, *b*).

Временна́я зависимость фотоответа была исследована при воздействии на гетероструктуру импульсов излучения СО₂-лазера. Выходной сигнал регистрировался запоминающим осциллографом. Параметры исходного светового импульса измерялись с помощью фотоэлектронного умножителя с постоянной времени $\tau_0 = 10^{-11}$ s. Время фотоответа не превышало 2 ns. Динамическое сопротивление гетероперехода находилось в интервале от 600 до 1200 Ω .

Таким образом, впервые получены пятикомпонентные висмутсодержащие гетероструктуры GaInAsBiSb/InSb для фотоприемных устройств ($\lambda = 6-12 \,\mu$ m). Проанализированы возможности снижения дефектности гетерограницы и упругих напряжений при изменении состава твердого раствора GaInAsBiSb.

Исследованы спектральные зависимости чувствительности и обнаружительной способности от содержания висмута в интервале длин волн $6-12\,\mu$ m. Показана перспективность их использования для фотоприемных устройств с $\lambda > 8\,\mu$ m.

Финансирование работы

Работа выполнена в рамках государственных заданий Федерального исследовательского центра Южного научного центра РАН (номера госрегистрации 01201354240 и АААА-А19-119040390081-2), а также при финансовой поддержке Российского фонда фундаментальных исследований в рамках научного проекта № 17-08-01206 А.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- Riordan N.A., Gogineni C., Johnson S.R., Lu X., Tiedje T., Ding D., Zhang Y.-H., Fritz R., Kolata K., Chatterjee S., Volz K., Koch S.W. // J. Mater. Sci.: Mater. Electron. 2012. V. 23. N 10. P. 1799–1804. https://doi.org/10.1007/s10854-012-0665-1
- [2] Wang L, Zhang L, Yue L, Liang D., Chen X., Li Y., Lu P., Shao J, Wang S. // Crystals. 2017. V. 7. N 3. P. 63. https://doi.org/10.3390/cryst7030063
- [3] Алфимова Д.Л., Лунина М.Л., Лунин Л.С., Пащенко А.С., Казакова А.Е. // ФТТ. 2018. Т. 60. В. 7. С. 1277–1282. DOI: 10.21883/FTT.2018.07.46109.194
- [4] Song Y., Gu Y., Shao J., Wang S. // Springer Ser. Mater. Sci. 2013. V. 186. P. 1–27.
- https://doi.org/10.1007/978-1-4614-8121-8_1
- [5] Dhar S. // Springer Ser. Mater. Sci. 2013. V. 186. P. 141–165. https://doi.org/10.1007/978-1-4614-8121-8_6
- [6] Webster P.T., Shalindar A.J., Schaefer S.T., Johnson S.R. // Appl. Phys. Lett. 2017. V. 111. N 8. P. 082104. https://doi.org/10.1063/1.4994847
- [7] Лозовский В.Н., Лунин Л.С., Попов В.П. Зонная перекристаллизация градиентом температуры полупроводниковых материалов. М.: Металлургия, 1987. 232 с.
- [8] Padalko A.G., Lazarev V.B., Perry F.S. Medium impedance room temperature indium antimonide thin layer detectors // Conf. Lasers and Electro-Optics Europe. IEEE, 1994. P. 336. https://doi.org/10.1109/CLEOE.1994.636588