07.3 Перовскитный солнечный элемент с дырочным транспортным слоем на основе комплекса полианилина

© О.Д. Якобсон¹, О.Л. Грибкова¹, А.Р. Тамеев^{1,2}, Е.И. Теруков^{3,4}

¹ Институт физической химии и электрохимии им. А.Н. Фрумкина РАН, Москва, Россия

² Национальный исследовательский университет "Высшая школа экономики", Москва

³ Санкт-Петербургский государственный электротехнический университет "ЛЭТИ", Санкт-Петербург, Россия

⁴ НТЦ тонкопленочных технологий в энергетике при Физико-техническом институте им. А.Ф. Иоффе РАН,

Санкт-Петербург, Россия

E-mail: iakobson.olga@yandex.ru

Поступило в Редакцию 6 мая 2019 г. В окончательной редакции 6 мая 2019 г. Принято к публикации 7 мая 2019 г.

> Впервые разработаны перовскитные солнечные элементы с фотоактивным слоем из иодида метиламмония свинца и дырочно-транспортным слоем на основе комплекса полианилина с поли-2-акриламидо-2-метил-1-пропансульфоновой кислотой. Эффективность фотопреобразования полученных устройств соответствует известным мировым аналогам. По результатам моделирования оптических параметров ячейки в рамках модели Максвелла–Гарнета установлено, что наблюдаемая экспериментально слабая зависимость КПД фотопреобразования устройства от толщины слоя перовскита в диапазоне 350–500 nm связана с отсутствием заметного изменения как количества поглощенной фотоактивным слоем энергии, так и темпа генерации экситонов.

Ключевые слова: перовскиты, солнечные элементы, полианилин, моделирование.

DOI: 10.21883/PJTF.2019.16.48145.17866

В настоящее время идут активные разработки солнечных элементов (СЭ), включающих в качестве фотоактивного материала металлоорганические соединения со структурой перовскита (галогениды метиламмония или формамидиния свинца или олова) [1,2]. Применение таких соединений не только позволяет приблизить эффективность работы устройств на их основе к эффективности работы традиционных кремниевых СЭ, но и дает возможность создавать легкие, недорогие и гибкие пленочные устройства с помощью нетрудоемких технологий (термонапыление в вакууме, полив из раствора, печать).

Важную роль в структуре СЭ играют зарядотранспортные слои, повышающие эффективный сбор электронов и дырок на соответствующих электродах [3]. Наиболее распространенным материалом для дырочно-транспортного слоя (ДТС) органических СЭ является водорастворимый комплекс поли-3,4-этилендиокситиофена с полистиролсульфонатом [4]. Присущие этому комплексу недостатки (образование твердой фазы в дисперсии при хранении, относительно высокая кислотность, гигроскопичность слоя [3]) делают актуальным поиск новых полимерных материалов для ДТС.

Недавно нами было показано, что комплекс полианилина с поли-2-акриламидо-2-метил-1-пропансульфоновой кислотой (ПАНИ–ПАМПСК), который характеризуется достаточным уровнем проводимости [5,6], стабильностью электрических и оптических свойств в течение двух лет и более [7], может быть успешно применен в качестве транспортных слоев устройств органической электроники, в частности дырочно-транспортных слоев органических СЭ с объемным гетеропереходом [8]. В то же время в перовскитных солнечных элементах (ПСЭ) с фотоактивным слоем (Φ C) на основе органо-неорганических соединений перовскитной структуры (например, иодида метиламмония свинца (MAPbI₃)) подобные комплексы полианилина (ПАНИ) применялись редко. Примером могут служить данные работы [9], в которой в качестве ДТС была использована пленка комплекса ПАНИ с полистиролсульфокислотой (ПССК), а также многокомпонентная система на его основе с добавлением поверхностно-активных веществ, и данные [10], где использовался привитый сополимер ПАНИ и ПССК.

В настоящей работе был применен ДТС на основе комплекса ПАНИ-ПАМПСК при создании ПСЭ с фотоактивным слоем из иодида метиламмония свинца MAPbI₃ и определен диапазон оптимальной толщины MAPbI₃. При этом экспериментальные характеристики ПСЭ с учетом толщины MAPbI₃ были сопоставлены

Рис. 1. Зависимость КПД фотопреобразования ПСЭ от толщины ФС.

Рис. 2. Зависимость поглощенной энергии в приборе от координаты для ПСЭ с ФС толщиной 350 и 500 пт.

с результатами моделирования оптических параметров ПСЭ в рамках модели Максвелла-Гарнета.

Комплексы ПАНИ-ПАМПСК были приготовлены по описанной ранее методике [11]. Тонкие пленки комплекса ПАНИ-ПАМПСК были получены методом полива из дисперсии на стеклянную прозрачную подложку, покрытую проводящим слоем смеси оксидов индия и олова (ITO), с последующим отжигом (70°С) в атмосфере аргона в течение 10 min. Слой перовскита наносился методом центрифугирования (5000 грт, 30 s), для чего были использованы $90\,\mu$ 1 N,N-диметилформамида, содержащего 1.5 М метиламмония иодида (CH₃NH₃I, Dyesol) и 1.5 М иодида свинца (PbI₂, AlfaAesar). Слой перовскита MAPbI₃ формировался способом, описанным нами ранее [12]. Электронтранспортный слой фуллерена С₆₀, блокирующий слой 2,9-диметил-4,7-дифенил-1,10-фенантролина (ВСР), и электрод Al были нанесены методом вакуумного термического напыления. Образцы ПСЭ имели структуру ITO (100 nm)/ПАНИ-ПАМПСК (40 nm)/МАРbI₃ (изменяемой толщины)/ C_{60} (40 nm)/BCP (7 nm)/Al (80 nm).

Ряд публикаций указывает на зависимость эффективности работы ПСЭ от толщины перовскитного слоя [13,14]. В связи с этим в настоящей работе было изучено влияние толщины слоя перовскита на рабочие характеристики ПСЭ.

На рис. 1 приведены усредненные значения КПД фотопреобразования для полученных ПСЭ с ФС на основе

иодида метиламмония свинца перовскитной структуры, толщина которого изменялась в диапазоне 350-500 nm.

Видно, что изменение толщины перовскитного слоя в диапазоне 350–500 nm не оказывает существенного влияния на эффективность работы ПСЭ: для всех устройств КПД варьировался в диапазоне 7–10%. Следует отметить, что полученные значения КПД фотопреобразования сопоставимы с данными, описанными в литературе для устройств ПСЭ с ДТС на основе ПАНИ–ПССК и привитого сополимера ПАНИ–ПССК, не модифицированных добавками [9,10].

Для расчета оптических характеристик многослойных структур ПСЭ использовался метод матриц переноса, разработанный Хэвенсом (Heavens) и впервые примененный для органических солнечных элементов Петтерссоном (Pettersson). В теории матриц переноса свет рассматривается как плоская волна, причем для фотоэлектрических устройств рассматривается только свет при нормальном падении на подложку. Распространение электрического поля через каждый слой описывается матрицей 2 × 2. При этом каждый слой многослойного устройства описывается своим комплексным показателем преломления (n = n' + ik) и толщиной. Более подробное описание теории приведено в [15]. При моделировании оптических свойств ПСЭ с ФС из иодида метиламмония свинца и ДТС на основе комплекса ПАНИ-ПАМПСК в качестве исходных данных были использованы полученные экспериментально методом эллипсометрии оптические константы (показатель пре-

4

Темп генерации экситонов в зависимости от толщины ФС

Толщина ФС, nm	Темп генерации экситонов в активном слое, 10^{-16} cm ⁻² \cdot s ⁻¹
350	9.6
370	9.5
400	9.4
450	9.4
500	9.9

ломления n' и коэффициент экстинкции k) для пленки ПАНИ–ПАМПСК, слоя ITO и слоя МАРЫ₃, а также литературные данные для остальных слоев устройства: для C₆₀ [16] и слоя A1 [17]. Рассмотренный спектральный диапазон лежал от 360 до 800 nm.

На рис. 2 представлена типичная зависимость поглощенной энергии в приборе от координаты для ПСЭ с ФС толщиной 350 и 500 nm. Видно, что с ростом толщины ФС практически отсутствует увеличение количества поглощенной энергии (наблюдается сглаживание максимумов поглощения с ростом толщины ФС), прирост интеграла поглощенной энергии для пленки толщиной 500 nm составляет только 3.5% по сравнению с таковым для пленки толщиной 350 nm. При этом при прохождении через толстые слои в реальных устройствах увеличивается вероятность потерь разделенных зарядов.

Результаты моделирования темпа генерации экситонов в активном слое ПСЭ представлены в таблице.

Как видно из таблицы, расчеты указывают на слабую зависимость темпа генерации экситонов в ΦC от его толщины.

Таким образом, установлено, что толщина слоя перовскита $MAPbI_3$ в диапазоне 350–500 nm слабо (коэффициент вариации составляет 8.44%) влияет на эффективность работы ПСЭ. Моделирование ПСЭ позволило выявить, что это связано с отсутствием заметного изменения как количества поглощенной фотоактивным слоем энергии, так и темпа генерации экситонов в $MAPbI_3$ с ростом его толщины.

Благодарности

Авторы благодарят Р.Ш. Ихсанова (НИУ ВШЭ) за ценные замечания по моделированию оптических параметров солнечных элементов.

Финансирование работы

Исследование выполнено при финансовой поддержке Российского фонда фундаментальных исследований (проект № 18-29-23045) и Министерства науки и высшего образования РФ (оборудование). А.Р. Тамеев также выполнил часть исследования по моделированию в рамках Программы фундаментальных исследований Национального исследовательского университета "Высшая школа экономики".

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- Zhao Z., Gu F., Rao H., Ye S., Liu Z., Bian Z., Huang C. // Adv. Energy Mater. 2019. V. 9. N 3. P. 1802671.
- [2] Torabi N., Behjat A., Zhou Y., Docampo P., Stoddard R.J., Hillhouse H.W., Ameri T. // Mater. Today Energy. 2019. V. 12. P. 70–94.
- [3] Po R., Carbonera C., Bernardi A., Camaioni N. // Energy Environ. Sci. 2011. V. 4. N 2. P. 285–310.
- [4] Mehmood U., Al-Ahmed A., Hussein I.A. // Renew. Sustain. Energy Rev. 2016. V. 57. P. 550–561.
- [5] Омельченко О.Д., Грибкова О.Л., Тамеев А.Р., Ванников А.В. // Письма в ЖТФ. 2014. Т. 40. В. 18. С. 66–71.
- [6] Iakobson O.D., Gribkova O.L., Tameev A.R., Kravchenko V.V., Egorov A.V., Vannikov A.V. // Synth. Met. 2016. V. 211. P. 89– 98.
- [7] Якобсон О.Д., Грибкова О.Л., Некрасов А.А., Тверской В.А., Иванов В.Ф., Мельников П.В., Поленов Е.А., Ванников А.В. // Физикохимия поверхности и защита материалов. 2016. Т. 52. № 6. С. 613–620.
- [8] Iakobson O.D., Gribkova O.L., Tameev A.R., Nekrasov A.A., Saranin D.S., Di Carlo A. // J. Ind. Eng. Chem. 2018. V. 65. P. 309–317.
- [9] Lee K., Cho K.H., Ryu J., Yun J., Yu H., Lee J., Na W., Jang J. // Electrochim. Acta. 2017. V. 224. P. 600–607.
- [10] Lim K.-G., Ahn S., Kim H., Choi M.-R., Huh D.H., Lee T.-W. // Adv. Mater. Interfaces. 2016. V. 3. N 9. P. 1500678.
- [11] Gribkova O.L, Nekrasov A.A., Trchova M., Ivanov V.F., Sazikov V.I., Razova A.B., Tverskoy V.A., Vannikov A.V. // Polymer. 2011. V. 52. N 12. P. 2474–2484.
- [12] Saranin D.S., Mazov V.N., Luchnikov L.O., Lypenko D.A., Gostishev P.A., Muratov D.S., Podgorny D.A., Migunov D.M., Didenko S.I., Orlova M.N., Kuznetsov D.V., Tameev A.R., Di Carlo A. // J. Mater. Chem. C. 2018. V. 6. N 23. P. 6179– 6186.
- [13] Wang K., Liu C., Du P., Chen L., Zhu J., Karim A., Gong X. // Org. Electron. 2015. V. 21. P. 19–26.
- [14] Liu D., Gangishetty M.K., Kelly T.L. // J. Mater. Chem. A. 2014. V. 2. N 46. P. 19873–19881.
- [15] Sievers D.W., Shrotriya V., Yang Y. // J. Appl. Phys. 2006.
 V. 100. N 11. P. 114509.
- [16] Milani P., Manfredini M., Guizzetti G., Marabelli F., Patrini M. // Solid State Commun. 1994. V. 90. N 10. P. 639– 642.
- [17] McPeak K.M., Jayanti S.V., Kress S.J.P., Meyer S., Iotti S., Rossinelli A., Norris D.J. // ACS Photon. 2015. V. 2. N 3. P. 326–333.