Спин-спиновое взаимодействие и спектр ЭПР КDy(WO₄)₂

© И.М. Крыгин*, А.Д. Прохоров*, В.П. Дьяконов*,**, М.Т. Borowiec**, Н. Szymczak**

* Донецкий физико-технический институт Национальной академии наук Украины, 83114 Донецк, Украина ** Институт физики Польской академии наук,

02-668 Варшава, Польша

(Поступила в Редакцию 27 декабря 2002 г. В окончательной редакции 7 апреля 2003 г.)

Исследован спектр электронного парамагнитного резонанса (ЭПР) моноклинного KDy(WO₄)₂. Наряду с хорошо известным уширением линий ЭПР в магнитоконцентрированных веществах на низкой частоте (9.2 GHz) обнаружена существенная трансформация спектра. При малых концентрациях ($x < 10^{-2}$) Dy³⁺ в изоморфном KY_(1-x)Dy_x(WO₄)₂ спектр ЭПР описывается параметрами: $g_x = 0$, $g_y = 1.54$, $g_z = 14.6$. Для магнитоконцентрированного вещества KDy(WO₄)₂ $g_x = 0$, $g_y = 0.82$, $g_z = 2.52$. Показано, что данное изменение обусловлено специфическим видом спин-спинового взаимодействия между ионами Dy³⁺, в том числе взаимодействием Дзялошинского, не проявляющимся на высоких частотах.

Работа частично поддержана Польским комитетом по науке (KBN), проект N 2 PO3B 141 18.

Интерес к исследованию кристаллов двойных вольфраматов, относящихся к моноклинной симметрии, вызван рядом причин. Во-первых, эти материалы с редкоземельными примесями являются перспективными для получения лазерной генерации с уникальными характеристиками [1-4]. Во-вторых, при низких температурах в KDy(WO₄)₂ и RbDy(WO₄)₂ были обнаружены структурные фазовые переходы ян-теллеровского типа, при которых искажение решетки происходит без изменения симметрии кристалла [5–8]. При температурах ниже 1 К в указанных выше кристаллах происходит антиферромагнитное упорядочение [7–11].

При изоморфном замещении спектры ЭПР магниторазбавленного (МР) и магнитоконцентрированного (МК) веществ отличаются, как правило, только шириной линий поглощения. Большая ширина у МК вещества объясняется наличием существенного вклада спин-спинового взаимодействия в спектр ЭПР. Это уширение приводит к стиранию структуры спектра, определяемому соотношением между энергией спин-спинового взаимодействия и энергией явления, вызывающего появление структуры, хотя известны случаи, например [12,13], когда в спектре МК веществ обнаруживается структура, но обязанная именно специфическому виду спин-спинового взаимодействия.

Существенно меньшему изменению подвержен такой член гамильтониана, как параметр спектроскопического расщепления g. Он является характеристикой основного состояния примесного иона, определяемого симметрией и величиной электрического кристаллического поля матрицы. В гомологическом ряду кристаллов симметрия кристаллической структуры остается прежней, лишь происходит количественное изменение параметров элементарной ячейки. Следовательно, параметр g, если и должен изменяться, то лишь количественно. Причем эти изменения, как показывают многочисленные опыты, находятся на уровне точности эксперимента.

Парамагнитный $KDy(WO_4)_2$ и диамагнитный $KY(WO_4)_2$ кристаллы относятся к одному гомологи-

ческому ряду, параметры элементарных ячеек отличаются не более, чем на 0.7%, поэтому не следовало ожидать существенного различия в величинах g для магнитоконцентрированного (x = 1) и магниторазбавленного $(x < 10^{-2})$ КУ $_{(1-x)}$ Dу $_x$ (WO4) $_2$. Однако характеристики спектра ЭПР МК [7] и МР [14] кристаллов отличаются качественно. На частоте ≈ 9.2 GHz в кристаллах с малой концентрацией диспрозия g имеет "обычное" значение: $g_x = 0$, $g_y = 1.54$, $g_z = 14.6$. А при 100% содержания Dy³⁺ $g_x = 0$, $g_y = 0.82$, $g_z = 2.52$ при температуре выше фазового перехода (T_{spt}) и $g_x = 0$, $g_y = 1.19$, $g_z = 1.98$ при $T < T_{spt}$. Противоречивые данные относительно значений g получены и при исследовании магнитной восприимчивости [10].

Ранее нами было показано [15], что наиболее эффективно взаимодействуют между собой ионы Dy^{3+} , расположенные в первой (*nn*), пятой (5*n*) и девятой (9*n*) конфигурационных сферах, при этом спин-спиновое взаимодействие (ССВ) имеет существенно "осевой" вид, т.е. $|K_{zz}| \gg |K_{nm}|$, *n*, m = x, *y*, *z*. Величина ССВ сравнима $(K_{zz(5n)} = -0.407 \text{ cm}^{-1}, K_{zz(9n)} = -0.237 \text{ cm}^{-1})$ и даже превышает $(K_{zz(nn)} = 1.49 \text{ cm}^{-1})$ энергию использовавшегося в эксперименте СВЧ-кванта $(hv = 0.308 \text{ cm}^{-1})$. Для остальных конфигурационных сфер ССВ существенно слабее.

В настоящей работе показано, что причиной качественного изменения спектра ЭПР с ростом концентрации ионов Dy^{3+} является наличие между примесными ионами весьма специфического и достаточно сильного спин-спинового взаимодействия.

1. Кристаллическая структура

Калий-иттриевый KY(WO₄)₂ и калий-диспрозиевый KDy(WO₄)₂ двойные вольфраматы являются изоморфными кристаллами моноклинной сингонии [16–18] с про-

Таблица 1. Параметры элементарной ячейки (Å) и ромбоэдрический угол β (градусы) монокристаллов $KY(WO_4)_2$ и $KDy(WO_4)_2$

Матрица	a	b	c	β	Литературная ссылка			
$\begin{array}{c} KY(WO_4)_2\\ KDy(WO_4)_2 \end{array}$	8.11	10.35	7.54	93.3	[1]			
	8.05	10.32	7.52	94.4	[2]			

Таблица 2. Координаты A, B и C (в единицах a, b и c) редкоземельного иона в элементарной ячейке $KY(WO_4)_2$ и $KDy(WO_4)_2$

Номер иона	A	В	С
1	0	0.2716	0.25
2	0.5	0.2284	0.25
3	0	0.7284	0.75
4	0.5	0.7716	0.75

странственной группой симметрии $C_{2h}^6 = C2/c$. Элементарная ячейка содержит четыре формульные единицы. Ее параметры для обоих кристаллов приведены в табл. 1. В табл. 2 приведены координаты редкоземельных ионов в элементарной ячейке. На рис. 1 изображен фрагмент кристалла $KDy(WO_4)_2$. Чтобы не загромождать рисунок, темными и светлыми кружками представлены только РЗ ионы, расположенные в двух соседних плоскостях ас, и проведены линии связи только nn-пар. Черным цветом отмечен центральный ион, от которого определяется расстояние до соседних ионов. Ионы Dy³⁺, формирующие не показанные на рис. 1 2n-пары, находятся в расположенной ниже плоскости ас и в той же плоскости bc, что и 3n. В соответствии с табл. 2 курсивом пронумерованы ионы, расположенные в ограниченной штриховыми прямыми одной элементарной ячейке.

Ближайшие (nn) редкоземельные ионы расположены в виде слегка изгибающихся в плоскости **ab** цепочек, направленных вдоль оси **a**. Угол выхода линии связи *nn*-пары из плоскости **ac** равен 6.3° . Ионы Dy³⁺, образующие 5n- и 9n-пары, расположены в цепочках, лежащих в той же плоскости **ac** на расстоянии *C* от исходной цепочки и в свою очередь представляют собой *nn*-пару. Таким образом, цепочки ионов Dy³⁺ формируют плоскости, перпендикулярные оси **b**, причем спин-спиновое взаимодействие внутри плоскостей с доминирующим взаимодействием вдоль цепочек существенно превышает межплоскостное.

2. Теория

Ион Dy³⁺ имеет электронную конфигурацию $4f^9$ (S = 5/2, L = 5, J = 15/2, фактор Ланде $g_J = 4/3$). Основное состояние ${}^6H_{15/2}$ расщепляется кристалли-

ческим полем моноклинного вольфрамата на восемь крамерсовых дублетов, на самом нижнем из которых наблюдается спектр ЭПР. Первый и второй возбужденные дублеты находятся выше основного на расстоянии 10 и 135 сm⁻¹ [5,6]. Четные изотопы Dy (естественная распространенность ^{еvn} c = 56.1%) не имеют ядерного спина, у нечетных изотопов с распространенностью $^{163}c = 24.97\%$ и $^{161}c = 18.88\%$ ядерный спин I = 5/2. Из [14] следует, что для одиночных ионов Dy³⁺ в исследуемой матрице $g_x = 0$, $g_y = 1.54$, $g_z = 14.6$ сверхтонкое взаимодействие для нечетных изотопов составляет: $^{163}A_z = 582.8 \cdot 10^{-4}$ сm⁻¹, $^{161}A_z = 416.5 \cdot 10^{-4}$ сm⁻¹, $^{163}A_y = 146 \cdot 10^{-4}$ сm⁻¹, $^{161}A_y = 104 \cdot 10^{-4}$ сm⁻¹. Направление главных осей тензоров **g** и **A** показано на рис. 1: ось **y** совпадает с кристаллографической осью **b**(c_2), ось **z** лежит в плоскости **ac**, выходя из острого угла между осями **a** и **c** под углом 20° к оси **c**.

Поскольку сверхтонкое взаимодействие существенно меньше спин-спинового, для дальнейшего рассмотрения им пренебрежем, тем более, что больше половины вклада в интенсивность спектра $KDy(WO_4)_2$ вносят четные изотопы Dy с отсутствующим сверхтонким взаимодействием. Пренебрегая также межплоскостным взаимодействием, для случая **B** || **z** гамильтониан плоскости РЗ-ионов, образованной L_1 цепочками, каждая из которых состоит из L_2 ионов Dy³⁺, запишем в виде

$$\hat{H} = g_{z} \mu_{B} B_{z} \sum_{i=1}^{L_{1}} \sum_{j=1}^{L_{2}} \hat{\mathbf{S}}_{z,i,j} + \sum_{i=1}^{L_{1}} \sum_{j=1}^{L_{2}-1} \hat{\mathbf{S}}_{i,j} \mathbf{K}_{(nn)} \hat{\mathbf{S}}_{i,j+1} + \sum_{i=1}^{L_{1}-1} \sum_{j=1}^{L_{2}} \hat{\mathbf{S}}_{i,j} \mathbf{K}_{(5n)} \hat{\mathbf{S}}_{i,j+1} + \sum_{i=1}^{L_{1}-1} \sum_{j=1}^{L_{2}-1} \hat{\mathbf{S}}_{i,j} \mathbf{K}_{(9n)} \hat{\mathbf{S}}_{i+1,j+1}, \quad (1)$$

где первый член описывает взаимодействие спинов с индукцией B_z внешнего постоянного магнитного поля, остальные — спин-спиновое взаимодействие ионов, расположенных в первой (*nn*), пятой (5*n*) и девятой (9*n*) конфигурационных сферах; первый нижний индекс у спинового оператора \hat{S} — номер цепочки, второй — номер иона в ней (рис. 1); μ_B — магнетон Бора;

Рис. 1. Фрагмент кристалла $KDy(WO_4)_2$ размером $L_1 = 4$ и $L_2 = 3$ и направление осей ЛСК. β — ромбоэдрический угол. Ионы пронумерованы в соответствии с гамильтонианом (1), нумерация курсивом — в соответствии с табл. 2. Штрихом выделена элементарная ячейка и находящиеся в ней ионы.

К — тензор спин-спинового взаимодействия, S = 1/2. В качестве лабораторной системы координат (ЛСК) используем направление главных осей тензора спектроскопического расщепления *g*. На рис. 1 показано направление осей ЛСК, а нумерация ионов Dy³⁺ соответствует обозначениям в гамильтониане (1).

Вклад в **К** могут вносить различные механизмы ССВ, в том числе изотропное обменное (j) и магнитное диполь-дипольное (MDD) взаимодействия

$$\mathbf{K} = \mathbf{K}^j + \mathbf{K}^{\text{MDD}},\tag{2}$$

из которых с достаточной степенью точности может быть вычислен только вклад MDD [19]

$$K_{nm}^{\rm MDD} = \mu_B r^{-3} (\delta_{nm} - 3l_n l_m) g_n g_m, \tag{3}$$

где r — межионное расстояние, l_n , l_m — направляющие косинусы линии связи на соответствующую ось, $\delta_{nm} = 1$ при n = m и $\delta_{nm} = 0$ при $n \neq m$, n, m = x, y, z.

Между ионами Dy^{3+} существует весьма большое расстояние и даже между ближайшими расположены два иона кислорода и ион калия, поэтому вряд ли стоит ожидать прямого обмена между исследуемыми ионами. Однако в любом случае, является изотропный обмен прямым или косвенным, он может проявить себя весьма анизотропным образом. Действительно, в пренебрежении примеси возбужденных состояний тензор K^{j} , записанный в эффективных спинах, становится существенно анизотропным [19]

$$K_{nm}^{j} = \left(\frac{g_{nm}}{g_{j}}\right)^{2} (g_{j} - 1)^{2} j.$$

$$\tag{4}$$

Из (3) и (4) следует, что \mathbf{K}^{MDD} и \mathbf{K}^{j} представляют собой симметричные тензоры. Если учесть довольно низкую симметрию матрицы, следует ожидать существенной анизотропии косвенного обмена, который может быть как симметричным (*s*), так и антисимметричным (*as*), при этом для компонент тензора \mathbf{K}^{s} и \mathbf{K}^{as} выполняются условия

$$K_{mn}^{s} = K_{nm}^{s}, \quad K_{mn}^{as} = -K_{nm}^{as}, \quad K_{mm}^{as} = 0.$$
 (5)

Таким образом, (2) следует записать в виде

$$\mathbf{K} = \mathbf{K}^s + \mathbf{K}^{as},\tag{6}$$

где в \mathbf{K}^{s} могут вносить вклады MDD, прямой (j) и косвенные изотропный (j_{k}) и симметричный анизотропный (j_{s}) обмены

$$\mathbf{K}^{s} = \mathbf{K}^{\text{MDD}} + \mathbf{K}^{j} + \mathbf{K}^{jk} + \mathbf{K}^{js}.$$
 (7)

Однако, согласно [16], пары ионов Dy^{3+} в $KY_{0.99}Dy_{0.01}(WO_4)_2$ взаимодействуют посредством "осевого" ССВ, т.е. все компоненты **К** пренебрежимо

малы по сравнению с K_{zz} . Поэтому решение гамильтониана (1) будем искать среди пространства волновых функций

$$\phi_p = m_{p,1,1}, m_{p,1,2}m_{p,1,3}, \dots,$$

$$m_{p,1,L_2}, m_{p,2,l}, m_{p,2,2}m_{p,2,3}, \dots, m_{p,2,L_2}, \dots, m_{p,L_1,L_2}, \quad (8)$$

где $m_{p,i,j} = \pm 1/2$. Всего имеется 2^L состояний спиновой системы, где $L = L_1 \cdot L_2$.

Поскольку гамильтониан (1) в этом случае имеет только диагональные члены, энергетический спектр представляет собой систему линейно зависящих от индукции магнитного поля B_z уровней с "чистыми" волновыми функциями (8)

$$E_p = g_z \mu_B A_p B_z + D_p, \tag{9}$$

где p — номер энергетического уровня, $D_p = D_{p,0,0}K_{zz(nn)} + D_{p,1,0}K_{zz(5n)} + D_{p,1,1}K_{zz(9n)}$, отличные от нуля коэффициенты $D_{p,k,l}$ и A_p равны

$$D_{p,k,l} = \left\langle \phi_p \middle| \sum_{i=1}^{L_1-k} \sum_{j=1}^{L_2-l} \hat{S}_{z,i,j} \hat{S}_{z,i+k,j+l} \middle| \phi_p \right\rangle$$
$$= \sum_{i=1}^{L_1-k} \sum_{j=1}^{L_2-l} m_{p,i,j} m_{p,i+k,j+l},$$
$$A_p = \left\langle \phi_p \middle| \sum_{i=1}^{L_1} \sum_{j=1}^{L_2} \hat{S}_{z,i,j} \middle| \phi_p \right\rangle = \sum_{i=1}^{L_1} \sum_{j=1}^{L_2} m_{p,i,j}.$$

Вероятность перехода W_{pq} с *p*-го на *q*-й уровень пропорциональна

$$Wpq \sim \left| \left\langle \phi_p \left| \sum_{i=1}^{L_1} \sum_{j=1}^{L_2} \hat{S}_{y,i,j} \right| \phi_q \right\rangle \right|^2.$$
 (10)

Величина правой части (10) равна 0.25, если из всех спинов только у одного проекция меняется на 1 $(m_{p,i,j} = -m_{q,i,j})$. В остальных случаях $W_{pq} = 0$. Таким образом, вероятность всех "разрешенных" переходов одинакова и расчет спектра ЭПР сводится к элементарным геометрическим вычислениям, связанным с нахождением всех пар прямых (9), между которыми $W_{pq} \neq 0$, и вычислением величины B_z для выполнения условия $|E_q - E_p| = hv$.

При большой величине энергии кванта ($hv > |K_{zz(nn)}|$) для пары ионов ($L_1 = 1$, $L_2 = 2$) получим дублет, линии которого расположены при индукции внешнего магнитного поля $B_0 \pm K_{zz(nn)}/2$, где $B_0 = hv/g_z\mu_B$. Расчет спектра ЭПР тройки ионов представлен ниже, а для более длинных цепочек эта операция связана с перебором весьма большого количества прямых и ее проще осуществить на ЭВМ. В результате получено, что для $L_1 = 1$ при произвольном $L_2 > 2$ спектр ЭПР представляет собой эквидистантный пентет

$$B_{1} = B_{0} - K_{zz(nn)}, \quad B_{2} = B_{0} - K_{zz(nn)}/2, \quad B_{3} = B_{0},$$

$$B_{4} = B_{0} + K_{zz(nn)}/2, \quad B_{5} = B_{0} + K_{zz(nn)}$$
(11)

Физика твердого тела, 2003, том 45, вып. 11

с соотношением интенсивностей линий

$$\left(1 - \frac{2}{L_2}\right) : \frac{4}{L_2} : \left(2 - \frac{4}{L_2}\right) : \frac{4}{L_2} \left(1 - \frac{4}{L_2}\right), \quad (12)$$

т.е. с удлинением цепочки спектр ЭПР трансформируется от дублета B_2 , B_4 к триплету B_1 , B_3 , B_5 . Аналогичный результат для цепочки ионов, связанных "осевым" взаимодействием, получен в [13].

Соотношения (11) можно также записать в виде

$$\Delta_{51} = 2K_{zz(nn)}, \qquad \Delta_{42} = K_{zz(nn)},$$
$$B_{51} = B_{42} = B_3 = B_0, \tag{13}$$

где $\Delta_{mk} = B_m - B_k, B_{mk} = (B_m + B_k)/2.$

Аналогичные расчеты, проведенные для квадратного фрагмента плоскости для $L_1 = L_2 = 3$ и 4, показали, что для достаточно большого фрагмента каждая из линий пентета (12) расщепляется взаимодействием с ионами Dy³⁺, расположенными в пятой конфигурационной сфере, на такой же пентет с $\Delta_{51(5n)} = 2K_{zz}(5n)$, $\Delta_{42(5n)} = K_{zz}(5n)$ и $B_{0(5n)} = B_0$. В свою очередь каждая из полученных 25 линий расщепляется ССВ в девятой конфигурационной сфере на аналогичный пентет с $\Delta_{51(9n)} = 2K_{zz}(9n)$ и $\Delta_{42(9n)} = K_{zz}(9n)$. В реальном образце $(L_1, L_2 \rightarrow \infty)$ спектр ЭПР при "осевом" ССВ должен состоять из 27 линий, уширенных за счет взаимодействия с более удаленными ионами Dy³⁺.

При уменьшении величины энергии СВЧ-кванта спектр видоизменяется. Можно показать, что формально трансформация спектра сводится к отражению в положительную полуплоскость линий поглощения, попадающих с уменьшением частоты в "отрицательную" индукцию. При $h\nu < |K_{zz(nn)}/2|$ спектр цепочки ближайших ионов представляет собой пентет (12) с расположением линий

$$B_{51} = K_{zz(nn)}, \quad B_{42} = K_{zz(nn)/2},$$
$$\Delta_{51} = \Delta_{42} = 2B_0, \quad B_3 = B_0. \tag{14}$$

Для определения влияния симметричного и антисимметричного ССВ на спектр ЭПР $KDy(WO_4)_2$ обратим внимание на то, что тройка взаимодействующих ионов является минимальной конфигурацией, в спектре которой присутствуют линии, наблюдающиеся не только в спектре пар, но и в спектре бесконечной цепочки. Поэтому из анализа влияния анизотропного обмена на положение первой, третьей и пятой линий можно сделать определенные выводы о трансформации спектра исследуемого вещества под воздействием недиагональных компонент тензора **K**.

При "осевом" ССВ и **B** || **z** энергетический спектр тройки ионов, связанных только посредством $K_{zz(nn)}$ $(L_1 = 1, L_2 = 3)$, легко вычисляется аналитически. С использованием (8), (9) и (10) получим следующий энер-

гетический спектр и волновые функции:

$$\begin{split} E_1 &= -G - K_{zz}/2, \quad |\phi_1\rangle = |-1/2, +1/2, -1/2\rangle, \\ E_2 &= G - K_{zz}/2, \qquad |\phi_2\rangle = |+1/2, -1/2, +1/2\rangle, \\ E_3 &= E_4 = -G \qquad |\phi_3\rangle = |+1/2, -1/2, -1/2\rangle, \\ |\phi_4\rangle = |-1/2, -1/2, -1/2\rangle, \\ E_5 &= E_6 = G \qquad |\phi_5\rangle = |-1/2, +1/2, +1/2\rangle, \\ |\phi_6\rangle = |+1/2, +1/2, -1/2\rangle, \\ E_7 &= -3G + K_{zz}/2 \quad |\phi_7\rangle = |-1/2, -1/2, -1/2\rangle, \\ E_8 &= 3G + K_{zz}/2 \qquad |\phi_8\rangle = |+1/2, +1/2, +1/2\rangle, \quad (15) \end{split}$$

где $G = g_z \mu_B B_z / 2.$

Уровень E_7 пересекается с уровнями E_5 и E_6 при $B_{k1} = K_{zz}/4g_z\mu_B$, с уровнями E_2 , E_3 и E_4 при $B_{k2} = K_{zz}/2g_z\mu_B$ и с уровнем E_1 при $B_{k3} = K_{zz}/g_z\mu_B$. Переходы с одинаковой вероятностью $W_{pq} \sim 0.25$ разрешены между уровнями: $E_1 \leftrightarrow E_5$, $E_1 \leftrightarrow E_6$, $E_1 \leftrightarrow E_7$, $E_2 \leftrightarrow E_3$, $E_2 \leftrightarrow E_4$, $E_2 \leftrightarrow E_8$, $E_3 \leftrightarrow E_6$, $E_3 \leftrightarrow E_7$, $E_4 \leftrightarrow E_5$, $E_4 \leftrightarrow E_7$, $E_5 \leftrightarrow E_8$ и $E_6 \leftrightarrow E_8$. Подчеркнуты переходы, соответствующие спектру бесконечной цепочки, а на рис. 2 сплошными линиями представлен вычисленный энергетический спектр.

Рис. 2. Расчетные энергетические спектры тройки взаимодействующих ионов Dy^{3+} при **B** || **z**. *1* — "осевое" ССВ $(K_{zz} = 1.9 \text{ cm}^{-1}); 2-4$ — влияние низкосимметричных компонент тензора ССВ: 2 — антисимметричное ССВ $(K_{zz} = 1.9 \text{ cm}^{-1}, K_{yz}^{as} = 0.3 \text{ cm}^{-1}); 3$ — симметричное ССВ $(K_{zz} = 1.9 \text{ cm}^{-1}, K_{yz}^{as} = 0.3 \text{ cm}^{-1}); 4$ — компонента K_{yy} $(K_{zz} = 1.9 \text{ cm}^{-1}, K_{yy} = 0.3 \text{ cm}^{-1})$. Во всех расчетах $g_z = 14.6$, не указанные компоненты тензора К равны нулю. Стрелками обозначены разрешенные переходы при "осевом" ССВ на частоте 9244.5 MHz (0.3084 cm⁻¹), более "жирные" стрелки соответствуют переходам, наблюдающимся в центре ЭПР бесконечной цепочки. Рядом со стрелками указана кратность переходов.

v as	VS	V	$B_z = 0$											
\mathbf{X}_{xz} \mathbf{X}_{yz} \mathbf{X}_{yz}	к _{уу}	ΔE_{43}	W ₄₃	ΔE_{53}	W ₅₃	ΔE_{63}	W ₆₃	ΔE_{54}	W ₅₄	ΔE_{64}	W ₆₄	ΔE_{65}	W ₆₅	
0 0.3 0 0	0 0 0.3 0	0 0 0 0.3	0 0 0 0	0.25 0.41 0.14 0.059	0 8881 0 0	0 0 0.027 0.085	0 8881 0 0	0 0 0.052 0.081	0 8881 0 0	0 0 0.042 0.008	0 8881 0 0	0 0 0.17 0.054	0 0 4379 0	0.25 0.11 0 0.088
1285	IZS.	V		$B_z = B_{k2}$										
K_{xz}^{uv} K_{yz}^{v} K_{yz}	K_{yy}	ΔE_{32}	W ₃₂	ΔE_{42}	W42	ΔE_{52}	W ₅₂	ΔE_{43}	W43	ΔE_{53}	W ₅₃	ΔE_{54}	W54	
0 0.3 0 0	0 0 0.3 0	0 0 0 0.3	0 4123 4379 693	0 0.012 0 0	0 4811 4608 693	0.25 0 0.001 0	0 8912 8984 927	0.25 0 0.001 0.85	0 678 229 0	0.25 0.99 0 0	0 4789 4605 233	0.25 0.012 0 0	0 4101 4376 233	0 0 0.001 0.002
K_{yz}^{as} K_{yz}^{s} .	K_{yz}^s K_{yy}	$B_z = B_{k3}$												
		Δ	E_{21}	И	V ₂₁									
0 0.3 0 0	0 0 0.3 0	0 0 0 0.3	8	0 236 934 233	0.25 0.24 0.009 0.16									

Таблица З. Влияние компонент K_{zz} , K_{yz}^{as} , K_{yz}^{s} , K_{yy} тензора ССВ троек ионов Dy^{3+} в $KY_{(1-x)}Dy_x(WO_4)_2$, $0 < x \le 1$, на расщепление уровней энергии $\Delta E_{pq} = E_p - E_q$ (MHz) и вероятность переходов W_{pq} в некоторых характерных точках энергетического спектра

Примечание. Во всех расчетах $g_z = 14.6$, $K_{zz} = 1.9$ cm⁻¹, откуда $B_{k2} = 139.37$ mT, $B_{k3} = 278.74$ mT. Уровни энергии нумеруются в порядке возрастания. При $W_{pq} < 10^{-3}$ считается, что $W_{pq} = 0$.

Компоненты K_{vz} и K_{vv} смешивают все состояния и для расчета энергетического спектра и вероятности переходов проще всего воспользоваться ЭВМ. Результаты представлены в табл. 3 и на рис. 2. Компонента K_{yy} (линии 4) вызывает появление энергетической щели в точке B_{k1} ; компонента K_{yz}^{as} (линии 2) снимает вырождение уровней $E_3 - E_6$ при $B_z = 0$ и вызывает появление энергетической шели в точке B_{k2}; компонента K_{vz}^{s} (линии 3) вызывает появление энергетической щели в точках B_{k2} и B_{k3} . Смешивая волновые функции, они вызывают изменение вероятности переходов при B_{z} , достаточно близких к характерным точкам. При других значениях индукции внешнего магнитного поля перечисленные компоненты тензора К не оказывают существенного влияния на энергетический спектр.

Отсюда следует, что антисимметричное ССВ, практически не влияя на линии B_1 и B_5 , смещает линию B_3 к более низкому значению индукции внешнего магнитного поля и уменьшает ее интенсивность вплоть до полного исчезновения при $B_z = 0$. Наоборот, компонента K_{yz}^s , оставляя практически неизменным квартет E_3-E_6 , вызывает сближение линий B_1 и B_5 и уменьшает их интенсивность, причем в большей степени линии B_5 .

Отметим, что перечисленные эффекты наиболее ярко проявляются на частотах, сравнимых с величиной расщепления, вызванного соответствующим компонентом тензора ССВ. При использовании в эксперименте СВЧ-кванта достаточно высокой энергии вклад недиагональных компонент тензора **К** должен быть практически не ощутим.

3. Эксперимент

В качестве образцов использовались монокристаллы $KDy(WO_4)_2$, выращенные методом спонтанной кристаллизации в растворе $K_2W_2O_7$ при понижении температуры от 950°C со скоростью 3° в час. Полученные кристаллы имели линейные размеры от 2 до 3 mm, причем некоторые обладали хорошо выраженной огранкой. Ориентирование кристаллов проводилось рентгенографическим методом.

Спектры ЭПР при **В** || **z**, полученные на частоте 9244.5 МНz и при температурах 12 K (выше T_{spt}) и 4.2 K (ниже T_{spt}), представлены на рис. 3 сплошными линиями. В обоих случаях наблюдается линия шириной ~ 130 mT при индукции внешнего магнитного поля, соответствующей $g_z = 2.53$ при T = 12 и 2.13 при T = 4.2 K с некоторой аномалией при малых индукциях, исчезающей с понижением температуры.

Спектр ЭПР, измереннный на частоте 72 240 МНz при **В** || **z** и T = 4.2 К, представлен сплошной линией на рис. 4. В противоположность низкочастотному спектру наблюдается достаточно четко выраженная триплетная структура с ростом интенсивности линий по мере увеличения B_z при ширине каждой линии ≈ 120 mT и $g_z \approx 14.6$.

4. Обсуждение

По данным [15], где исследовался спектр ЭПР пар ионов Dy³⁺ в KY_{0.99}Dy_{0.01}(WO₄)₂, основной вклад в тензор K вносят изотропный обмен i и MDD (2), и для всех типов пар ССВ имеет существенно "осевой" вид. Ясно, что воспользоваться результатами этой работы, чтобы с помощью гамильтониана (1) получить расчетный спектр целого кристалла нереально из-за громалного количества частии. Поэтому в качестве модели используем тройку взаимодействующих ионов, оставив в расчетном спектре только линии, соответствующие спектру бесконечной цепочки, т.е. переходы между уровнями E_3 , E_4 , E_5 , E_6 при $B_7 < B_{k1}$ и E_1 , E_7 при $B_z > B_{k2}$ (рис. 2). При этому учтем, что а) в кристалле каждая из рассматриваемых линий расщепляется взаимодействием в пятой и девятой конфигурационных сферах, б) каждая из полученных линий будет уширена за счет ССВ с более дальними ионами Dy³⁺. Результат расчета при $\Delta B = 70 \,\mathrm{mT}$ (ширина каждой линии по точкам экстремума производной) на основании выводов [15] $(g_z = 14.6, K_{zz(nn)} = 1.49 \,\mathrm{cm^{-1}},$ $K_{zz(5n)} = -0.4074 \,\mathrm{cm}^{-1}, \ K_{zz(9n)} = -0.2373 \,\mathrm{cm}^{-1})$ представлен кривой 5 на рис. 3. Из этого рисунка следует, что наблюдается несоответствие расчета экспериментально наблюдаемому спектру.

В [15] отмечено, что в спектрах 5*n*- и 9*n*-пар сверхтонкая структура тождественна СТС одиночного иона, откуда делается вывод об отсутствии заметного вклада "неосевых" компонент тензора **К** этих пар. В то же время спектр *nn*-пары представлен широкой линией с полностью отсутствующей сверхтонкой структурой. Это обстоятельство, не нашедшее надлежащего объяснения в [15], может свидетельствовать о наличии в тензоре ССВ *nn*-пары компонент, смешивающих различные состояния и приводящих к исчезновению СТС. Такие компоненты присутствуют в тензорах \mathbf{K}^{as} и \mathbf{K}^{s} .

Далее примесный ион, замещая ион аналога, из-за различия в ионных радиусах, деформирует элементарную ячейку в сторону собственной. Пара рядом расположенных примесных ионов увеличивает искажение. Так, в редкоземельных этилсульфатах $\text{Re}(\text{C}_2\text{H}_5\text{SO}_4)_3 \cdot 9\text{H}_2\text{O}$ (ReES) параметр *c* элементарной ячейки равен расстоянию r_{nn} между ближайшими редкоземельными ионами Re. Из выводов работы [20] следует, что в монокристаллах $A_{(1-x)}B_x\text{ES}$ ($A = \text{La}^{3+}$, Y^{3+} , Tm^{3+} ; $B = \text{Nd}^{3+}$, Ce^{3+} ; изоморфное замещение) параметр *c* элементарных ячеек зависит от количества *k* рядом расположенных ионов В следующим образом:

$$c_k = c_{\rm B} + (c_{\rm A} - c_{\rm B}) \exp(-0.592k),$$
 (16)

где c_k — параметр c этих ячеек, в которых ион В заместил ион А; c_A и c_B — соответственно параметры c "чистой" (AES) с полностью замещенной (BES) матриц. Иными словами, с ростом длины цепочки примесных

Рис. 3. Спектр ЭПР КDy(WO₄)₂ на частоте 9244.5 MHz при **B** || **z**. 1, 3 — эксперимент: 1 — T = 4.2, 3 — 12 K; 2, 4, 5 — расчет: 2, 4 — по данным табл. 4, 5 — по результатам [15] ($K_{zz(nn)} = 1.49 \text{ cm}^{-1}$); 2 и 5 — рассчитаны для T = 4.2 К, 4 — для T = 12 К. Для всех расчетных кривых $g_z = 14.6$, $\Delta B = 70$ mT, форма линии — гауссова, учтен эффект "вымораживания" и спин-спиновое взаимодействие в 5-й и 9-й конфигурационных сферах ($K_{zz(5n)} = -0.4074 \text{ cm}^{-1}$, $K_{zz(9n)} = -0.2373 \text{ cm}^{-1}$).

ионов *r_{nn}* изменяется в сторону, характерную для собственной матрицы.

Расстояние между редкоземельными ионами в $KDy(WO_4)_2$ меньше, чем в $KY(WO_4)_2$ (табл. 2). Поэтому, не вдаваясь в детальный количественный анализ применимости (16) к редкоземельным вольфраматам, ограничимся констатацией, что r_{nn} пар ионов Dy^{3+} в $KY_{0.99}Dy_{0.01}(WO_4)_2$ вполне может превышать r_{nn} в $KDy(WO_4)_2$. Отсюда следует, что ССВ ионов Dy^{3+} в $KDy(WO_4)_2$ может превышать ССВ пары в MP матрице.

С учетом этих обстоятельств осуществлялся подбор величин компонент K_{zz} , K_{yz}^{as} , K_{yz}^{s} и K_{yy} . Из сравнения кривых 2 и 4 (расчет) со сплошными линиями 1 и 3 на рис. 3 следует, что учет недиагональных компонент тензора К существенно улучшает согласие с экспериментом. При этом следует отметить, что, если компонента К₂₂ оказывает решающее влияние на положение линий B_1 и B_5 , а компонента K_{yz}^s — на расстояние между ними, компоненты K_{vz}^{as} и K_{vv} конкурируют между собой во влиянии на положение и интенсивность линии В₃. Чтобы избежать многозначности, компонента К_{уу} вычислялась при условии, что должны выполняться соотношения (4), т.е. $K_{zz}^{j}/K_{yy}^{j} = (g_{z}^{j}/g_{x})^{2}$ и (7). Гауссова форма линии имеет более плоскую вершину с быстрее спадающими крыльями, чем лоренцева. В связи с этим описание расчетного спектра гауссианом может свидетельствовать не столько о случайном распределении частиц, сколько о наличии в экспериментальном спектре большего количества линий, чем использовалось в расчете.

Рис. 4. Спектр ЭПР КDу(WO₄)₂ на частоте 72 240 MHz при **B** || **z** и температуре 4.2 К. *I* — эксперимент; *2*, *3* расчет: *2* — "осевое" ССВ ($K_{zz(nn)} = 2.24 \text{ cm}^{-1}$, остальные компоненты тензора K_{nn} равны нулю); *3* — по данным табл. 4. Во всех расчетах $g_z = 14.6$, $\Delta B = 120 \text{ mT}$, форма линии — лоренцева, учтен эффект "вымораживания"и спин-спиновое взаимодействие в 5-й и 9-й конфигурационных сферах ($K_{zz(5n)} = -0.4074 \text{ cm}^{-1}$, $K_{zz(9n)} = -0.2373 \text{ cm}^{-1}$).

Столь успешное согласие расчета с экспериментом потребовало дополнительной проверки. Измерения, проведенные на существенно большей частоте (рис. 4) показали: 1) как следует из теоретического анализа, при большой величине энергии кванта недиагональные компоненты тензора ССВ не оказывают существенного влияния на спектр поглощения — кривые 2 и 3 на рис. 4 практически одинаковы; 2) положительный знак $K_{zz(nn)}$ в [15] предсказан верно, о чем свидетельствует "вымораживание" в области спектра с низкими значениями индукции; 3) величина $K_{zz(nn)}$, определенная на малой частоте, соответствует наблюдаемому спектру при большой величине энергии кванта.

Следует отметить, что эффект "вымораживания" на малых частотах ($hv \ll kT$) проявляется значительно слабее, чем на высоких ($hv \ge kT$), поэтому отклонение относительной интенсивности линий спектра от (12) на малой частоте определяется наличием низкосимметричных компонент тензора **K**, а на большой — температурой. Таким образом, исследования, проведенные с МК веществами на двух, существенно отличающихся частотах, не только не противоречат, но и взаимно дополняют друг друга, причем даже небольшой фрагмент цепочки может достаточно эффективно моделировать спектр ЭПР реального кристалла.

Почему же не были обнаружены недиагональные компоненты тензора **K** в спектре пар [15], где также использовался квант малой величины энергии (9244.5 MHz)?

Для пары ионов при **B** \parallel **z** и в случае отличных от нуля компонент K_{zz} и K_{yy} тензора ССВ гамильтониан (1) легко диагонализируется. При $L_1 = 1$ и $L_2 = 2$ получим

следующий энергетический спектр и волновые функции:

$$\begin{split} E_1 &= K_{zz}/4 - Q \quad |\phi_1\rangle = A_+ \big[(2G+Q)| - 1/2, -1/2 \rangle \\ &- (K_{yy}/4) + 1/2, +1/2 \big], \\ E_2 &= (-K_{zz} - K_{yy})/4 \quad |\phi_2\rangle = \frac{1}{\sqrt{2}} \big[|+1/2, -1/2\rangle \\ &- |-1/2, +1/2\rangle \big], \\ E_3 &= (-K_{zz} + K_{yy})/4 \quad |\phi_3\rangle = \frac{1}{\sqrt{2}} \big[|+1/2, -1/2\rangle \\ &+ |-1/2, +1/2\rangle \big], \\ E_4 &= K_{zz}/4 + Q \quad |\phi_4\rangle = A_- \big[(K_{yy}/4)| + 1/2, +1/2\rangle \\ &- (2G-Q)| - 1/2, -1/2\rangle \big], \quad (17) \end{split}$$

где

$$A_{\pm} = \frac{1}{\sqrt{2}} \left[(K_{yy}/4)^2 + 4G^2 \pm 2GQ \right]^{1/2},$$
$$Q = \left[4G^2 + (K_{yy}/4)^2 \right]^{1/2}, \quad G = g_z \mu_B B_z/2.$$

Переходы разрешены между уровнями: $E_1 \leftrightarrow E_3$ и $E_3 \leftrightarrow E_4$. При малой величине энергии кванта линии спектра поглощения должны наблюдаться при следующих значениях индукции внешнего магнитного поля:

$$B_{2} = (g_{z}\mu_{B})^{-1} [(K_{zz}/2 - h\nu)(K_{zz}/2 - h\nu - K_{yy}/2)]^{1/2},$$

$$B_{4} = (g_{z}\mu_{B})^{-1} [(K_{zz}/2 + h\nu)(K_{zz}/2 + h\nu - K_{yy}/2)]^{1/2}$$
(18)

с вероятностью перехода (10) $W_{13} \sim [A_+(2G+Q-K_{yy}/4)]^2$. Таким образом, возрастание величины компоненты K_{yy} сопровождается смещением спектра пар в область более низких значений индукции внешнего магнитного поля, увеличением расстояния между линиями и падением интенсивности спектра.

Из рис. 5, где представлен вычисленный на ЭВМ энергетический спектр пары ионов Dy^{3+} , следует, что компоненты K_{yz}^{as} и K_{yz}^{s} проявляют себя одинаково (штриховые кривые 2), вызывая появление энергетической щели в районе точки B_k (аналогичная ситуация наблюдается на рис. 2 в районе точки B_{k2}). Поэтому влияние каждой из рассмотренных двух компонент сводится к уменьшению расстояния между линиями B_2 и B_4 от расчетного значения для "осевого" ССВ (14)

$$\Delta_{42} = 2h\nu/g_z \mu_B = 90.4 \,\mathrm{mT}, \tag{19}$$

из-за чего в спектре ЭПР пары даже при малой величине энергии кванта невозможно разделить вклады симметричного и антисимметричного ССВ.

В спектре поглощения *nn*-пар ионов Dy^{3+} в $KY_{0.99}Dy_{0.01}(WO_4)_2$ наблюдается только линия B_4 при индукции внешнего магнитного поля 154.5 mT. Линия B_2

		K _{zz}		K_{yz}^{as}		K_{yz}^s		K _{yy}	
Эксперимент	$KY_{0.99}Dy_{0.01}(WO_4)_2$	1.49-1.525		0-0.209		0-0.144		_	
	$KDy(WO_4)_2$	12 K	4.2 K	12 K	4.2 K	12 K	4.2 K	12 K	4.2 K
		1.9	2.24	0.304	0.311	0.3	0.3	0.0282	0.0320
Расчет	MDD Изотропный и симметричный	0.7011	0.7011	0	0	0.0197	0.0197	0.0149	0.0149
	обмен (прямой и косвенный) Антисимметричный обмен	1.1989 0	1.5389 0	0 0.304	0 0.311	0 0.2803	0 0.2803	0.0133 0	0.0171 0

Таблица 4. Экспериментальное значение и вклады различных механизмов в ССВ ионов Dy^{3+} в матрицах $KY_{0.99}Dy_{0.01}(WO_4)_2$ и $KDy(WO_4)_2$

Примечание. Представлены только отличные от нуля компоненты тензора K (cm⁻¹).

скрыта спектром одиночного иона и может находиться в диапазоне от 64.1 mT (19) до 69.2 mT (верхняя граница спектра одиночного иона). Если ситуация $B_2 = 64.1$ mT, $B_4 = 154.5$ mT описывается однозначно, $K_{zz(nn)} = 1.49$ cm⁻¹, $K_{yz(nn)}^{as} = K_{yz(nn)}^s = 0$, то моделирование спектра ЭПР пар на ЭВМ показало, что расположение линий $B_2 = 69.2$ mT, $B_4 = 154.5$ mT можно осуществить бесчисленным количеством вариантов: от $K_{zz(nn)} = 1.525$ cm⁻¹, $K_{yz(nn)}^{as} = 0.209$ cm⁻¹, $K_{yz(nn)}^s = 0$ до $K_{zz(nn)} = 1.522$ cm⁻¹, $K_{yz(nn)}^{as} = 0, K_{yz(nn)}^s = 0.144$ cm⁻¹.

Используя данные табл. 4, где сведены полученные результаты, и (4), получим, что для ближайшей пары ионов Dy^{3+} в $KY_{0.99}Dy_{0.01}(WO_4)_2$ $j_{nn} = (0.112 - 0.114) \text{ cm}^{-1}$; в $KDy(WO_4)_2$ при $T > T_{spt}$

Рис. 5. Расчетный энергетический спектр пары взаимодействующих ионов Dy³⁺. *1* — "осевое" ССВ ($K_{zz} = 1.9 \text{ cm}^{-1}$, остальные компоненты тензора **K** равны нулю); *2*–*4* — влияние низкосимметричных компонент тензора **K**: *2* — как антисимметричного ($K_{zz} = 1.9 \text{ cm}^{-1}$, $K_{yz}^{as} = 0.3 \text{ cm}^{-1}$), так и симметричного ССВ ($K_{zz} = 1.9 \text{ cm}^{-1}$, $K_{yz}^{s} = 0.3 \text{ cm}^{-1}$); *3* — компоненты K_{yy} ($K_{zz} = 1.9 \text{ cm}^{-1}$, $K_{yy} = 0.3 \text{ cm}^{-1}$). Во всех расчетах не перечисленные компоненты тензора **K** равны нулю, $g_z = 14.6$. Стрелками обозначены разрешенные переходы при "осевом" ССВ на частоте 9244.5 МНz. Рядом со стрелками указана кратность переходов. Кривые *3* пронумерованы в соответствии с (17).

 $j_{nn} = 0.143 \text{ cm}^{-1}$ и при $T < T_{\text{spt}}$ $j_{nn} = 0.168 \text{ cm}^{-1}$. Отсюда следует: 1) ССВ ближайшей пары ионов Dy³⁺ в МР веществе меньше, чем в МК. Поскольку измерения производились при одинаковой температуре, это однозначно указывает на уменьшение межионного расстояния с удлинением цепочки примесных ионов, т.е. качественно подтверждается (16); 2) фазовый переход, происходящий при $4.2 < T_{\text{spt}} < 12 \text{ K}$, также сопровождается ростом ССВ. Вряд ли это связано с термическим сжатием кристалла — слишком узок температурный диапазон при достаточно низкой температуре. Однако, сделать однозначное заключение невозможно из-за отсутствия низкотемпературных кристаллографических данных.

Таким образом, в работе получены следующие результаты.

 Тройка взаимодействующих ионов является достаточно эффективным объектом для моделирования спектра ЭПР магнитоконцентрированного вещества.

 Для обнаружения низкосимметричных компонент ССВ необходимо использовать СВЧ-квант с достаточно малой величиной энергии.

 Спектр ЭПР тройки взаимодействующих ионов существенно информативнее спектра пары.

4) Экспериментально обнаружено взаимодействие Дзялошинского между ионами Dy^{3+} в $KY_{(1-x)}Dy_x(WO_4)_2, 0 < x \le 1.$

5) При замещении примесный ион деформирует элементарную ячейку в сторону собственной.

6) Фазовый переход в $KDy(WO_4)_2$ сопровождается ростом ССВ.

7) Концентрационная трансформация спектра ЭПР Dy^{3+} в $KY_{(1-x)}Dy_x(WO_4)_2$ обусловлена наличием специфического вида ССВ в этом веществе и спектр $KDy(WO_4)_2$ описывается параметрами спинового гамильтониана, характерными для одиночного иона.

Авторы искренне благодарят А.Г. Андерса за помощь при проведении измерений в 4 mm диапазоне и обсуждение результатов, Г.Я. Самсонову и Л.Ф. Черныш за выращивание качественных монокристаллов, В.И. Каменева — за ориентирование монокристаллов.

Список литературы

- А.А. Каминский, Г.П. Вердун, В. Коешнер, Ф.А. Кузнецов, А.А. Павлюк. Квантовая электроника 19, 941 (1992).
- [2] M.C. Pujol, M. Rico, C. Zaldo, R. Sole, V. Nikolov, X. Solans, M. Aguilo, F. Diaz. Applied Physics B68, 187 (1999).
- [3] A.A. Kaminskii, L. Li, A.V. Butahsin, V.S. Mironov, A.V. Pavlyuk, S.N. Bagauev, Kenichi Ueda. Jpn J. Appl. Phys. 36, L107 (1997).
- [4] C. Zaldo, M. Rico, C. Cascales, M.C. Pujol, J. Massons, M. Aguilo, F. Diaz, P. Porcher. J. Phys.: Condens. Matter. 12, 8531 (2000).
- [5] И.В. Скоробогатова, А.И. Звягин. ФНТ 4, 6, 800 (1978).
- [6] Ю.А. Попков, В.И. Фомин, Л.Н. Пелих. ФНТ **8**, *1* 1210 (1982).
- [7] M.T. Borowiec, V. Dyakonov, A. Nabialek, A. Pavlyuk, S. Piechota, A. Prokhorov, H. Szymczak. Physica B240, 21 (1997).
- [8] M.T. Borowiec, V. Dyakonov, V. Kamenev, A. Nabialek, A. Prokhorov, H. Szymczak, M. Zaleski. Acta Phys. Polonica A94, 71 (1998).
- [9] V. Dyakonov, V. Markovich, V. Kovarskii, A. Markovich, M.T. Borowiec, A. Jedrzejczak, H. Szymczak. Phys. Solid State (USA) 40, 691 (1998).
- [10] M.T. Borowiec, V.P. Dyakonov, E. Zubov, E. Khatsko, H. Szymczak. Journal de Physique 7, 1639 (1997).
- [11] M.T. Borowiec, V.P. Dyakonov, A. Jedrzejczak, V. Markovich, A. Pavlyuk, H. Szymczak, E. Zubov, M. Zaleski. Phys. Lett. A243, 85 (1998).
- [12] R.J. Anderson, J.M. Baker. J. Phys. C: Solid State Phys. 4, 12, 1618 (1974).
- [13] И.М. Крыгин, А.Д. Прохоров. ЖЭТФ 92, 2, 549 (1987).
- [14] M.T. Borowiec, V.P. Dyakonov, A. Prokhorov, H. Szymczak. Phys. Rev. B 62, 5834 (2000).
- [15] И.М. Крыгин, А.Д. Прохоров, В.П. Дьяконов, М.Т. Вогоwiec, H. Szymczak. ФТТ 44, 8, 1513 (2002).
- [16] С.В. Борисов, Р.Ф. Клевцова. Кристаллография 13, 3, 517 (1968).
- [17] П.В. Клевцов, Л.П. Козеева. ДАН СССР 185, 3, 571 (1969).
- [18] Ю.К. Вищакас, И.В. Молчанов, А.В. Михайлов, Р.Ф. Клевцова, А.В. Любимов. Литовский физический сборник 28, 2, 224 (1988).
- [19] А. Абрагам, Б. Блини. Электронный парамагнитный резонанс переходных ионов. Мир, М. (1972). Т. 1.
- [20] И.М. Крыгин, А.Д. Прохоров. Физика и техника высоких давлений. Сб. статей (1987). В. 25. С. 70.