Наблюдение методом мессбауэровской спектроскопии процесса Бозе-конденсации в полупроводниковых твердых растворах (Pb_{0.4}Sn_{0.6})_{0.86}In_{0.14}Te

© С.А. Немов, П.П. Серегин, Ю.В. Кожанова, В.П. Волков, Н.П. Серегин*, С.М. Иркаев*, Д.В. Шамшур**

Санкт-Петербургский государственный политехнический университет,

195251 Санкт-Петербург, Россия

* Институт аналитического приборостроения Российской академии наук,

198103 Санкт-Петербург, Россия

** Физико-технический институт им. А.Ф. Иоффе Российской академии наук,

194021 Санкт-Петербург, Россия

(Поступила в Редакцию 18 марта 2003 г.)

Методом эмиссионной мессбауэровской спектроскопии на изотопе $^{73}As(^{73}Ge)$ установлено, что перевод твердого раствора ($Pb_{0.4}Sn_{0.6})_{0.86}In_{0.14}$ Те в сверхпроводящее состояние сопровождается изменением электронной плотности в катионных узлах. Обнаружена пространственная неоднородность Бозе-конденсата куперовских пар.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (грант № 02-02-17306).

Переход полупроводников в сверхпроводящее состояние происходит, как правило, при температурах, достигающих значений нескольких десятых долей Кельвина [1]; в этом отношении совершенно необычными являются полупроводниковые твердые растворы $(Pb_{1-x}Sn_x)_{1-z}In_z$ Те, которые обладают максимальной для полупроводников критической температурой, достигающей 4.2 K [2].

Согласно теории Бардина-Купера-Шриффера (БКШ), явление сверхпроводимости объясняется образованием Бозе-конденсата куперовских пар, который описывается единой когерентной волновой функцией, причем распределение электронной плотности в узлах кристаллической решетки сверхпроводника при температурах выше и ниже температуры перехода в сверхпроводящее состояние T_c различается [3]. Перспективным направлением в исследовании свойств Бозе-конденсата является изучение сверхпроводящих материалов с помощью эффекта Мессбауэра: в принципе оказывается возможным обнаружить процесс Бозе-конденсации куперовских пар путем измерения температурной зависимости центра тяжести S мессбауэровских спектров сверхпроводников [4]. Эта зависимость включает три члена [5]: первый описывает зависимость изомерного сдвига I от объема V; второй — влияние доплеровского сдвига второго порядка D; наконец, третий — температурную зависимость изомерного сдвига I. Последний член характеризует изменение электронной плотности на мессбауэровских ядрах, и именно этот эффект ожидается при переходе матрицы в сверхпроводящее состояние.

Для реализации этой программы необходим выбор подходящего мессбауэровского зонда. В частности, не были успешными попытки обнаружить процесс Бозеконденсации методом мессбауэровской спектроскопии на изотопе ¹¹⁹Sn для сверхпроводника Nb₃Sn [6]: экс-

периментальная зависимость S(T) удовлетворительно описывалась доплеровским сдвигом второго порядка; не было отмечено особенностей в поведении S(T), которые можно было бы приписать изменению электронной плотности на ядрах ¹¹⁹Sn в узлах кристаллической решетки. Также не было обнаружено аномального изменения величины *S* мессбауэровских спектров примесных атомов ⁵⁷Fe в высокотемпературных сверхпроводниках [7]. Эти факты объясняются малой величиной Δ/G (Δ — максимально достижимая разность изомерных сдвигов мессбауэровских спектров в обычной и сверхпроводящей фазах, *G* — экспериментальная ширина ядерного уровня), которая для случая мессбауэровской спектроскопии на изотопах ⁵⁷Fe и ¹¹⁹Sn не превышает 6.

Очевидно, что для обнаружения Бозе-конденсации методом мессбауэровской спектроскопии необходимо использовать зонд, для которого $\Delta/2G \gg 10$. При выборе объектов для исследования следует также учитывать необходимость введения в узлы решетки мессбауэровского зонда. Как показано авторами [4], эти условия выполняются для мессбауэровского зонда ⁶⁷Zn в решетках металлооксидов меди при использовании эмиссионного варианта мессбауэровской спектроскопии ⁶⁷Cu(⁶⁷Zn). В частности, установлено, что переход в сверхпроводящее состояние приводит к электронной плотности в металлических узлах решеток металлооксидов меди, причем существует экспериментально наблюдаемая зависимость между изменением электронной плотности и температурой перехода кристалла в сверхпроводящее состояние. Ожидаемое изменение электронной плотности в ядрах 67 Zn для материалов с $T_c < 10$ K оказывается ничтожным, и поэтому вряд ли возможно надежное наблюдение изменения электронной плотности с использованием спектроскопии на изотопе ⁶⁷Zn

Температурные зависимости центра тяжести *S* мессбауэровских спектров ⁷³Ge в катионных (*I*, *2*) и анионных (*3*, *4*) узлах твердых растворов источников (Pb_{0.4}Sn_{0.6})_{0.86}In_{0.14}Te (*I*, *3*) и (Pb_{0.4}Sn_{0.6})_{0.97}In_{0.03}Te (*2*, *4*), измеренные относительно их значений при 4.2 К. Сплошной линией показана теоретическая температурная зависимость *S* для случая доплеровского сдвига второго порядка при $\Theta = 130$ K.

для сверхпроводящего перехода в полупроводниках на основе $Pb_{1-x}Sn_xTe:In$ [8].

В настоящей работе для исследования процесса Бозе-конденсации в полупроводниках типа $(Pb_{1-x}Sn_x)_{1-z}In_zTe$ предлагается использовать эмиссионную мессбауэровскую спектроскопию на изотопе ⁷³As(⁷³Ge): для ⁷³As $\Delta/2G \sim 2000$ [9], при этом возможно введение материнского изотопа ⁷³As в процессе синтеза твердых растворов $(Pb_{1-x}Sn_x)_{1-z}In_zTe$ как в узлы свинца (олова), так и в узлы теллура [10].

В работе [11] приведена схема образования мессбауэровского уровня ⁷³Ge после радиоактивного распада материнского изотопа ⁷³As. Учитывая, что энергия отдачи дочерних атомов ⁷³Ge вследствие процесса электронного захвата в ⁷³As и испускания нейтрино не превышает энергии смещения атомов из нормальных узлов решетки [12], можно ожидать, что радиоактивное превращение не приводит к смещению атомов германия из нормальных узлов кристаллической решетки и, следовательно, параметры эмиссионных мессбауэровских спектров ⁷³As(⁷³Ge) должны отражать состояние атомов ⁷³Ge, локализованных либо в катионной, либо в анионной подрешетке.

Радиоактивный изотоп ⁷³As получали по реакции ⁷⁴Ge $(p, 2n) \rightarrow$ ⁷³As, а для выделения безносительного препарата ⁷³As использовали методику, основанную на большой разнице в летучести атомов мишени и материнских атомов [13]. Для этого облученная протона-

ми монокристаллическая пленка германия, содержащая ~ 98 at.% изотопа ⁷⁴Ge, после ее выдержки в течение трех месяцев (для уменьшения содержания в ней радиоактивного ⁷⁴As) помещалась в эвакуированную кварцевую ампулу и ее конец, содержащий мишень, нагревался в течение 5 h при 900 K в трубчатой печи. После вскрытия ампулы $\sim 80\%$ атомов ⁷³As оказывались сорбированными на внутренних стенках кварцевой ампулы, и безносительный препарат ⁷³As смывался раствором азотной кислоты.

Мессбауэровские источники готовились путем диффузионного легирования поликристаллических образцов (Pb_{1-x}Sn_x)_{1-z}In_zTe радиоактивным ⁷³As в вакуумированных кварцевых ампулах при 773 K в течение 10 h, причем концентрация примесных атомов мышьяка не превышала 10^{16} сm⁻³. Исходные образцы (Pb_{0.4}Sn_{0.6})_{0.86}In_{0.14}Te переходили в сверхпроводящее состояние при $T_c \approx 4.2$ K, тогда как исходные образцы (Pb_{0.4}Sn_{0.6})_{0.97}In_{0.03}Te оставались в нормальном состоянии вплоть до 2 K. Диффузионный отжиг заметно не изменял величину T_c для (Pb_{0.4}Sn_{0.6})_{0.86}In_{0.14}Te.

Мессбауэровские спектры 73 As(73 Ge) измерялись на промышленном спектрометре CM-2201 в стандартной геометрии пропускания. Поглотителями служили либо монокристаллический 73 Ge (для регистрации спектров для зонда 73 Ge в анионной подрешетке), либо 73 GeTe (для регистрации спектров для зонда 73 Ge в катионной подрешетке). Для всех поглотителей обогащения по изотопу 73 Ge составляло ~ 90 at.%.

Были измерены спектры с такими поглотителями и источником Ge:⁷³As (использовалась облученная протонами мишень монокристаллического ⁷⁴Ge после ее выдержки в течение двух месяцев и отжига при 500 К в атмосфере водорода в течение 5 h). Спектр с поглотителем ⁷³Ge представлял собой одиночную линию с шириной на полувысоте $G_{exp} = 30.8 \pm 0.5 \mu$ m/s, что существенно превышает естественную ширину спектральной линии ⁷³Ge ($G_{nat} \sim 6.98 \mu$ m/s) и объясняется неполным отжигом радиационных дефектов в мишени, использованной в качестве мессбауэровского источника. В случае поглотителя ⁷³GeTe резонансного поглощения обнаружено не было, что связано с большой величиной изомерного сдвига мессбауэровского спектра (по крайней мере большего 10³ μ m/s).

В согласии с данными авторов [10] спектры источников (Pb_{0.4}Sn_{0.6})_{0.86}In_{0.14}Te:⁷³As и (Pb_{0.4}Sn_{0.6})_{0.97}In_{0.3}Te:⁷³As в интервале температур 2–297 К представляют собой одиночные линии, причем ширины спектров существенно превышают естественную ширину спектральной линии ⁷³Ge (для спектров, измеренных с поглотителем GeTe, $G_{\rm exp} \sim 50\,\mu$ m/s; для спектров, измеренных с поглотителем Ge, $G_{\rm exp} \sim 100\,\mu$ m/s). По крайней мере в случае поглотителя ⁷³GeTe это уширение частично связано с искажением кубической симметрии локального окружения атомов германия в решетке GeTe.

Спектры, полученные с поглотителем ⁷³Ge, следует приписать центрам ⁷³Ge⁰ в анионной подрешетке твердого раствора ($Pb_{1-x}Sn_x$)_{1-z}In_zTe (в локальном окружении этих центров находятся атомы свинца); очевидно, атомы ⁷³Ge⁰ образуются из атомов ⁷³As, находящихся в анионной подрешетке ($Pb_{1-x}Sn_x$)_{1-z}In_zTe. Спектр, полученный с поглотителем ⁷³GeTe, следует приписать центрам ⁷³Ge²⁺ в катионной подрешетке ($Pb_{1-x}Sn_x$)_{1-z}In_zTe (в ближайшем окружении этих центров находятся атомы теллура); очевидно, что атомы ⁷³Ge²⁺ образуются из атомов ⁷³As, находящихся в катионной подрешетке ($Pb_{1-x}Sn_x$)_{1-z}In_zTe. Таким образом, можно сделать вывод, что примесные атомы мышьяка в решетке ($Pb_{1-x}Sn_x$)_{1-z}In_zTe локализуются как в анионной, так и в катионной подрешетке.

Как отмечалось, для обнаружения процесса Бозе-конденсации куперовских пар в сверхпроводниках методом мессбауэровской спектроскопии необходимо измерить температурную зависимость центра тяжести *S* мессбауэровского спектра, причем при постоянном давлении *P* эта зависимость имеет вид

$$(\delta S/\delta T)_P = (\delta I/\delta \ln V)_T (\delta \ln V/\delta T)_P + (\delta D/\delta T)_P + (\delta I/\delta T)_V.$$
(1)

Пояснения для трех членов из выражения (1) даны выше.

$$I = \alpha \Delta |\Phi(0)|^2.$$
⁽²⁾

Здесь $\Delta |\Phi(0)|^2$ — разность электронных плотностей на исследуемых ядрах в двух образцах, α — постоянная, зависящая от ядерных параметров используемого изотопа.

Как видно из рисунка, экспериментальная температурная зависимость центра тяжести спектра S, отвечающего зонду ⁷³Ge в катионной подрешетке твердого раствора (Pb_{0.4}Sn_{0.6})_{0.97}In_{0.03}Te, в температурном интервале 2–297 K совпадает с теоретической зависимостью доплеровского сдвига второго порядка от температуры

$$(\delta D/\delta T)_P = -(3kE_0/2Mc^2)F(T/\Theta)$$
(3)

(где k — постоянная Больцмана, E_0 — энергия изомерного перехода, M — масса ядра-зонда, c — скорость света в вакууме, Θ — температура Дебая, $F(T/\Theta)$ — функция Дебая), если использовать дебаевские температуры, полученные на основании измерений теплоемкости [14].

Для сверхпроводящего твердого раствора (Pb_{0.4}Sn_{0.6})_{0.86}In_{0.14}Te зависимость S(T) для спектра, отвечающего зонду ⁷³Ge в катионной подрешетке твердого раствора, при $T > T_c$ также описывается доплеровским сдвигом второго порядка (3), однако для области температур $T < T_c$ величина S зависит от температуры более резко, чем это следует из формулы (3), и, очевидно, в выражении (1) следует принимать во внимание температурную зависимость изомерного сдвига.

Иная ситуация возникает в случае зонда ⁷³Ge в анионной подрешетке твердых растворов $(Pb_{1-x}Sn_x)_{1-z}In_zTe$. Как видно из рисунка, экспериментальная температурная зависимость центра тяжести спектра *S* в этом случае как для сверхпроводящего, так и для контрольного образца в температурном интервале 2–297 К практически совпадает с теоретической зависимостью доплеровского сдвига второго порядка от температуры. Это, очевидно, свидетельствует о пространственной неоднородности Бозе-конденсата куперовских пар в решетке твердых растворов ($Pb_{1-x}Sn_x$)_{1-z}In_zTe.

Таким образом, установлено, что переход в сверхпроводящее состояние приводит к изменению электронной плотности в катионных узлах решетки твердого раствора ($Pb_{0.4}Sn_{0.6})_{0.86}In_{0.14}$ Те, причем обнаружена пространственная неоднородность Бозе-конденсата куперовских пар.

Список литературы

- М. Коэн, Г. Глэдстоун, М. Йенсен, Дж. Шриффер. Сверхпроводимость полупроводников и переходных металлов. Мир, М. (1972). 316 с.
- [2] R.V. Parfeniev, D.V. Shamshur, M.F. Shakhov. J. Alloys Compd. 219, 313 (1995).
- [3] Дж. Шриффер. Теория сверхпроводимости. Наука, М. (1970). 311 с.
- [4] Н.П. Серегин, П.П. Серегин. ЖЭТФ 118, 1421 (2000).
- [5] Д. Надь. В кн.: Мессбауэровская спектроскопия замороженных растворов / Под ред. А. Вертеш, Д. Надь. Мир, М. (1998). С. 11.
- [6] J.S. Shier, R.D. Taylor. Phys. Rev. 174, 346 (1968).
- [7] Yun-Bo Wang, Guo-Hui Cao, Yang Li, Xin Ju, Long Wei, Wei-Fang Wu. Physica C 282–287, 1087 (1997).
- [8] С.А. Немов, Н.П. Серегин, С.М. Иркаев. ФТП 36, 1351 (2002).
- [9] A. Svane. J. Phis. C.: Solid State Phys. 21, 5369 (1988).
- [10] С.А. Немов, П.П. Серегин, С.М. Иркаев, Н.П. Серегин. ФТП 37, 3, 279 (2003).
- [11] Схемы распада радионуклидов. Энергия и интенсивность излучения. Энергоатомиздат, М. (1987). С. 147.
- [12] L. Pfeiffer, R.S. Raghavan, C.P. Lichtenwalner, A.G. Cullis. Phys. Rev. B 12, 4793 (1975); L. Pfeiffer, T. Kovacs, G.K. Celler, J.M. Gibson, M.E. Lines. Phys. Rev. B 27, 4018 (1983).
- [13] С.И. Бондаревский, В.В. Еремин, Н.П. Серегин. В кн.: Фундаментальные исследования в технических университетах. Материалы V Всерос. конф. по проблемам науки и высшей школы. СПб (2001). С. 121.
- [14] Ю.И. Равич, Б.А. Ефимова, И.А. Смирнов. Методы исследования полупроводников в применении к халькогенидам свинца PbTe, PbSe и PbS. Наука, М. (1968). 383 с.