02

Спектрально-люминесцентные свойства некоторых производных бензальдегида

© О.К. Базыль¹, В.Я. Артюхов¹, Г.В. Майер¹, П.П. Першукевич², М.В. Бельков², О.И. Шадыро³, С.Н. Самович³

 ¹ Национальный исследовательский Томский государственный университет, 634050 Томск, Россия
 ² Институт физики НАН Беларуси, 220072 Минск, Беларусь
 ³ Белорусский государственный университет, 220030 Минск, Беларусь
 e-mail: okbazyl@rambler.ru

Поступила в редакцию 22.01.2019 г. В окончательной редакции 22.01.2019 г. Принята к публикации 15.03.2019 г.

Широко распространенные в природе замещенные бензальдегиды проявляют антибактериальную, противовоспалительную, противовирусную, антиканцерогенную активность при низкой токсичности, что делает их перспективными в медицине. Представлены результаты экспериментального и теоретического изучения спектрально-люминесцентных свойств четырех нейтральных форм гидрокси- и метокси-замещенных бензальдегидов. Спектры поглощения исследованных соединений получены в гексане и этаноле. Измерения спектров флуоресценции и возбуждения флуоресценции растворов проведено в этаноле. На основе квантово-химических вычислений определена орбитальная природа электронных переходов, особенности распределения электронной плотности при возбуждении и изменении структуры соединения, оценены константы скорости фотофизических процессов. Согласно расчетам, у всех исследованных соединениях сформирована одним или двумя $\pi\pi^*$ -переходами. Оценены величины квантового выхода флуоресценции (из экспериментальных и теоретических данных). В результате анализа и сопоставления экспериментальных данных и результатов квантово-химических расчетов сделан вывод, что нейтральные формы изученных замещенных бензальдегидов не отвечают за наблюдаемую флуоресценцию в экспериментах с этанольными растворами.

Ключевые слова: замещенные бензальдегида, квантово-химические расчеты, природа спектров поглощения и флуоресценция.

DOI: 10.21883/OS.2019.08.48036.30-19

Введение

В настоящее время особую актуальность приобретают комплексные исследования физико-химической и биологической (фармакологической) активности различных классов органических соединений, что обусловлено, вопервых, современными тенденциями развития и новыми возможностями фундаментальной науки и, во-вторых, потребностями практики (медицина и биология).

Многие классы органических соединений (например, кислородсодержащие) широко распространены в природе, мало токсичны и перспективны для реальных медицинских применений, так как обладают антивирусными, противоопухолевыми, противовоспалительными, антимикробными свойствами [1,2].

Основная научная идея наших исследований спектров биоактивных органических молекул основана на том факте, что оптические спектры (электронные, ИК спектры и т.д.) определенным образом связаны с пространственным (конфигурация ядер) и электронным (распределением электронной плотности) строением молекул, сочетания которых и определяет их различные свойства. В случае основного состояния — это спектры поглощения (хотя при определенных предположениях, и спектры люминесценции). Основываясь на положениях теории и спектроскопии межмолекулярных взаимодействий и используя набор экспериментальных и квантовохимических методов, можно установить закономерности спектральных характеристик. С учетом особенностей изменения спектральных характеристик (экспериментальных или вычисленных квантово-химическими методами) при реализации разных типов Н-связей можно решить обратную спектральную задачу по восстановлению пространственной структуры молекул (или комплекса). При теоретическом изучении молекулярных систем, особенно в растворах, существенной трудностью является отсутствие достаточно достоверных данных о пространственной структуре таких систем (например, молекул растворителя в первой координационной сфере сольватной оболочки исследуемой молекулы). Это создает серьезные препятствия при изучении физикохимических характеристик молекулярных систем. Тем не менее, мы полагаем, что разработка моделей систем, рассчитанные спектрально-люминесцентные характеристики которых наиболее полно согласуются с набором соответствующих экспериментальных данных, поможет в преодолении указанной трудности и нахождении закономерностей. Чем лучше воспроизводятся экспериментальные данные, тем более правильно воспроизводится строение молекул и молекулярных систем.

С применением данного подхода были установлены эмпирические соотношения между электронной структурой и фармакологическим действием биологически активных органических соединений, показаны высокая информативность, надежность и достоверность системного спектроскопического анализа и квантово-химических расчетов биомолекул для тестирования и прогнозирования фармакологической эффективности лекарственных препаратов [1,2].

Широко распространенные в природе бензальдегид и его гидрокси- и метокси-замещенные проявляют фармакологическую активность при низкой токсичности, что делает их перспективными в медицине. Замещенные бензальдегиды проявляют антибактериальную, антимикробную, противовоспалительную, противовирусную активность и могут стать противораковыми химиотерапевтическими средствами [3,4].

Проблема создания на основе бензальдегида и его замещенных новых лекарственных препаратов требует всестороннего изучения физико-химических свойств этих соединений, однако связь спектральнолюминесцентных свойств соединений этого класса с их строением изучены недостаточно глубоко. В частности, нет однозначного мнения относительно природы флуоресцентного состояния замещенных бензальдегидов. Важной особенностью этого класса соединений является возможность образовывать заряженные протолитические формы (анионы и катионы) [5]. Это приводит, в частности, к зависимости спектров от pH среды и усложняет интерпретацию как спектров поглощения, так и спектров флуоресценции.

В настоящей работе представлены результаты экспериментального и теоретического изучения спектральнолюминесцентных свойств четырех нейтральных форм замещенных бензальдегидов: *о*-анисового (2-метоксибензальдегида) и сиреневого (3,5-диметокси-4-гидроксибензальдегид) бензальдегидов, ванилина (3-метокси-4-гидроксибензальдегид) и 2, 3-гидроксибензальдегида (рис. 1).

Для этих соединений получены экспериментальные спектры поглощения в гексане и этаноле, спектры флуоресценции и возбуждения флуоресценции в этаноле. Для всех этанольных растворов изученных соединений получена слабая флуоресценция. Проведены квантовохимические расчеты электронной структуры и спектральных характеристик молекул.

Объекты и методики исследования

Спектры поглощения исследованных соединений регистрировались на спектрофотометре Cary-500 Scan UV-Vis-NIR (Varian, CIIIA) в гексане и этаноле при концентрации 10^{-4} mol/l. Измерения скорректированных спектров флуоресценции (СФ) и спектров возбуждения флуоресценции (СВФ) проводились на модернизированном спектрофлуориметрическом комплексе СДЛ-2 (ЛОМО, СССР), основанном на монохроматорах возбуждения и регистрации — МДР-12 и МДР-23 соответственно. Управление комплексом с помощью персонального компьютера описано в [6]. В качестве источника возбуждения использовалась ксеноновая лампа ДКсШ-120. Регистрация светового сигнала после прохождения монохроматора осуществлялась с помощью охлаждаемого фотоумножителя ФЭУ-100 (диапазон 230-800 nm) в режиме счета фотонов. Квантовые выходы флуоресценции растворов оценивались относительным методом. В качестве эталона использовался раствор бисульфата хинина в 0.1-нормальной серной кислоте $(\varphi_{\rm fl} = 0.55).$

Квантово-химические расчеты выполнены полуэмпирическим методом частичного пренебрежения дифференциальным перекрыванием (ЧПДП) с оригинальной спектроскопической параметризацией [7].

Полуэмпирический метод ЧПДП позволяет рассчитывать спектрально-люминесцентные свойства (стационарные и наведенные спектры поглощения и флуоресценции, константы скоростей фотопроцессов (излучательных и безызлучательных) [8] и физико-химические свойства биомолекул (распределение электронной плотности на молекулярных фрагментах)).

Геометрия основного состояния изученных соединений оптимизировалась методом AM1 [9]. Для корректного расчета спектра излучения необходимо определить геометрию возбужденного состояния. Чтобы определить изменение геометрии при возбуждении, рассчитывались заселенности (электронная плотность) связей P_{AB} (по Малликену) в основном и возбужденных состояниях. Предполагалась известная линейная зависимость между длиной и заселенностью связи. Тогда изменение длины связи при переходе в возбужденное состояние описывается следующим образом:

$$\Delta R_{AB}^* = -k\Delta P_{AB}^*,$$

где ΔP_{AB}^* — изменение заселенности связи при переходе молекулы из основного состояния в возбужденное. Значение коэффициента k = 0.46 было получено по изменению длины С–С-связей бензола при $S_0 \rightarrow S_1$ -переходе [10].

При моделировании влияния растворителей (неполярного гексана и полярного этанола) на спектры исследуемых молекул мы считали изолированными молекулы в гексане и комплексами с водой состава 1 : 1 в этаноле.

Рис. 1. Структура исследованных соединений: *a* — 3-метокси-4-гидроксибензальдегид (ванилин), *b* — 3, 5-диметокси-4-гидроксибензальдегид (сиреневый альдегид), *c* — 2-метоксибензальдегид (*орто*-анисовый альдегид), *d* — 2, 3-гидроксибензальдегид.

Для обоснованного построения геометрии комплекса с водородной связью замещенный альдегид-вода использовался метод МЭСП [11–13], позволяющий найти в исследуемой молекуле координаты наиболее вероятного места присоединения атома водорода или протона. Согласно расчету, самым сильным протоноакцепторным центром в исследованных замещенных бензальдегидах является атом кислорода альдегидной группы.

Результаты и обсуждение

Исследования спектров ароматических альдегидов показали, что с увеличением размера π -системы молекулы положение $n \to \pi \pi^*$ -перехода ароматических альдегидов мало меняется и находится в границах 26 000–30 000 cm⁻¹ [14]. В ряде альдегидов со значительной π -системой этот переход оказывается в составе длинноволновой полосы спектра поглощения. Однако точное экспериментальное определение энергии и интенсивности $n\pi^*$ -перехода затруднено, так как интенсивность длинноволновой полосы определяется много более интенсивным $\pi\pi^*$ -переходом [14]. Именно такая ситуация имеет место в исследуемых нами замещенных бензальдегидах.

В табл. 1 приведены результаты расчетов спектров поглощения для нейтральных форм исследованных замещенных бензальдегидов в сравнении с их экспериментальными спектрами в гексане и этаноле.

Из общего вида спектров поглощения (рис. 2) следует, что три замещенных (ванилин, *о*-анисовый и сиреневый) альдегида имеют близкие по положению длинноволновые полосы поглощения и только 2,3-дигидроксибензальдегид отличается от них положением длинноволновой полосы поглощения.

Согласно расчетам, у всех исследованных соединений состояние S_1 формируется переходом $n\pi^*$ -типа, а интенсивность длинноволновых полос в этих соединениях сформирована одним или двумя $\pi \to \pi^*$ -переходами (табл. 1).

Спектры поглощения

о-Анисовый альдегид. На рис. 1 приведена оптимизированная конформация молекулы *о*-анисового альдегида. Спектр поглощения *о*-анисового альдегида состоит из трех полос (табл. 1). Длинноволновая полоса поглощения включает два электронных перехода: $S_0 \rightarrow S_1(n\pi^*)$ и $S_0 \rightarrow S_2(\pi\pi^*)$. Средняя полоса спектра сформирована $S_0 \rightarrow S_3$ -переходом ($\pi\pi^*$ -переход). Два электронных перехода $\pi\pi^*$ -типа образуют коротковолновую (наиболее интенсивную) полосу поглощения *о*-анисового альдегида.

Взаимодействие *о*-анисового альдегида с протонодонорным растворителем моделировалось комплексом с водородной связью состава 1:1 между альдегидным кислородом и водородом молекулы воды. Совпадение расчетных характеристик электронных полос поглощения для этого комплекса со спектром в этиловом спирте оказывается лучше, чем со спектром в гексане (табл. 1).

Ванилин и сиреневый альдегид. Хотя эти замещенные бензальдегиды различаются между собой на одну метокси-группу (рис. 1), отличия спектров поглощения существенны: в области 240-320 nm спектр поглощения ванилина имеет две полосы, а спектр поглощения сиреневого альдегида — одну полосу (рис. 2). Анализ орбитальной природы и локализации молекулярных орбиталей (МО), участвующих в формировании электронных переходов, показал следующее. Различие в локализации верхних занятых МО ванилина и сиреневого альдегида вносит вторая метокси-группа, в результате чего аналогом состояния $S_2(\pi\pi^*)$ ванилина в сиреневом альдегиде является состояние $S_3(\pi\pi^*)$. Длинноволновую полосу сиреневого альдегида образуют три близко расположенных по энергии электронных перехода: $S_0 \to S_1(n\pi^*), S_0 \to S_2(\pi\pi^*)$ и $S_0 \to S_3(\pi\pi^*).$ В ванилине каждый из $\pi\pi^*$ -переходов образует отдельную полосу. $S_0 \rightarrow S_2(\pi\pi^*)$ - и $S_0 \rightarrow S_3(\pi\pi^*)$ -переходы в ванилине примерно вдвое отличаются по интенсивности, что хорошо соответствует эксперименту в гексане (табл. 1, рис. 2).

Первое синглетное состояние в обеих молекулах является состоянием $n\pi^*$ -типа, локализованным на кис-

Расчет			Эксперимент		Расчет			Эксперимент	
Изолированная молекула			Гексан		Комплекс с водой			Этанол	
Состояние	E_i , cm ⁻¹	f	E_i , cm ⁻¹	$\varepsilon, \mathrm{M}^{-1}\mathrm{cm}^{-1}$	Состояние	E_i , cm ⁻¹	f	E_i , cm ⁻¹	$\varepsilon, \mathrm{M}^{-1}\mathrm{cm}^{-1}$
о-Анисовый бензальдегид									
$S_1(n\pi)$	24370	0.0	32470	5400	$S_1(n\pi)$	25240	0.0	31270	4000
$S_2(\pi\pi)$	33260	0.200			$S_2(\pi\pi)$	32170	0.215		
$S_3(\pi\pi)$	36490	0.100	39530	Перегиб	$S_3(\pi\pi)$	36040	0.142	39220	8900
$S_4(\pi\pi)$	42470	0.630	40480	12500	$S_5(\pi\pi)$	42330	0.590		
$S_6(\pi\pi)$	45930	0.309	47400	24000	$S_7(\pi\pi)$	45630	0.162	46730	16000
$S_{11}(\pi\pi)$	49530	0.176			$S_{12}(\pi\pi)$	49450	0.289		
Ванилин									
$S_1(n\pi)$	26480	0.0	33300	8600	$S_1(n\pi)$	27490	0.0	32260	10000
$S_2(\pi\pi)$	33660	0.069			$S_2(\pi\pi)$	32820	0.120		
$S_3(\pi\pi)$	35540	0.157	37170	14800	$S_3(\pi\pi)$	34940	0.162	35710	10000
$S_4(\pi\pi)$	42480	0.691	45450	18000	$S_5(\pi\pi)$	41560	0.647	43480	13000
$S_7(\pi\pi)$	44570	0.484			$S_7(\pi\pi)$	44190	0.316	45470	14000
$S_{10}(\pi\pi)$	48390	0.094	48780	18200	$S_{11}(\pi\pi)$	47520	0.205		
$S_{17}(\pi\sigma)$	53060	0.099			$S_{13}(\pi\pi)$	51580	0.204		
				Сиреневый (бензальдегид				
$S_1(n\pi)$	26460	0.0	33110п.		$S_1(n\pi)$	27810	0.0	32260	11000
$S_2(\pi\pi)$	32280	0.012			$S_2(\pi\pi)$	30290	0.032		
$S_3(\pi\pi)$	34260	0.142	34720	11000	$S_3(\pi\pi)$	32050	0.278		
$S_4(\pi\pi)$	41090	0.603	43480	13000	$S_5(\pi\pi)$	39500	0.407	43480	13000
$S_6(\pi\pi)$	41770	0.703	45470	14000	$S_8(\pi\pi)$	40650	0.530		
$S_{11}(\pi\pi)$	47510	0.073			$S_{12}(\pi\pi)$	45730	0.110	45470	14000
$S_{17}(\pi\sigma)$	49740	0.086			$S_{13}(\pi\sigma)$	46620	0.279		
2, 3-дигидроксибензальдегид									
$S_1(n\pi)$	26680	0.0	28990	2100	$S_1(n\pi)$	27490	0.0	28570	3100
$S_2(\pi\pi)$	31150	0.102			$S_2(\pi\pi)$	30810	0.103		
$S_5(\pi\pi)$	39660	0.557	37880	10500	$S_5(\pi\pi)$	40790	0.667	37310	16500
$S_6(\pi\pi)$	44080	0.309	46080	13300	$S_6(\pi\pi)$	43830	0.268		
$S_{10}(\pi\pi)$	48640	0.439			$S_{10}(\pi\pi)$	48220	0.505	45660	13500

Таблица 1. Спектры поглощения нейтральных форм замещенных бензальдегидов и их комплексов с водой

лороде альдегидной группы. Влияние полярного растворителя на спектры поглощения также моделировалось комплексами с молекулой воды, прикрепленной к кислороду альдегидной группы. Результаты расчетов удовлетворительно описывают электронный спектр поглощения обеих молекул в этаноле (табл. 1).

При образовании комплекса полосы поглощения, образованные электронными переходами $S_0 \rightarrow S_2(\pi\pi^*)$ и $S_0 \rightarrow S_3(\pi\pi^*)$ обеих молекул, испытывают длинноволновый сдвиг. При этом энергия разрешенных и слабо разрешенных $\pi\pi^*$ -переходов ведут себя по-разному: разрешенные переходы сдвигаются больше в длинноволновую область спектра, чем менее разрешенные переходы. По

этой причине длинноволновая полоса ванилина превращаются в широкую полосу с двумя максимами примерно равной интенсивности, а на длинноволновом крыле первой полосы поглощения сиреневого альдегида исчезает перегиб, вызванный слабым переходом $S_0 \rightarrow S_2(\pi\pi^*)$, который, вероятно, перекрывается более интенсивным $S_0 \rightarrow S_3(\pi\pi^*)$ -переходом.

В коротковолновой области спектры поглощения ванилина и сиреневого альдегида близки как по положению, так и по интенсивности (рис. 2, табл. 1).

2,3-дигидроксиальдегид. Особенностью строения 2,3-дигидроксиальдегида является наличие внутримолекулярной водородной связи между альдегидным кисло-

Рис. 2. Спектры поглощения исследуемых бензальдегидов в гексане (*a*) и этаноле (*b*): *1* — ванилин, *2* — сиреневый альдегид, *3* — *о*-анисовый альдегид, *4* — 2, 3-дигидроксибензальдегид. Концентрация — 10^{-4} М.

родом и водородом гидроксильной группой в *орто*-положении молекулы. Существование внутримолекулярной H-связи подтверждено экспериментально в работе [12]. Образование данного внутримолекулярного взаимодействия приводит к некоторому повышению энергии $n\pi^*$ -состояния и понижению энергии первого возбужденного $\pi\pi^*$ -состояния, что значительно уменьшает энергетический интервал между состояниями S_1 и S_2 . Однако, согласно расчетам, первым синглетным состоянием в этой молекуле остается состояние $n\pi^*$ -типа. В состав длинноволновой полосы этой молекулы входит три электронных перехода, но ее интенсивность обусловлена главным образом переходом $S_0 \rightarrow S_2(\pi\pi^*)$ (табл. 1).

246

Интенсивность средней полосы поглощения 2,3-гидроксибензальдегида сформирована $S_0 \rightarrow S_5(\pi\pi^*)$ -перехо дом. Этот электронный переход сопровождается перераспределением электронной плотности на фениле и переносом ее с кольца и гидроксильных групп на карбонильную группу. Коротковолновое поглощение 2,3-гидроксибензальдегида образовано двумя полосами поглощения, первая из которых образована $S_0 \rightarrow S_6(\pi\pi^*)$ -электронным переходом, вторая — переходом $S_0 \rightarrow S_{10}(\pi\pi^*)$. По локализации переход $S_0 \rightarrow S_{10}(\pi\pi^*)$ является практически "чисто" бензольным.

Приведенные в табл. 1 рассчитанные спектры поглощения изолированной молекулы 2,3-гидроксибензальдегида и комплекса ее с 3 молекулами воды удовлетворительно соответствуют спектрам поглощения в гексане и этаноле соответственно. В табл. 2 приведены рассчитанные изменения электронной плотности на фрагментах соединений: бензольное кольцо, альдегидная группа СОН, гидрокси-(метокси-) группы.

Видно, что во всех соединениях в основном состоянии суммарный эффективный заряд атомов бензольного цикла положительный. Это означает перераспределение электронной плотности с этого фрагмента на заместители, что согласуется с их электронно-акцепторными свойствами. При переходах $\pi\pi^*$ -типа происходит большое увеличение электронной плотности на альдегидном фрагменте благодаря перераспределению с других фрагментов: увеличивается положительный эффективный заряд на бензольном цикле, уменьшаются отрицательные эффективные заряды гидрокси- и метокси-групп (табл. 2). Напротив, переход $n\pi^*$ -типа сопровождается перераспределением электронной плотности с альдегидной группы на бензольный цикл молекул (табл. 2).

Флуоресценция замещенных бензальдегидов

На рис. 3, *a*-*d* приведены спектры поглощения, возбуждения флуоресценции и флуоресценция растворов изученных замещенных бензальдегидов в этаноле. Сложность экспериментальных исследований спектров флуоресценции вызвана тем, что слабая флуоресценция исследуемых структур может подавляться или искажаться флуоресценцией примесей как самих бензальдегидов, так и растворителя.

Экспериментальные данные спектров в этаноле формально дают величину стоксова сдвига флуоресценции исследованных замещенных бензальдегидов в пределах 6900-7900 cm⁻¹. Однако указанная величина стоксова сдвига определена без учета наличия $S_1(n\pi)$ -состояния, не проявляющегося в спектре поглощения. Учитывая, что рассчитанная энергия состояния $S_1(n\pi^*)$ находится в пределах $26\,000-27\,000\,\mathrm{cm}^{-1}$, стоксов сдвиг в исследуемых молекулах, исключая молекулу 2, 3-дигидроксибензальдегид, не превышает $2500\,cm^{-1}$, что свидетельствует о незначительных перестройках структуры поглощающих молекул после возбуждения. Заметно больший стоксов сдвиг в молекуле 2, 3-дигидроксибензальдегида вызван внутримолекулярным переносом водорода в этой молекуле в S₁-состоянии.

	_								
	Электронная плотность на фрагментах молекул, е								
Состояние	Бензольное кольцо	Группа СОН	Группа ОН	Группы ОСН ₃ (1), ОСН ₃ (2)					
о-Анисовый альдегид									
S_0 $S_1(n\pi)$ $S_2(\pi\pi)$ $S_3(\pi\pi)$	+0.211 -0.207 +0.424 +0.399	$-0.123 \\ +0.281 \\ -0.488 \\ -0.366$		$-0.088 \\ -0.074 \\ +0.065 \\ -0.032$					
Ванилин									
$S_0 \ S_1(n\pi) \ S_2(\pi\pi) \ S_3(\pi\pi)$	+0.292 -0.109 +0.396 +0.329	$-0.065 \\ +0.347 \\ -0.326 \\ -0.293$	-0.121 -0.137 -0.066 -0.050	$-0.107 \\ -0.101 \\ -0.003 \\ +0.012$					
Сиреневый альдегид									
$S_0 \ S_1(n\pi) \ S_2(\pi\pi) \ S_3(\pi\pi)$	$ \begin{array}{r} +0.389 \\ +0.003 \\ +0.410 \\ +0.409 \end{array} $	$-0.068 \\ +0.299 \\ -0.326 \\ -0.370$	-0.124 -0.138 -0.079 -0.037	$\begin{array}{c} -0.103, -0.096 \\ -0.099, -0.065 \\ -0.003, -0.002 \\ -0.029, +0.027 \end{array}$					
2, 3-дигидроксибензальдегид									
So	+0.310	-0.031	_	-0.120, -0.155					

+0.223

-0.428-0.227

Таблица 2. Распределение электронной плотности в замещенных бензальдегидах при возбуждении

Спектры флуоресценции исследованных замещенных получены в очищенном этаноле при возбуждении на $\lambda = 330$ nm, что позволило избежать флуоресценции примесей. В итоге экспериментов было получено, что при возбуждении на краю длинноволновых полос поглощения исследуемых соединений ванилин, сиреневый и *о*-анисовый альдегиды флуоресцируют с максимумом на 410 nm с квантовым выходом 0.012, 0.008 и 0.002 соответственно, а 2, 3-дигидроксибензальдегид — на 460 nm с квантовым выходом 0.016. Квантовые выходы флуоресценции растворов оценивались относительным методом с бисульфитом хинина в 0.1 нормальной серной кислоте в качестве эталона.

-0.020

+0.510

+0.370

 $S_1(n\pi)$

 $S_2(\pi\pi)$

 $S_3(\pi\pi)$

Совпадение положения максимумов спектров поглощения и возбуждения флуоресценции ванилина и сиреневого бензальдегида позволяет утверждать, что наблюдаемая полоса флуоресценции этих соединений принадлежит одному типу частиц каждой из молекул.

Значительное несовпадение спектров поглощения и возбуждения флуоресценции (~ 1800 cm⁻¹ в длинноволновой полосе) регистрируется для *о*-анисового альдегида. Это несовпадение можно объяснить наличием в растворе двух конформеров с близкими характеристиками флуоресценции ($\lambda_{\rm fl}$, $\gamma_{\rm fl}$). Оптимизированная геометрия этой молекулы дает конформер, приведенный на рис. 1. По нашему мнению, возможна и другая конфигурация

молекулы, в которой группа СОН развернута относительно связи С₄—СОН на 180°. Расчеты показали, что конформеры *о*-анисового альдегида имеют различающиеся спектры поглощения, что и приводит к несовпадению максимумов длинноволновых полос спектров поглощения и возбуждения флуоресценции. Рассчитанные максимумы полос флуоресценции конформеров близки по положению — $\lambda_{fl1} = 389$ nm, $\lambda_{fl2} = 382$ nm, разность энергий между ними меньше 500 cm⁻¹.

-0.088, -0.125-0.055, -0.027

-0.052, -0.088

Особенностью молекулы 2, 3-дигидроксибензальдегида является наличие внутримолекулярной водородной связи между кислородом альдегидной группы и водородом гидроксильной группы в орто-положении. Наличие внутримолекулярной водородной связи подтверждено исследованиями ИК спектров в работе [15]. Фотореакция внутримолекулярного переноса протона обстоятельно исследована в молекулах разного строения в обзоре [16]. В работе [17] показано, что основными частицами молекулы 2-гидроксибензальдегида, существующими в неполярных растворителях, являются частицы с внутримолекулярной водородной связью — закрытые конформеры. В возбужденном состоянии в этих конформерах происходит внутримолекулярный перенос протона. В спиртовых растворах происходит разрыв внутримолекулярной связи, и преобладают открытые конформеры с межмолекулярной водородной связью. Согласно [16], 2-гидроксибензальдегид, отличающийся

Рис. 3. Спектры поглощения (1), флуоресценции (2), возбуждения флуоресценции (3) в этаноле: ванилин (*a*), сиреневый альдегид (*b*), *о*-анисовый альдегид (*c*), 2, 3-дигидрок-сибензальдегид (*d*). Длина волны возбуждающего света — 330 nm, длина волны регистрации — 410 nm.

Таблица 3. Рассчитанные и экспериментальные характеристики флуоресценции нейтральных форм замещенных бензальдегидов (максимум полосы — λ(ν) и квантовый выход — γ)

Соелинение	Расчет		Эксперимент		
Соединение	λ , nm (ν , cm ⁻¹)	γ	λ , nm(ν , cm ⁻¹)	γ	
о-Анисовый альдегид	377 (26520)	$> 10^{-4}$	410 (24390)	0.002	
Ванилин	376 (26600)	$> 10^{-4}$	410 (24390)	0.012	
Сиреневый альдегид	376 (26600)	$> 10^{-4}$	410 (24390)	0.008	
2, 3-дигидроксибензальдегид: закрытый конформер;	456 (21930)	0.14	460 (21740)	0.016	
Открытый сольватированный конформер (+2H ₂ O)	477 (20960)	0.10	400 (21/40)	0.010	

от 2, 3-дигидроксибензальдегида на одну гидроксильную группу, в растворе этанола имеет двухполосную флуоресценцию. Первая полоса — флуоресценция енольной формы закрытого конформера, вторая — флуоресцен-

248

ция сольватированного открытого конформера. Какой будет флуоресценция 2, 3-дигидроксибензальдегида без расчета предположить трудно. Некоторое расхождение между спектрами поглощения и возбуждения флуоресценции молекулы 2, 3-дигидроксибензальдегида также можно рассматривать как свидетельство флуоресценции двух частиц (закрытого и открытого конформеров).

Несмотря на преобладание в этанольном растворе открытых сольватированных конформеров 2, 3-дигидроксибензальдегида, мы учли и спектрально-люминесцентные свойства закрытых конформеров с внутримолекулярной водородной связью. В качестве сольвата открытого конформера были включены водородные связи молекул воды со всеми кислородами открытого конформера енольной формы. Результаты расчетов представлены в табл. 3.

Анализ результатов расчета исследованных замещенных бензальдегидов показал, что во всех молекулах, исключая 2, 3-дигидроксибензальдегид, S_1 -состоянием является состояние $n\pi^*$ -типа, что исключает флуоресценцию с заметным квантовым выходом. В молекуле 2, 3-дигидроксибензальдегида благодаря переносу протона происходит инверсия $n\pi^*$ - и $\pi\pi^*$ -состояниий и флуоресцентным становится состояние $\pi\pi^*$ -типа, константа радиационного распада которого для обеих конформеров (закрытого и открытого) составляет $\sim 10^7 \, \text{s}^{-1}$, что и приводит к флуоресценции с заметным квантовым выходом (табл. 3).

Экспериментально показано [5], что в зависимости от pH водного раствора ванилин помимо нейтральной (незаряженной) формы может существовать в заряженных формах: катионной и анионной. Поскольку этанол как растворитель по своим протоно-акцепторным свойствам близок воде и зачастую содержит некоторое количество воды, можно предположить возможность образования заряженных форм и в этаноле.

Наличие у молекулы заряда существенно сказывается на ее спектрально-люминесцентных свойствах, которые определяются энергией и взаимным расположением ее электронно-возбужденных состояний. В случае получения молекулой заряда возможна существенная перестройка системы возбужденных состояний, приводящая к смене орбитальной природы состояния S_1 . Так, например, в нейтральных альдегидах с состоянием $S_1(n\pi)$ (ванилин, сиреневый и *о*-анисовый альдегиды) при перестройке $S_1(n\pi)$ может быть заменено состоянием $S_1(\pi\pi)$, что предполагает возможность флуоресценции заряженных форм этих соединений. В дальнейшем мы планируем исследования спектральнолюминесцентных свойств заряженных форм замещенных бензальдегидов.

Заключение

В настоящей работе представлены результаты экспериментального и теоретического изучения спектрально-люминесцентных свойств четырех нейтральных форм замещенных бензальдегидов: *о*-анисового (2-метоксибензальдегида) и сиреневого (3, 5-диметокси-4-гидроксибензальдегид) бензальдегидов, ванилина (3-метокси-4-гидроксибензальдегид) и 2, 3-гидроксибензальдегида. Суммируя, можно отметить следующие выводы.

1. Во всех нейтральных формах исследованных соединений состояние S_1 формируется переходом $n\pi^*$ -типа, а интенсивность длинноволновых полос сформирована одним или несколькими переходами $n\pi^*$ - и $\pi\pi^*$ -типа.

2. В изученных молекулах, исключая 2, 3-дигидроксибензальдегид, дезактивация первого электронновозбужденного состояния осуществляется с участием $n\pi^*$ -состояний, в результате чего основным каналом распада флуоресцентного состояния в них является синглет-триплетная конверсия при малой эффективности процессов внутренней конверсии и радиационного распада. В молекуле 2, 3-дигидроксибензальдегида благодаря фотопереносу протона флуоресцентное состояние является состоянием $\pi\pi^*$ -типа, константа скорости радиационного распада которого для обеих конформеров (закрытого и открытого) составляет $\sim 10^7 \text{ s}^{-1}$.

3. Нейтральные формы изученных замещенных бензальдегидов не отвечают за наблюдаемую флуоресценцию в экспериментах с этанольными растворами.

Финансирование работы

Результаты были получены в рамках выполнения государственного задания Минобрнауки России, проект № 4.6027.2017/8.9 и в рамках выполнения задания 1.4.02 Государственной программы научных исследований Республики Беларусь "Фотоника, опто-микроэлектроника".

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов

Список литературы

- Толсторожев Г.Б., Бельков М.В., Райченок Т.Ф., Скорняков И.В., Шадыро О.И., Бринкевич С.Д., Самович С.Н., Базыль О.К., Артюхов В.Я., Майер Г.В. // Опт. и спектр. 2013. Т. 115. № 5. С. 807–816. (Tolstrozhev G.B., Bei'kov M.V., Raichenok T.F., Skornyakov I.V., Shadyro O.I., Brinkevich S.D., Samovich S.N., Bazyl' O.K., Artyukhov V.Ya., Mayer G.V. // Opt. Spectrosc. 2013. V. 115. N 5. P. 717–726. doi 10. 1134/S0030400X13110258)
- [2] Толсторожев Г.Б., Майер Г.В., Бельков М.В., Шадыро О.И. // Изв. вузов. Физика. 2016. Т. 59. № 4. С. 72–78. (Tolstrozhev G.B., Mayer G.V., Bei'kov M.V., Shadyro O.I. // Russian Physics Journal. 2016. V. 59. N 4. Р. 72–78.)
- [3] Шадыро О.И., Сорокин В.П., Ксендзова Г.А., Савинова О.В., Самович С.Н., Павлова Н.И., Бореко Е.И., Полозова Г.И. // Химико-фармацевтический журнал. 2016. Т. 50. № 3. С. 20–22. (Shadyro O.I., Sorokin V.L., Ksendzova G.A., Savinova O.V., Samovich S.N., Pavlova N.I., Polozov G.I., Boreko E.I., Polosova G.I. // Chemical-pharmaceutical Journal. 2016. V. 50. N 3. P. 20–22.)

- [4] Дикусар Е.А., Козлов Н.Г., Поткин В.И., Тлегенов Р.Т., Ювченко А.П. Замещенные бензальдегиды ванилинового ряда в органическом синтезе: получение, применение, биологическая активность. Минск: Изд-во "Право и экономика", 2011. 445 с.
- [5] Вусович О.В. Автореф. канд. дисс. Томск, 2016.
- [6] Воропай Е.С., Самцов М.П., Радько А.Е., Каплевский К.Н., Першукевич П.П., Бельков М.В., Ермалицкий Ф.А. // Лазерная и оптико-электронная техника: сб. науч. ст. / Под ред. Манак И.С. Минск: Акад. упр. при Президенте РБ, 2006. Вып. 10. С. 200–206.
- [7] Артюхов В.Я., Галеева А.И. // Изв. вузов. Физика. 1986.
 № 11. С. 96. (Artykhov V.Ya., Galeeva A.I. Soviet Physics Journal // 1986. V. 29. N 11. P. 949-951.)
- [8] Артюхов В.Я., Копылова Т.Н., Самсонова Л.Г., Селиванов Н.И., Плотников В.Г., Сажников В.А., Хлебунов А.А., Майер Г.В., Алфимов М.В. // Изв. вузов. Физика. 2008. № 10. С. 94–107. (Artyukhov V.Ya, Kopylova T.N., Samsonova L.G., Selivanov N.I., Plotnikov V.G., Saznikov V.A., Khlebunov A.A., Mayer G.V., Alfimov M.D. // Russian Physics Journal. 2008. N 10. P. 1096–1112.)
- [9] http://www.cambridgesoft.com.
- [10] Герцберг Г. Электронные спектры и строение многоатомных соединений. М.: Мир, 1969. 772 с. (*Herzberg G.* Molecular Spectra and Molecular Structure. Toronto-N.Y.– London, 1969. 772 р.)
- [11] Scrocco E., Tomasi J. // Topics in Current Chemistry. New Consepts II. Berlin: Springer–Verlag, 1973. P. 95–170.
- [12] Scrocco E., Tomasi J. // Advances in Quantum Chemistry. 1978. V. 11. P. 115–193.
- [13] Артнохов В.Я. // Журн. структурн. химии. 1978. Т. 19. № 3. С. 418–422. (Artyukhov V.Ya. // Journal of Structural Chemistry. 1978. V. 19. N 3. Р. 364–368).
- [14] Нурмухаметов Р.Н. Поглощение и люминесценция ароматических соединений. М.: Химия, 1971. 216 с.
- [15] Толсторожев Г.Б., Скорняков И.В., Бельков М.В., Шадыро О.И., Бринкевич С.Д., Самович С.Н. // Опт. и спектр. 2012. Т. 113. № 2. С. 179–183. (Tolstorozhev G.B., Skornyakov I.V., Belkov M.V., Shadyro O.I., Brinkevich S.D., Samovich S.N. // Optics and Spectroscopy. 2012. V. 113. N 2. P. 179–183).
- [16] Ужинов Б.И., Химич М.Н. // Успехи химии. 2011. Т. 80. № 6. С. 580–604. (Uzhinov B.M., Khimich M.N. // Russian Chem. Reviews. 2011. V. 80. N 11. P. 553–577).
- [17] Nagaoka S., Hirota N., Sumitani M., Yoshihara K. // J. Am. Chem. Soc. 1983. V. 105. P. 4220.