01

*v*₂-зависимость вращательных вкладов в эффективный дипольный момент молекулы H₂O и их влияние на уширение и сдвиг линий давлением буферных газов

© В.И. Стариков^{1,2}

 ¹ Томский государственный университет систем управления и радиоэлектроники, 634050 Томск, Россия
 ² Томский политехнический университет, 634050 Томск, Россия
 e-mail: vstarikov@yandex.ru

Поступила в редакцию 22.11.2018 г. В окончательной редакции 17.04.2019 г. Принята к публикации 23.04.2019 г.

В численных расчетах определена зависимость вращательных вкладов в эффективный дипольный момент молекулы H_2O от колебательного квантового числа v_2 , которое соответствует изгибному колебанию большой амплитуды. В расчетах использовались различные представления для поверхности дипольного момента молекулы H_2O и различные потенциальные функции, определяющие набор колебательных состояний $E(v_2)$. Проанализировано влияние вычисленных вкладов на уширение и сдвиг линий H_2O , обусловленное давлением аргона, криптона, водорода и гелия. Показано, что такое влияние существенно на сдвиг вращательных линий и на сдвиг линий из колебательных полос, для которых разность во вращательных квантовых числах K_a из верхнего и нижнего состояний в переходе больше или равна трем.

Ключевые слова: молекула воды, дипольный момент, уширение и сдвиг спектральных линий

DOI: 10.21883/OS.2019.08.48029.342-18

Введение

Изгибное колебание v_2 в молекуле H_2O (изменение угла $\theta = HOH$) является колебанием большой амплитуды и существенно отличается от валентных колебаний *v*₁ и *v*₃, связанных с изменением длин связей ОН. Отличие связано с тем, что сечение потенциала молекулы вдоль координаты θ имеет низкий (порядка 10000 cm⁻¹) барьер Н к линейной конфигурации. Частота нормальных колебаний ω_2 для изгибной моды 1648.5 сm⁻¹ [1], так что до барьера Н к линейной конфигурации укладывается 7 или 8 (в зависимости от используемого в расчете потенциала) колебательных уровней энергий. С увеличением квантового числа $n = v_2$ резко изменяется вращательная структура уровней энергий в колебательном состоянии $E(v_2)$, что проявляется в сильной зависимости ряда вращательных и центробежных постоянных из эффективного центробежного гамильтониана молекулы [2] от п.

Знание вращательных поправок в эффективный дипольный момент молекулы необходимо в различных приложениях, например при расчетах интенсивностей линий поглощения. Другим, мало изученным приложением является расчет коэффициентов уширения и сдвига линий поглощения молекулы H_2O с учетом вращательной зависимости физических параметров молекулы, таких как дипольный (μ), квадрупольный (Q) и т.д. моменты молекулы. В теорию уширения и сдвига спектральных линий молекул давлением буферного газа входят матричные элементы от операторов этих величин в базисе колебательно-вращательных волновых функций ψ [3], например $\langle \psi | \mu | \psi' \rangle$. Для молекулы H₂O, как правило, применяют эффективные колебательновращательные волновые функции ψ^{ef} , полученные с использованием эффективного центробежного гамильтониана молекулы [2], так что вместо $\langle \psi | \mu | \psi' \rangle$ необходимо использовать $\langle \psi^{ef} | \mu^{ef} | \psi^{ef} \rangle$. Эффективный дипольный момент μ^{ef} получают с помощью теории возмущений [4,5]. Для выделенного колебательного состояния $v = (v_1, n = v_2, v_3)$ (v_1, v_2, v_3 — колебательные квантовые числа) молекулы H₂O компонента α эффективного дипольного момента (относительно молекулярной системы координат) может быть записана в виде [6]

$${}^{\alpha}\widetilde{M}^{\nu}(n) = {}^{\nu}\widetilde{\mu}^{e}_{\alpha}(n) + \sum_{\beta,\gamma} {}^{\alpha,\beta\gamma}\widetilde{M}^{\nu}_{2}(n)J_{\beta}J_{\gamma} + \sum_{\beta,\gamma,\delta\varepsilon} {}^{\alpha}\mu_{\beta\gamma\delta\varepsilon}(n)J_{\beta}J_{\gamma}J_{\delta}J_{\varepsilon} + \dots$$
(1)

Здесь α , β , γ , δ , $\varepsilon = x, y, z; J_{\beta}, \ldots$ — компоненты оператора углового момента **J**, ${}^{v}\widetilde{\mu}^{e}_{\alpha}(n)$, ${}^{\alpha,\beta\gamma}\widetilde{M}^{v}_{2}(n)$, ${}^{\alpha}\mu_{\beta\gamma\delta\varepsilon}(n)$ — зависящие от *n* параметры. Если молекула H₂O лежит в плоскости Oxz и осью симметрии является ось Ox, то компонента $\alpha = x$ определяет эффективный дипольный момент молекулы. В работе [6] параметры из (1) получены для квантовых чисел n = 0, 1, 2, 3.

В последнее время стало возможным регистрация линий поглощения водяного пара в полосах 4v₂, 5v₂, 6v₂

и определение параметров этих линий (полуширина у, сдвиг δ) в присутствии посторонних газов, таких как аргон, гелий, водород [7]. В связи с этим возникает необходимость расчета вращательных поправок в эффективный дипольный момент H₂O для *n* > 3 и оценки влияния этих поправок на вычисляемые коэффициенты уширения γ и сдвига δ. Это и является целью настоящей работы.

Метод расчета параметров для эффективного дипольного момента

Метод расчета параметров ${}^{v}\tilde{\mu}^{e}_{\alpha}(n), {}^{\alpha,\beta\gamma}\tilde{M}^{v}_{2}(x)$ и $^{\alpha}\mu_{\beta\gamma\delta\varepsilon}(n)$ для эффективного дипольного момента (1) изложен в [6]. Он отличается от метода расчета параметров эффективного дипольного момента для полужестких молекул [4,5] двумя деталями.

1. Изгибное колебание в молекуле Н2О рассматривается как колебание большой амплитуды, поэтому для молекулярно-фиксированных компонент дипольного момента μ_{α} используется разложение в ряд

$$\mu(\rho, q) = \mu_{\alpha}^{e}(\rho) + \sum_{k} \mu_{\alpha}^{k}(\rho)q_{k} + \frac{1}{2}\sum_{k,l} \mu_{\alpha}^{kl}(\rho)q_{k}q_{l} + \dots$$
(2)

только по координатам q_k , соответствующим колебаниям малой амплитуды. В (2) $k, l = 1, 3, a \rho = \pi - \theta$ координата колебания большой амплитуды. Для функций $\mu_x^e(\rho)$ и $\mu_a^k(\rho)$ в работе использовались представления

$$\mu_x^{\sigma}(\rho) = a_1 \sin(\rho/2) + a_2 \sin^2(\rho/2) + a_3 \sin^3(\rho/2),$$

$$\mu_z^{3}(\rho) = b_1 \cos(\rho/2) + b_2 \cos^2(\rho/2) + b_3 \cos^3(\rho/2). \quad (3)$$

Параметры a и b для $\mu^e_x(\rho), \ \mu^1_x(\rho), \ \mu^3_z(\rho) \ (\sigma=e,1)$ приведены в [8,9].

Помимо этого для $\mu_x^e(\rho)$ использовалась функция

$$\mu_x^e(\rho) = \sin(\rho) \sum_{i=0}^8 q_0^{(i)} (\cos \rho_e - \cos \rho)^i$$
(4)

из [10], в которой ρ_e — равновесное значение переменной $\rho.$ Параметры $q_0^{(i)}$ из (4) получены в [10] из анализа ab initio поверхности дипольного момента молекулы H_2O из [11]. Функции $\mu_r^e(\rho)$ из формул (3) и (4) показаны на рис. 1.

2. Для вычисления матричных элементов (от различных функций), появляющихся в теории возмущений, использовались волновые функции $\psi_n(\rho)$, получаемые численным интегрированием уравнения Шредингера

$$H_0^{\text{bend}}\psi_n(\rho) = E_n\psi_n(\rho) \tag{5}$$

с гамильтонианом [12]

$$H_0^{\text{bend}} = -B_\rho(\rho) \frac{\partial^2}{\partial \rho^2} - \frac{\partial B_\rho(\rho)}{\partial \rho} \frac{\partial}{\partial \rho} + V_0(\rho).$$
(6)

Формулы для параметров
$${}^{v}\tilde{\mu}_{\alpha}^{e}(n)$$
, ${}^{\alpha,\beta\gamma}M_{2}^{v}(n)$, ${}^{\alpha}\mu_{\beta\gamma\delta\varepsilon}(n)$
из (1) приведены в [6,8,9]. Например, формула для ${}^{v}\tilde{\mu}_{\alpha}^{e}(n)$ имеет вид

$${}^{v}\widetilde{\mu}^{e}_{\alpha}(n) = \mu^{e}_{\alpha}(n) + \sum_{k=1,3} \Delta \mu^{k}_{\alpha}(n) \left(v_{k} + \frac{1}{2} \right), \qquad (9)$$

Рис. 1. Функции $\mu_x^e(\rho)$ из формул (3) (кривая *I*) и (4) (кривая 2).

Для потенциальной функции $V_0(\rho)$ использовалось два представления:

$$V_0(\rho) = f_{22}(\rho - \rho_e)^2 + f_{222}(\rho - \rho_e)^3 + f_{2222}(\rho - \rho_e)^4$$
(7)

с параметрами $f_{22} = 1.6855 \cdot 10^4 \,\mathrm{cm^{-1}}, f_{222} = 7522.0 \,\mathrm{cm^{-1}}, f_{2222} = -273.8 \,\mathrm{cm^{-1}}, \rho_e = 1.3187 \,\mathrm{rad}$ и барьером $H = 11235.5 \,\mathrm{cm}^{-1}$ к линейной конфигурации и представление

$$V_0(\rho) = \frac{HF_{kk}(\rho^2 - \rho_e^2)^2}{[F_{kk}\rho_e^4 + (8H - F_{kk}\rho_e^2)\rho^2]}$$
(8)

с параметрами $H = 10960.0 \,\mathrm{cm^{-1}}, F_{kk} = 3372.0 \,\mathrm{cm^{-1}},$ $\rho_e = 1.3187$ rad.

Потенциальные функции $V_0(\theta = \pi - \rho)$ (7) и (8) показаны на рис. 2.

Вычисленные с потенциалами (7) и (8) колебательные уровни энергий $E(n) = E_n - E_0$ представлены во 2-й и 3-й строчках табл. 1. В 4-й строчке таблицы представлено сравнение с имеющимися в литературе экспериментальными центрами полос *nv*₂ [1].

Таблица 1. Вычисленные и экспериментальные значения уровней энергий $E_n - E_0$ (cm⁻¹), значения главного вклада μ_x^e (D) в дипольный момент, значения производных μ_a^k (D), значения параметров $\Delta \mu_a^k$, h_{200} , h_{002} , h_{020} (D), определяющих колебательную и вращательную зависимости эффективного дипольного момента μ , а также значение главного вклада во вращательную постоянную B_z (cm⁻¹) для различных значений колебательного квантового числа $n = v_2$, связанного с колебанием большой амплитуды в молекуле H_2O^*

Параметры	n = 0	n = 1	<i>n</i> = 2	<i>n</i> = 3	<i>n</i> = 4	<i>n</i> = 5	<i>n</i> = 6	<i>n</i> = 7	<i>n</i> = 8
$E_{n} - E_{0}^{1}$	0.0	1593.7	3151.3	4667.2	6133.4	7536.3	8859.3	10124.0	11439.6
$E_{n} - E_{0}^{2}$	0.0	1594.0	3151.5	4666.3	6129.1	7524.3	8826.5	10031.4	11244.4
$E_{n} - E_{0}^{3}$	0.0	1594.6	3151.6	4666.8	6134.0				
μ_x^{eb}	-1.85	-1.79	-1.76	-1.71	-1.64	-1.55	-1.44	-1.36	-1.39
$\mu_x^{e\ c}$	-1.83	-1.79	-1.74	-1.68	-1.61	-1.51	-1.40	-1.32	-1.35
$\mu_x^{e \ d}$	-1.85	-1.82	-1.79	-1.76	-1.73	-1.69	-1.66	-1.63	-1.60
μ_x^{1b}	-0.022	-0.025	-0.028	-0.030	-0.032	-0.034	-0.034	-0.034	-0.034
μ_z^{3b}	0.10	0.093	0.086	0.080	0.074	0.059	0.062	0.058	0.055
$\Delta \mu_x^{1b}$	-4.8E-3	-3.6E-3	-4.2E-3	-5.0E-3	-5.9E-3	-7.0E-3	-7.7E-3	-5.3E-3	-1.3E-3
$\Delta \mu_x^{3b}$	-2.0E-2	-1.5E-2	-1.6E-2	-1.7E-2	-1.8E-2	-2.1E-2	-2.2E-2	-1.6E-2	-5.9E-3
h_{200}	1.3E-4	1.5E-4	1.7E-4	2.0E-4	2.4E-4	3.2E-4	3.5E-4	1.6E-4	4.1E-5
h_{002}	6.9E-5	7.7E-5	8.2E-5	9.8E-5	1.2E-4	1.5E-4	1.7E-4	7.9E-5	2.9E-5
h_{020}	-1.2E-3	-1.8E-3	-2.9E-3	-5.6E-3	-1.4E-2	-4.8E-2	-1.7E-1	-2.8E-1	
B_z	29.1	33.4	39.3	48.7	65.8	109.7	251.5	564.9	872.5

Примечание. *1.2 — вычисления с потенциалами (7), $E_0 = 796.1$, и (8), $E_0 = 795.0$ соответственно; экспериментальные данные для центров полос взяты из [1]; b, c — вычисление с функцией дипольного момента $\mu_x^e(\rho)$ (3) и (4) соответственно и волновыми функциями, полученными для потенциала (7), d — вычисление по формуле (12), полученной в [13] в модели полужесткой молекулы; символ E–3 означает 10^{-3} .

в котором

$$\Delta \mu_{\alpha}^{k}(n) = \frac{1}{2} \mu_{\alpha}^{kk}(n) - \frac{1}{4} \sum_{i} \frac{\mu_{\alpha}^{i}(n) f_{ikk}(n)}{\omega_{i}}$$
$$- \sum_{s} \frac{\mu_{\alpha}^{e}(sn) f_{kk}(ns)}{E_{s} - E_{n}}, \qquad (10)$$

а

$${}^{x,\beta\beta}\widetilde{M}_{2}^{\nu=0}(n) = 2\sum_{s} \frac{B_{\beta}(ns)\mu_{x}(sn)}{E_{n} - E_{s}} - \sum_{k} \frac{B_{k}^{\beta\beta}(n)\mu_{x}^{k}(n)}{\omega_{k}}.$$
(11)

Здесь $f(n,m) = \langle n|f(\rho)|m \rangle$ есть матричные элементы от функций $f(\rho)$ по волновым функциям $\psi_n(\rho)$, $\psi_m(\rho)$ из (5), f(n) = f(n,n), ω_k — частоты гармонических валентных колебаний, $f_{ijl}(\rho)$, $f_{kk}(\rho)$ — функции из разложения силового поля молекулы, $B_{\beta}(\rho)$, $B_k^{\beta\beta}(\rho)$ — функции из разложения обратного тензора инерции молекулы в ряд по нормальным координатам q_k [1,9,12].

В 5-й и 6-й строчках табл. 1 приведены матричные элементы $\mu_x(n)$, вычисленные для функций $\mu_x^e(\rho)$ (3) и (4) с волновыми функциями, полученными для потенциала (7). Для сравнения в 7-й строчке представлена зависимость μ_x ($n = v_2$), вычисленная по формуле

$$\mu_{v1v2v3} = -1.857 - 0.0051(v_1 + 1/2) + 0.0317(v_2 + 1/2) - 0.0225(v_3 + 1/2),$$
(12)

полученной в [13] в модели полужесткой молекулы H₂O.

В отличие от (12) можно отметить нерегулярное изменение $\mu_x(n)$ с возбуждением квантового числа n.

Рис. 2. Потенциальные функции $V_0(\theta = \pi - \rho)$ (7) (кривая 1) и (8) (кривая 2).

Изменение в появлении $\mu_x(n)$ при n = 7 связано с тем, что колебательные уровни энергии E_n при n > 7 лежат выше барьера H к линейной конфигурации молекулы.

Использование волновых функций $\psi_n(\rho)$, полученных для потенциалов (7) и (8), приводит к незначитель-

ным вариациям в вычисляемых параметрах, поэтому далее представлены результаты расчетов, полученные с потенциалом (7). В следующих строчках (8) и (9) из табл. 1 показаны диагональные матричные элементы $\mu_{r}^{1}(n)$ и $\mu_{z}^{3}(n)$ для производных $\mu_{r}^{1}(\rho)$ и $\mu_{z}^{3}(\rho)$ из разложения (2). Для сравнения экспериментальные (полученные из анализа экспериментальных интенсивностей линий) производные $\mu_x^1 = -0.0217$, $\mu_z^3(n) = 0.009714$ (D) [1]. Зависимость дипольного момента молекулы от колебательных квантовых чисел v_1 и v_3 , связанных с валентными колебаниями, определяется формулой (9). Значения параметров $\Delta \mu_x^k(n)$ из этой формулы приведены в 10-й и 11-й строчках табл. 1. В расчетах по формуле (10) для матричных элементов $\mu_{\alpha}^{kk}(n)$ для всех n использовались значения $\mu_x^{11}(n) = 0.009, \, \mu_x^{33}(n) = -0.007 \, (D)[1]$ для вторых производных от дипольного момента.

Коэффициенты $\Delta \mu_x^k(n)$ для n < 7 слабо зависят от n и практически совпадают с соответствующими коэффициентами из формулы (12). Для расчета вращательной зависимости эффективного дипольного момента более удобна не формула (1), а формула

$${}^{x}\widetilde{M}^{v}(n) = \mu_{x}^{\text{diag}}(n) + \mu_{x}^{\text{ndiag}}(n)$$
$$= \sum_{i,j} h_{ij0}(n) \mathbf{J}^{2i} J_{z}^{2j} + \frac{1}{2} \{J_{+}^{2} + J_{-}^{2}, h_{ij2}(n) \mathbf{J}^{2i} J_{z}^{2j}\}, \quad (13)$$

в которой $J_{\pm} = J_x \mp i J_y$, а фигурные скобки означают антикоммутатор. Параметры ${}^{v} \widetilde{\mu}^{e}_{\alpha}(n)$, ${}^{\alpha,\beta\gamma} \tilde{M}^{v}_{2}(n)$ и $h_{ijk}(n)$ из (1) и (13) связаны соотношениями

$$h_{000} = {}^{v} \widetilde{\mu}_{x}^{e},$$

$$h_{200} = ({}^{x,xx} \widetilde{M}_{2}^{v} + {}^{x,yy} \widetilde{M}_{2}^{v})/2,$$

$$h_{020} = {}^{x,zz} \widetilde{M}_{2}^{v} - h_{200},$$

$$h_{002} = ({}^{x,xx} \widetilde{M}_{2}^{v} - {}^{x,yy} \widetilde{M}_{2}^{v})/4.$$
(14)

Эта формула удобна для вычисления матричных элементов от (13) в базисе вращательных волновых функций $|J, K\rangle$ симметричного волчка. Без учета последнего слагаемого в (13), связанного с асимметрией молекулы H₂O, вращательная зависимость эффективного дипольного момента (13) определяется рядом

$$\mu_{\text{PT}}(n, J, K) = \langle J, K | \mu_x^{\text{diag}}(n) | J, K \rangle$$

= $h_{000}(n) + h_{200}(n) J (J+1) + h_{020}(n) K^2 + \dots$ (15)

по J(J + 1) и K^2 . Индекс ТВ у $\mu_{\text{PT}}(n, J, K)$ подчеркивает, что выражение (15) получено по теории возмущений (РТ). Значения параметров $h_{200}(n)$, $h_{020}(n)$ и $h_{002}(n)$ представлены в 12-й–14-й строчках табл. 1. Незначительное отличие этих параметров для n < 3 от значений, полученных в [6], связано с использованием в расчетах различных волновых функций $\psi_n(\rho)$. Из таблицы видно, во-первых, что параметр $h_{002}(n)$ по величине на порядок и более меньше параметров $h_{200}(n)$, $h_{020}(n)$, и последним вкладом в (13) при расчете вращательной зависимости дипольного момента можно пренебречь. Во-вторых, видно, что параметр $h_{020}(n)$ при увеличении *n* резко возрастает. Это приводит к расходимости полиномиального (по K^2) представления (15). Уже для K = 5 вращательный вклад в дипольный момент для (0,4,0)-колебательного состояния равен $-0.014 \cdot 25 = -0.35$ D, что составляет 19% от главного вклада, для (0,5,0)-состояния этот вклад равен -1.2 D, что составляет около 65% от главного вклада. Такое увеличение параметра $h_{020}(n)$ связано с резким увеличением в формуле (11) матричных элементов $B_z(ns) = \langle n|B_z(\rho)|s \rangle$ от функции

$$B_z(\rho) = \frac{\text{const}}{\sin^2(\rho/2)},\tag{16}$$

определяющей обратный тензор инерции (вращательную "постоянную") для опорной конфигурации молекулы [1,9,12]. При стремлении молекулы к линейной конфигурации $\rho \to 0 \ (\theta \to \pi)$ и $B_z(\rho) \to \infty$. В последней строчке табл. 1 приведены вычисленные диагональные матричные элементы $B_z(n)$, указывающие на экспоненциально быстрое увеличение $B_z(n)$ с возрастанием n.

В [6] был оценен радиус сходимости K^* ряда (15) по квантовому числу K: $K^* \approx 14$ для n = 0, $K^* \approx 10$ для n = 1, $K^* \approx 7$ для n = 2, $K^* \approx 4$ для n = 3. В пределах этих квантовых чисел и может быть использована формула (15). Для других значений K и n нужно применять либо методы суммирования ряда (15), либо другой способ расчета зависимости $\mu(n, J, K)$ от квантовых чисел. Оценка [6] радиуса J^* сходимости ряда (15) по вращательному квантовому числу J показывает, что $J^* \approx 46$ для любых n.

Численный метод расчета $\mu(n, J, K)$

В этом методе значения $\mu(n, J, K)$ вычислялись как матричные элементы

$$\mu(n, J, K) = \langle \psi_n(\rho; J, K) | \mu(\rho) | \psi_n(\rho; J, K) \rangle$$
(17)

по волновым функциям $\psi_n(\rho; J, K)$, полученным из численного интегрирования уравнения Шредингера

$$H^{\text{bend-rot}}\psi_n(\rho; J, K) = E_n(J, K)\psi_n(\rho; J, K)$$
(18)

с гамильтонианом

$$\begin{split} H^{\text{bend-rot}} &= H_0^{\text{bebd}} + \frac{1}{2}(B_x(\rho) + B_y(\rho)) \\ &\times [J(J+1) - K^2] + B_z(\rho)K^2, \end{split}$$

в котором H_0^{bend} определен формулой (6), а функции $B_\beta(\rho)$ определены в [9,12]. Вращательная зависимость гамильтониана молекулы учтена сразу в нулевом приближении. Для каждого $n = 0, 1, \ldots 8$ были получены волновые функции: для J = 0, K = 0, 1, 3, 4, 5, 6, 8, 10; для K = 0, J = 4, 8, 9, 12, 15; для K = 10, J = 2, 4, 6,

Рис. 3. Зависимость матричных элементов $\mu(n, K)$ для дипольного момента молекулы H₂O от квантового числа К для различных значений квантового числа $n = v_2$ (квантовые числа *п* показаны слева для каждой ломаной линии).

8, 9, т.е. для каждого *п* получены 18 волновых функций с разными значениями Ј и К. Расчеты были проведены для двух представлений $\mu_x^e(\rho)$ (3) и (4) для дипольного момента молекулы. Зависимость матричных элементов $\mu(n, K) = \mu(n, J = 0, K)$ от квантового числа K при использовании $\mu_{x}^{e}(\rho)$ (3) показана на рис. 3.

Далее из полученных значений $\mu(n, J, K)$ для каждого *п* методом наименьших квадратов определялись параметры h_{020} и h_{040} из формул

$$\mu_{\text{Pol}}(n, J, K) = h_{000} + h_{200}J(J+1) + h_{020}K^2 + h_{040}K^4,$$
(19)
$$\mu_{\text{Pade}}(n, J, K) = h_{000} + h_{200}J(J+1) + \frac{h_{020}K^2}{1 - h_{040}K^2/h_{020}}.$$
(20)

Параметры h₀₀₀ и h₂₀₀ фиксировались к значениям, указанным в табл. 1. Последний вклад в (20) есть результат применения к ряду (19) методов суммирования, связанных с формами Паде. Качество описания $\mu(n, J, K)$ определялось с помощью величины

$$rms_{\mu} = \left\{ \sum_{i=1}^{N} \frac{(\mu_i^{\text{Num}} - \mu_i^{\text{Mod}})^2}{N} \right\}^{1/2},$$
 (21)

в которой N = 18, μ_i^{Num} и μ_i^{Mod} — вычислены по формуле (17) и по формулам (19), (20) соответственно, значения матричных элементов $\mu(n, J, K)$. Использование в (19) только первых трех вкладов, т.е. использование формулы $\mu_{\text{Pol}}(n, J, K) = h_{000} + h_{200}J(J+1) + h_{020}K^2$,

приводит к неудовлетворительному описанию вычисленных по формуле (17) значений $\mu(n, J, K)$. Для такого представления rms_µ на порядок больше, чем при использовании (19), (20). Для $\mu(n, J, K)$ (19) rms_{μ} для каждого *п* в среднем на 15-20% больше, чем при использовании $\mu(n, J, K)$ (20). В следующей табл. 2 представлены значения параметров h_{020} и h_{040} , полученные при моделировании $\mu(n, J, K)$ формулой (20).

Приложение к расчету коэффициентов уширения и сдвига

Коэффициенты уширения γ и сдвига δ рассчитывались в полуклассической схеме Роберта-Бонами [14]. Все детали расчета можно найти в [14,15]. Отметим только, что сдвиг δ линий поглощения $(i) \equiv (n = 0)[J_i, K_{ai}, K_{ci}] \rightarrow (f) \equiv (n)[J_f, K_{af}, K_{cf}]$ (Ј, Ка, Кс — вращательные квантовые числа молекулы H₂O) определяется главным образом разностью $\widetilde{V}_{ ext{isot}}^{(n)}(R) - \widetilde{V}_{ ext{isot}}^{(0)}(R)$ эффективного изотропного межмолекулярного потенциала взаимодействия в верхнем (n) и нижнем (n = 0) колебательном состоянии.

Дальнодействующий вклад эффективного изотропного потенциала определяется индукционным и дисперсионным взаимодействиями и имеет вид

$${}^{(n)}\widetilde{V}_{\text{isot,long}}^{\text{ind-disp}}(R) = -\frac{[(\widetilde{\mu}(n)^2 + 3/2u)\widetilde{\alpha}(n)]\alpha_2}{R^6}, \qquad (22)$$

в котором *R* — расстояние между взаимодействующими молекулами, $\tilde{\mu}, \tilde{\alpha}$ — эффективный дипольный момент и поляризуемость молекулы H₂O, α_2 — поляризуемость буферной молекулы, $u = u_1$, u_2 , $(u_1 + u_2)$, u_1 , u_2 энергии диссоциации молекул Н₂О и молекул буферного газа соответственно. Для $\tilde{\mu}(n)$ из (22) использовались значения $\mu(n, J, K)$, полученные в настоящей работе для $\mu_{x}^{e}(\rho)$ (3), а для $\tilde{\alpha}(n)$ использовалось выражение

$$\tilde{\alpha}(n) = 1.4613 + 0.039v_1 + 0.022v_2 + 0.041v_3 + \Delta \alpha^{(J)} J(J+1) + \Delta \alpha^{(K)} K^2$$
(23)

 $\Delta \alpha^{(K)} =$ $\Delta \alpha^{(J)} = 0.65 \cdot 10^{-4},$ параметрами с $= 0.71 \cdot 10^{-4} \text{ Å}^3 [7,15]$ (все параметры в (23) определены в Å³).

Было рассмотрено уширение и сдвиг линий H₂O давлением аргона, криптона, водорода и гелия. Для этих уширяющих газов можно провести сравнение с имеющими в литературе экспериментальными данными. При уширении аргоном и криптоном изотропный потенциал использовался в виде (22), при уширении гелием и водородом дополнительно учитывалась независящая от вращательных квантовых чисел близкодействующая часть изотропного потенциала, пропорциональная R^{-12} . В случае уширения криптоном есть экспериментальные данные [16] для одной линии $[3, 1, 3] \leftarrow [2, 2, 0]$ из вращательной полосы, в случае уширения остальными газами есть экспериментальные данные для нескольких

Квантовое число $n = v_2$	h_{020}	h ₀₄₀	rms _µ
$n = 0^a$	$(0.107\pm0.001)\cdot10^{-2}$	$(0.315\pm0.024)\cdot10^{-5}$	$0.5 \cdot 10^{-3}$
$n = 0^b$	$(0.130 \pm 0.007) \cdot 10^{-2}$	$(0.668\pm0.16)\cdot10^{-5}$	$0.6 \cdot 10^{-3}$
$n = 1^a$	$(0.271\pm 0.046)\cdot 10^{-2}$	$(0.331\pm 0.16)\cdot 10^{-4}$	$9.1 \cdot 10^{-3}$
$n = 1^b$	$(0.173\pm 0.002)\cdot 10^{-2}$	$(0.103 \pm 0.004) \cdot 10^{-4}$	$2.4 \cdot 10^{-3}$
$n = 2^a$	$(0.256\pm0.006)\cdot10^{-2}$	$(0.205\pm0.019)\cdot10^{-4}$	$1.7 \cdot 10^{-3}$
$n = 2^b$	$(0.268\pm 0.005)\cdot 10^{-2}$	$(0.246\pm 0.015)\cdot 10^{-4}$	$0.9\cdot 10^{-3}$
$n = 3^a$	$(0.429 \pm 0.012) \cdot 10^{-2}$	$(0.568\pm 0.048)\cdot 10^{-4}$	$2.3 \cdot 10^{-3}$
$n = 3^b$	$(0.455\pm0.02)\cdot10^{-2}$	$(0.667 \pm 0.06) \cdot 10^{-4}$	$2.0 \cdot 10^{-3}$
$n = 4^a$	$(0.761 \pm 0.030) \cdot 10^{-2}$	$(0.161 \pm 0.016) \cdot 10^{-3}$	$4.2 \cdot 10^{-3}$
$n = 4^b$	$(0.821\pm 0.043)\cdot 10^{-2}$	$(0.197 \pm 0.028) \cdot 10^{-3}$	$4.2 \cdot 10^{-3}$
$n = 5^a$	$(0.149 \pm 0.009) \cdot 10^{-1}$	$(0.534 \pm 0.076) \cdot 10^{-3}$	$9.4 \cdot 10^{-3}$
$n = 5^b$	$(0.169 \pm 0.014) \cdot 10^{-1}$	$(0.730 \pm 0.150) \cdot 10^{-3}$	$9.5 \cdot 10^{-3}$
$n = 6^a$	$(0.326 \pm 0.036) \cdot 10^{-1}$	$(0.216\pm0.053)\cdot10^{-2}$	$1.8 \cdot 10^{-3}$
$n = 6^b$	$(0.370\pm0.058)\cdot10^{-1}$	$(0.292\pm0.010)\cdot10^{-2}$	$2.0 \cdot 10^{-3}$

Таблица 2. Параметры h_{020} и h_{040} , полученные методом наименьших квадратов из подгонки представления (20) к вычисленным численно по формуле (17) значениям матричных элементов $\mu(n, J, K)$ (*a* и *b* — вычисления с $\mu(\rho)$ (3) и (4) соответственно)

Таблица 3. Экспериментальные и вычисленные коэффициенты уширения γ (cm⁻¹/atm) и сдвига δ (cm⁻¹/atm) молекулы H₂O давлением аргона, криптона, водорода и гелия, T = 296 K*

ν , cm ⁻¹	$J K_a K_c$	$J K_a K_c$	$\gamma(\exp)$	$\delta(\exp)$	<i>ү</i> (выч)	$\delta~($ выч $)^a$	$\delta~($ выч $)^b$
			Аргон				
4007.5888	(0,2,0)	(0,0,0)	0.027.41	0.0001	0.0420	0.0046	0.0017
	661 (040)	514	0.0374	-0.0021	0.0429	-0.0046	-0.0016
7026.17856	6 5 1	5 2 4	0.0246	-0.00955	0.0363	-0.0124	-0.0065
7031.47330	945	8 1 8	0.0236	-0.01375	0.0330	-0.0144	-0.0102
	(0,5,0)	(0,0,0)					
7479.0916	505	414	0.0390	-0.0133	0.0330	-0.0131	-0.0135
8954 1302	616	5 2 3	0.0411	-0.0152	0.0409	-0.0132	-0.0123
8847.7321	616	625	0.0351	-0.0132	0.0317	-0.0161	-0.0129
8618.2351	616	725	0.0404	-0.0132	0.0371	-0.0146	-0.0135
			Криптон				
	(0,0,0)	(0,0,0)					
	321	221	0.059 ²	-0.0017^{2}	0.050	-0.0025	-0.0028
			Водород				
	(0,6,0)	(0,0,0)					
8954.1302	616	523	0.0748	-0.0067	0.0714	-0.0076	-0.0070
8847.7321	616	625	0.0585	-0.0055	0.0593	-0.0081	-0.0074
8618.2351	616	725	0.0688	-0.0033	0.0660	-0.0075	-0.0068
			Гелий				
	(0,6,0)	(0,0,0)					
8954.1302	616	523	0.01.50	0.0001	0.0172	0.0029	0.0032
8847.7321	616	625	0.0152	0.0031	0.0148	0.0029	0.0032
0010.2331	010	123	0.0100	0.0040	0.0101	0.0050	0.0035

*Примечание.** a, b — с учетом и без учета вращательных поправок в эффективный дипольный момент; в формуле (20) использовались параметры, полученные с функцией $\mu_x^e(\rho)$ (3); 1, 2 — экспериментальные данные из [18,16], остальные экспериментальные данные взяты из [7].

линий из полос $4v_2$, $5v_2$ и $6v_2$ [7]. (Для отмеченной вращательной линии в [16] приведены экспериментальные данные при уширении линии гелием, неоном и аргоном, но рассчитанный коэффициент δ для этой линии при сдвиге этими газами близок к нулю и не позволяет сделать определенные выводы о влиянии вращательных

добавок на величину сдвига.) Параметры межмолекулярных потенциалов взаимодействия можно найти в [17,18].

Результаты расчета коэффициентов γ и δ показаны в табл. 3.

Обсуждение и выводы

Основной результат работы заключается в табл. 1 и 2, в которых приведены параметры из формул (13) и (20), определяющих вращательный вклад в эффективный дипольный момент молекулы H₂O для различных колебательных состояний, включающих высоко возбужденные изгибные состояния, вплоть до барьера к линейной конфигурации.

Анализ рассчитанных коэффициентов γ и δ показывает, что вращательные поправки в дипольный момент не влияют на вычисляемые коэффициенты уширения γ . Влияние этих поправок на вычисляемые коэффициенты сдвига δ существенны в следующих случаях.

1. В случае сдвига вращательных линий поглощения. Учет вращательных поправок в (20) при расчете коэффициента δ для вращательной линии [3, 1, 3] \leftarrow [2, 2, 0] приводит к изменению δ на 12% (15-я строчка в табл. 3). Для этой линии, но в полосах (0, *n*, 0) \rightarrow (0, *n*, 0) учет этих поправок приводит к смене знака δ для n = 5.

2. В случае сдвига линий поглощения $(i) \equiv (n = 0)$ $[J_i, K_{ai}, K_{ci}] \rightarrow (f) \equiv (n)[J_f, K_{af}, K_{cf}]$ для которых разность $\Delta K_a = |K_{ai} - K_{af}| \geq 3$. Например, для линии $[5, 1, 4] \rightarrow [6, 6, 1]$ из полосы $2v_2 \Delta K_a = 5$, и учет вращательной зависимости в дипольном моменте приводит к изменению коэффициента сдвига δ в 2.9 раза в случае уширения аргоном, для двух линий из полосы $4v_2$ $\Delta K_a = 3$, и аналогичный учет приводит к изменению коэффициента δ в 1.9 раза для линии $[5, 2, 4] \rightarrow [6, 5, 1]$ и в 1.4 раза для линии $[8, 1, 8] \rightarrow [9, 4, 5]$. Для остальных линий из табл. 3 $\Delta K_a = 1$, и изменение коэффициента сдвига δ , вызванное учетом вращательной зависимости эффективного дипольного момента, незначительно.

Таким образом, при расчетах коэффициентов сдвига линий поглощения H_2O буферными газами, по крайней мере, рассмотренными в настоящей работе, должна быть предусмотрена процедура учета вращательной зависимости эффективного дипольного момента молекулы H_2O , например, через формулу (20).

Конфликт интересов

Автор заявляет, что у него нет конфликта интересов.

Список литературы

- [1] Быков А.Д., Синица Л.Н., Стариков В.И. Экспериментальные и теоретические методы в спектроскопии водяного пара. Новосибирск: Изд. СО РАН, 1999. 376 с.
- [2] Макушкин Ю.С., Тютерев Вл.Г. Методы теории возмущений и эффективные гамильтонианы в молекулярной спектроскопии. Новосибирск: Наука, 1984. 240 с.

- [3] *Tsao C.J., Curnutte B. //* J. Quant. Spectrosc. Radiat. Transfer. 1962. V. 2. P. 41–91.
- [4] Aliev M.R., Watson J.K.G. // Molecular Spectroscopy: Modern Research / Ed. by Rao K.N. London: Acad press, 1985. V. III. P. 1–67.
- [5] Camy-Peyret C., Flaud J.-M. // Molecular Spectroscopy: Modern Research / Ed. by Rao K.N. London: Acad. Press, 1985. V. III. P. 69–110.
- [6] Starikov V.I. // J. Mol. Spectrosc. 2001. V. 206. P. 166-171.
- [7] Starikov V.I., Petrova T.M., Solodov A.M., Solodov A.A., Deichuli V.M. // Spectroscopy Acta. Part A: Mol. and Biomol. Spectrosc. 2018. V. 210. P. 275–280.
- [8] Starikov V.I., Mikhailenko S.N. // J. Mol. Struct. 1992. V. 271.
 P. 119–131.
- [9] Стариков В.И., Тютерев Вл.Г. Внутримолекулярные взаимодействия и теоретические методы в спектроскопии нежестких молекул. Томск: Изд. "Спектр" ИОА СО РАН, 1997. 231 с.
- [10] Mengel M., Jensen P. // J. Mol. Spectrosc. 1995. V. 169. P. 73-91.
- [11] Jorgensen U.G., Jensen P. // J. Mol. Spectrosc. 1993. V. 161. P. 219–242.
- [12] Hougen J.T., Bunker P.R., Johns J.W.G. // J. Mol. Spectrosc. 1970. V. 34. P. 136–172.
- [13] Shostak S.L., Muenter J.S. // J. Chem. Phys. 1991. V. 94. P. 5883–5890.
- [14] Robert D., Bonamy J. // J. Phys. (Paris). 1979. V. 40. P. 923–943.
- [15] Стариков В.И., Лаврентьева Н.Н. Столкновительное уширение спектральных линий поглощения молекул атмосферных газов. Томск: Из-во ИОА СО РАН, 2006. 303 с.
- [16] Golubiatnikov G.Yu. // J. Mol. Spectrosc. 2005. V. 230. P. 196–198.
- [17] Стариков В.И. // Опт. и спектр. 2017. Т. 123. № 1. С. 8-18.
- [18] Petrova T.M., Solodov A.M., Solodov A.A., Deichuli V.M., Starikov V.I. // Mol. Phys. 2017. V. 115. P. 1642–1656.