12.1

Определение энергии и флюенсов протонов, коллективно ускоренных в ускорителе с диодом Люса

© В.А. Рыжков, Г.Е. Ремнев, М.В. Журавлев, И.Н. Пятков, В.С. Лопатин

Исследовательская школа физики высокоэнергетических процессов, Томский политехнический университет, Томск, Россия

E-mail: slavar@fibrtec.com

Поступило в Редакцию 25 февраля 2019 г. В окончательной редакции 5 апреля 2019 г. Принято к публикации 19 апреля 2019 г.

Пластины карбида бора B₄C использованы в качестве термостойких мишеней для определения энергии и флюенсов протонов, коллективно ускоренных в ускорителе с диодом Люса, посредством контроля гаммарадиоактивности радионуклидов ⁷Be и ¹³N, наведенных в ядерных реакциях ¹⁰B(p, α)⁷Be и ¹²C(p, γ)¹³N. Диод Люса с цилиндрическим вольфрамовым катодом и анодом в виде полиэтиленовой шайбы генерировал электронный пучок с длительностью до 100 ns и током до 30 kA при напряжении около 250 kV. Предложенная методика позволяет контролировать энергию протонов в пределах 500–1500 keV и флюенсы до 5 · 10¹³ protons/(cm² · pulse).

Ключевые слова: радиоактивность, гамма-спектрометрия, импульсный пучок частиц, карбид бора.

DOI: 10.21883/PJTF.2019.14.48020.17752

Разработка ускорителей с диодом Люса требует простой и надежной методики контроля энергии и флюенсов коллективно ускоренных ионов с энергией от 500 до 1500 keV [1]. При условии, что облученные мишени не эродируют под действием мощных импульсных ионных пучков (МИИП), протонно-индуцированная активация выглядит простой и надежной методикой для оценки флюенсов и энергии таких протонов. В этом плане пластины карбида бора В₄С с температурой плавления около 3250°С представляют несомненный интерес для осуществления радиоактивационного контроля энергии и флюенсов протонов за счет одновременной регистрации гамма-активности радионуклидов ⁷Ве и ¹³N, наведенных в мишенях по ядерным реакциям ${}^{10}{
m B}(p,\alpha)^7{
m Be}$ и ${}^{12}C(p, \gamma){}^{13}N$ соответственно. Выход первой реакции быстро растет в интервале энергий протонов от 500 до 1500 keV [2], тогда как выход второй реакции в этом интервале едва увеличивается [3]. В результате отношение этих выходов быстро нарастает с увеличением энергии протонов, что позволяет определять не только их энергию, но и флюенсы. Возможная эрозия поверхности мишеней может приводить к занижению оценки энергии протонов при их энергии существенно больше энергии первого резонанса реакции ${}^{12}C(p, \gamma){}^{13}N$, т.е. 459 keV. Это происходит из-за того, что ⁷Ве, наведенный в мишени с большей концентрацией у самой поверхности, испаряется в намного большей степени, чем ¹³N, локализованный в данном случае преимущественно в узком слое на глубине мишени. Поэтому основным ограничением указанной методики в интервале энергий коллективно ускоренных протонов 500-1500 keV является максимальный флюенс ускоренных ионов.

В настоящей работе приведены результаты тестирования специальной геометрии диода Люса в импульсном

электронном ускорителе ТЕМП, который в согласованном режиме характеризуется ускоряющим напряжением 200 kV, электронным током до 40 kA и длительностью импульса напряжения на полувысоте 90 ns [4]. В тестируемой геометрии диода Люса импеданс ускоряющей системы был выше, чем в согласованном режиме, и в результате напряжение достигало 250 kV, а электронный ток был ниже (около 30 kA). В этой геометрии диода в качестве катода использован цилиндрический вольфрамовый стержень диаметром 4 mm и длиной 15 mm, а в качестве анода — шайбы из полиэтилена высокого давления с толщиной 8 mm и диаметром отверстия 10 mm. Катод соосно углублен в отверстие анода на 3 mm. Полиэтиленовые (ПЭ) и медные заземленные полые усеченные конусы длиной 80 mm были установлены на поверхности анода со стороны заанодного пространства в соответствии с рекомендациями [4]. Согласно [5], размещение подобных элементов приводило к увеличению энергии коллективно ускоренных ионов и стабилизации энергии и флюенсов ионов от импульса к импульсу. Расстояние между анодом и дисками В4С мишени с диаметром 15 mm и толщиной 1-2 mm было 90 mm во всех опытах, кроме эксперимента № 3, где итоговое расстояние от анода до мишени составляло 130 mm (см. таблицу). Диски В₄С были размещены соосно с катодом и анодом и приклеены двусторонним коммерческим полипропиленовым скотчем Profitto (80 µm) к медному держателю. Передняя поверхность дисков B₄C была зеркально отполирована для осуществления визуального контроля за возможной эрозией поверхности при воздействии МИИП. Видимой эрозии не было обнаружено во всех опытах, но возможность уноса тонкого приповерхностного слоя ($\sim 0.3 \text{ mg/cm}^2$) за импульс не была исключена для опыта № 2, где наблюдалась небольшая убыль веса после облучения. Использование

Номер опыта	Z(анод-мишень), mm	$q_1(^7\text{Be}),$ 10 ¹³	$q_1({}^{13}\mathrm{N}),$ 10 ¹³	$q_1(^7\text{Be})/q_1(^{13}\text{N})$	E_{px} , keV	$\pm \delta E_{px},$ keV	$q_x(^7\text{Be}),$ 10 ¹³	$q_x(^{13}\mathrm{N}),$ 10 ¹³	$\begin{array}{c}\pm\delta q_{x},\\10^{13}\end{array}$
1	90(10/-3)	0.87	13	0.067	550	35	15.8	15.3	0.4
2	Си-лайнер + 10	0.02	0.58	0.035	460	45	0.44	1.02	0.35
3	Си-лайнер + 50	0.12	0.38	0.31	775	25	0.41	0.40	0.1
4	ПЭ-лайнер + 10	0.073	0.63	0.116	640	30	0.71	0.66	0.1
5	ПЭ-лайнер + 10	0.42	3.35	0.125	660	30	4	3.55	0.35

Флюенсы и энергии коллективно ускоренных протонов

Зависимости относительных выходов реакций ${}^{10}B(p, \alpha)^7 Be$ и ${}^{12}C(p, \gamma){}^{13}N$ от энергии протонов: нормализовано к 100% при $E_p = 1000$ keV.

скотча позволило визуально контролировать отпечатки ионного пучка, не попавшего на мишень В4С. После облучения каждого образца серией из десяти импульсов, занимавшей в сумме 40-60 s, облученный диск B₄C немедленно извлекался из вакуумной камеры ускорителя и перемещался на торец коаксиального детектора из высокочистого германия (Canberra) в свинцовой защите для регистрации протонно-индуцированной гаммаактивности ⁷Ве ($T_{1/2} = 53.12$ дня) и ¹³N (9.965 min) в пиках с энергией 477.6 и 511 keV соответственно. Типично наведенные активности ¹³N регистрировали последовательно по 10 min трижды, чтобы убедиться в том, что позитронная активность принадлежит исключительно этому радионуклиду, т. е. период полураспада составляет около 10 min. Регистрация наведенной активности ⁷Ве занимала 1-20 h в зависимости от энергии и флюенсов протонов, перехваченных мишенями карбида бора.

Число протонов *q*, попавших на мишень B₄C, было определено следующим образом:

$$q \approx Nt/eiY,\tag{1}$$

где N — интенсивность (s⁻¹) гамма-пиков на конец облучения; t — время жизни (s) радионуклидов, определяемое как $T_{1/2}/0.6932$; e — эффективность регистрации гамма-пиков (0.04 для 477.6 keV и 0.03 для 511 keV);

i — относительная интенсивность гамма-квантов (0.1052 для ⁷Ве и 2 для ¹³N); *Y* — выход аналитической реакции (на один протон) для мишени из 100% ядер ¹⁰В или ¹²С (например, для протонов с энергией 1 MeV $Y(^{7}\text{Be}) \approx 8.84 \cdot 10^{-6}$ и $Y(^{13}\text{N}) \approx 7.92 \cdot 10^{-10}$).

В таблице представлены рассчитанные флюенсы и энергии коллективно ускоренных протонов для исследованной геометрии диода Люса. Сначала флюенсы протонов были рассчитаны исходя из предположения, что энергия протонов равна 1 MeV (q_1). Затем находилось отношение выходов обеих реакций $q_1(^7\text{Be})/q_1(^{13}\text{N})$, определяющее действительную энергию протонов E_{px} (см. рисунок). Окончательно флюенсы протонов корректировались с учетом их действительной энергии до q_x умножением флюенсов q_1 на отношение выходов аналитических радионуклидов при энергии 1 MeV и действительной энергии E_{px} .

Разумно считать, что мишени не эродировали заметно в случаях, когда флюенсы протонов $q_x(^7\text{Be})$ и $q_x(^{13}\text{N})$ имеют сходящиеся значения, например в опытах № 1 и 3-5. Напротив, в опыте № 2 обнаруживаются сильно расходящиеся значения этих флюенсов, что указывает на возможность существенной эрозии поверхности мишени В₄С при воздействии МИИП в данном случае. Это в свою очередь свидетельствует о том, что энергия протонов была существенно выше, чем измеренная (460 keV). Учитывая, что обе оценки должны взаимно сходиться, энергию протонов в опыте № 2 следует оценивать как $\sim 550 \, \mathrm{keV}$. В таком случае не обнаруживается увеличения энергии протонов за счет использования медного лайнера на том же расстоянии от анода до мишени, тогда как при дополнительном дистанцировании мишени В₄С от медного лайнера на +50 mm (опыт № 3) наблюдалось увеличение энергии коллективно ускоренных протонов до 775 keV. Увеличение энергии в такой геометрии согласуется с экспериментальными данными об увеличении длины ускорения при оптимизации геометрии эквипотенциальной заанодной области. При применении полиэтиленовых лайнеров (опыты № 4 и 5) были обнаружены воспроизводящиеся энергии коллективных ускоренных протонов — около 650 keV, что было существенно выше, чем без использования лайнеров.

Нижний предел оцениваемой энергии протонов — около 460 keV, поскольку выход реакции ${}^{12}C(p, \gamma){}^{13}N$ чрезвычайно мал при энергии существенно ниже резонансной (459 keV). Верхний предел определения энергии протонов с помощью данной методики составляет

около 1500 keV и предопределяется вторым резонансом (1698 keV) ядерной реакции ${}^{12}C(p, \gamma){}^{13}N$. Для контроля энергий протонов выше 1500 keV нужны мишени, содержащие компонент, на котором протонами возбуждаются реакции с порогом около 1500 keV. Так, если карбид ванадия VC ($T_m = 2800^{\circ}$ C) добавить к матрице карбида бора, можно преодолеть ограничение по верхнему пределу энергии протонов за счет регистрации радиоактивности радионуклида 51 Cr ($T_{1/2} = 27.7$ дней, $E\gamma = 320.1$ keV), наведенного по реакции ${}^{51}V(p, n){}^{51}$ Cr, идущей с порогом 1565 keV.

Таким образом, развитие предложенной методики видится в приготовлении и тестировании жаропрочной керамики B_4C-VC , способной выдерживать облучение МИИП с энергиями $1-2 \, MeV$ и флюенсами до $(3-5) \cdot 10^{13}$ protons / (cm² · pulse).

Финансирование работы

Работа выполнена при финансовой поддержке Российского научного фонда (грант № 17-19-01442).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- Luce J.S., Sahlin H., Crites N.R. // IEEE Trans. Nucl. Sci. 1973.
 V. 20. N 3. P. 336–340.
- [2] Ditrói F., Takács S., Tárkányi F., Fenyvesi A., Bergman J., Heselius S.-J., Solin O. // Nucl. Instrum. Meth. Phys. Res. B. 1995. V. 103. P. 389–392.
- [3] Roughton N.A., Fritts M.J., Peterson R.J., Zaidins C.S., Hansen C.J. // Astrophys. J. 1974. V. 188. P. 595–602.
- [4] Лопатин В.С., Ремнев Г.Е., Журавлев М.В. // Изв. вузов. Физика. 2018. Т. 61. № 12. С. 121–125.
- [5] Howerton R.J., Luce J.S. // Lawrence Livermore Laboratory Report. UCID 16857. August 4, 1975.