К теории плазмон-экситонов: оценка константы взаимодействия и оптический спектр

© Н.С. Аверкиев, А.В. Коротченков[¶], В.А. Кособукин

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия [¶] E-mail: KorotchenkovAlex@gmail.com

Поступила в Редакцию 18 марта 2019 г. В окончательной редакции 28 марта 2019 г. Принята к публикации 28 марта 2019 г.

Теоретически изучалась структура оптического спектра, связанная с резонансным взаимодействием квазидвумерных экситонов и локальных плазмонов. Константа плазмон-экситонного взаимодействия оценена в модели близко расположенных квантовой ямы в полупроводнике и слоя металлических наночастиц в соседнем диэлектрике. Численным расчетом для наносистем GaAs/Ag и ZnO/Al показано, что при плазмон-экситонном резонансе спектр имеет двухпиковую структуру, поведение которой при расстройке резонанса соответствует антипересечению спектров плазмонов и экситонов, имеющему признаки расщепления Раби.

Ключевые слова: плазмоны, экситоны, смешанные возбуждения, наноструктуры, антипересечение спектров.

DOI: 10.21883/FTP.2019.08.47996.9107

Ранее было установлено, что смешанные плазмонэкситонные возбуждения образуются при резонансном взаимодействии локальных плазмонов с молекулярными экситонами Френкеля или низкоразмерными экситонами Ванье. В ряде работ (например, [1,2] и ссылки в них) наблюдалось плазмон-экситонное расщепление Раби большой величины в оптических спектрах композитов, образованных молекулярными J-агрегатами и металлическими наноструктурами. Для экситонов большого радиуса аналогичные эффекты исследовались сравнительно мало [3,4]. О наблюдении расщепления Раби сообщалось в работе [4], где исследовались оптические спектры квантовой ямы на основе ZnO, находящейся вблизи слоя нанодисков АІ. Теория плазмон-экситонов развивалась в работах [5,6], посвященных спектроскопии упругого рассеяния света на металлической наночастице, находящейся вблизи квантовой ямы, и отражения света от слоя таких частиц. Развитие этого нового направления спектроскопии делает актуальной систематическую оценку плазмон-экситонного расщепления в оптических спектрах наноструктур металлполупроводник.

Цель данной работы — оценка константы взаимодействия локальных плазмонов с квазидвумерными (квази-2D) экситонами и анализ расщепления оптического спектра при резонансе этих возбуждений.

Рассматривается модель, показанная схематически на рис. 1. В среде с проницаемостью ε_1 на расстоянии h_1 от поверхности z = 0 находится слой металлических наночастиц. Предполагается, что частицы в форме одинаковых эллипсоидов вращения (сфероидов) с длинами полуосей *а* в плоскости *ху* и ηa вдоль оси вращения *z* заполняют решетку с периодом *A* в плоскости $z = -h_1 < 0$. В соседнем полупроводнике с

фоновой диэлектрической проницаемостью $\varepsilon_2 = \varepsilon_b$ на расстоянии h_2 от его поверхности z = 0 расположена квантовая яма с шириной l и средней плоскостью $z = h_2 > 0$. Все геометрические параметры считаются малыми по сравнению с длиной волны света $\sim 1/k_0$, где $k_0 = \omega/c$, ω — частота, c — скорость света. При этом в квазистатическом приближении электродинамики исследуются возбуждения, образованные дипольными плазмонами наночастиц из среды 1 и нерадиационными ("темными") экситонами квантовой ямы из среды 2. Связанные моды плазмон-экситонов образуются вследствие кулоновского взаимодействия возбуждений через границу z = 0.

В отсутствие наночастиц структура с квантовой ямой (рис. 1) изотропна и трансляционно инвариантна по $\rho = (x, y)$ в плоскости xy. Для нее решениями уравнений Максвелла являются волны $\sim \exp(i\boldsymbol{\kappa} \cdot \boldsymbol{\rho})$ с поляризацией p или s, которые в случае $\boldsymbol{\kappa} = \kappa \mathbf{e}_x$ имеют компоненты $\mathbf{E}^p = (E_x, 0, E_z)$ и $\mathbf{E}^s = (0, E_y, 0)$ с проекциями $E_a(z; \kappa) \exp(i\kappa x)$.

Рис. 1. Геометрия задачи: QW — квантовая яма, NP — слой наночастиц.

Применительно к модели рис. 1 рассматриваем *p*-поляризованные волны, которые имеют нормальную к квантовой яме компоненту поля E_z , необходимую для образования при $\kappa \gg k_0$ кулоновских плазмон-экситонных мод. Вкладом *s*-поляризованного поля, который в квазистатическом приближении имеет малость $\sim k_0^2/\kappa^2 \ll 1$ [5,6], далее пренебрегаем, а индекс поляризации *p* в формулах опускаем. Методически мы сначала находим волны с *p*-поляризацией при $\kappa < \sqrt{\varepsilon_n}k_0$, $k_n = \sqrt{\varepsilon_n k_0^2 - \kappa^2}$, n = 1, 2 (рис. 1) при использовании результатов теории квази-2D экситонов [7], а затем переходим к квазистатическому приближению для описания "темных" экситонов с $\kappa \gg k_0, k_n \approx i\kappa$.

Компоненты поля, возбуждаемого в среде 1 (z < 0) без частиц, при $\kappa < \sqrt{\varepsilon_1} k_0$ равны

$$E_x(z;\kappa) = E_x^{\rm inc}(\kappa)(e^{ik_1z} + re^{-ik_1z}) \tag{1}$$

и $E_z = (i\kappa/k_1^2)dE_x/dz$. В формулу (1) входит коэффициент отражения света в среду 1

$$r(\kappa) = \frac{r_{12} + r_{QW} e^{2ik_2h_2}}{1 + r_{12}r_{QW} e^{2ik_2h_2}}.$$
 (2)

Он выражается через коэффициенты отражения света $r_{12} = (\varepsilon_1 k_2 - \varepsilon_2 k_1)/(\varepsilon_1 k_2 + \varepsilon_2 k_1)$ от поверхности z = 0 полупроводника с $\varepsilon_2 = \varepsilon_b$, $k_2 = k_b$ и r_{QW} — от квантовой ямы в однородном полупроводнике. Для модели квантовой ямы с нелокальной поляризацией квази-2D экситонов в приближении эффективной массы, следуя [7], получаем

$$r_{QW} = \frac{i\Gamma_{0,x}}{\omega_x - \omega - i\Gamma - i\Gamma_{0,x}}, \quad \Gamma_{0,x} = \omega_{LT}k_bL. \quad (3)$$

В этом выражении сохранен только резонансный вклад с проекцией х, так как мы рассматриваем экситоны, имеющие изотропную дипольную поляризацию в плоскости квантовой ямы *ху*. В формуле (3) ω_x — частота квази-2D экситона с учетом размерного квантования электрона и дырки, их кулоновского взаимодействия и радиационного сдвига [7]. Далее, Г и Г_{0,x} — параметры нерадиационного и радиационного затухания квази-2D экситона, в последнем ω_{LT} — продольно-поперечное расщепление 3D-экситона с боровским радиусом *а*В в материале квантовой ямы. Длина $L = \pi a_B^3 I_c^2/2 \sim l$ определяется интегралом $I_c = \int dz \cos(k_b z) \Phi(z)$ от огибающей волновой функции $\Phi(z) = \Phi(-z)$ основного состояния квази-2D экситона, взятой при совпадающих координатах электрона и дырки в квантовой яме шириной *l*. Соотношение между и *L* и *l* служит мерой увеличения силы осциллятора квази-2D экситона (параметра радиационного затухания $\Gamma_{0,x}$ при $\kappa = 0)$ при уменьшении *l* [7–9].

Для металлического наносфероида, находящегося в однородной среде с проницаемостью ε_1 (Im $\varepsilon_1 = 0$),

компоненты диагонального тензора поляризуемости дипольного плазмона с поляризацией вдоль *α*-полуоси сфероида, имеют вид [10]

$$\chi^0_{\alpha\alpha}(\omega) = \frac{\eta a^3}{3} \frac{(U^0_{\alpha})^2}{(u^0_{\alpha})^2 - \omega^2 - i\omega\gamma}.$$
 (4)

Формула (4) получена для металла с диэлектрической функцией $\varepsilon(\omega) = \varepsilon_{\infty} - \omega_p^2/(\omega^2 + i\omega\gamma)$ металла, где ω_p — плазменная частота, $1/\gamma$ — время релаксации электронов, ε_{∞} — константа. Частоты $u_{\alpha}^0 = = \omega_p \sqrt{N^{(\alpha)}/\varepsilon_*^{(\alpha)}}$ и $U_{\alpha}^0 = \omega_p \sqrt{\varepsilon_1}/\varepsilon_*^{(\alpha)}$ с $\varepsilon_*^{(\alpha)} = (\varepsilon_{\infty} - \varepsilon_1)N^{(\alpha)} + \varepsilon_1$ зависят от отношения η длин полуосей сфероида (его формы) через коэффициент деполяризации $N^{(\alpha)}$ ($0 < N^{(\alpha)} < 1, 2N^{(x)} + N^{(z)} = 1$). В соответствии с рис. 1 далее рассматривается монослой одинаковых сфероидов с центрами в узлах $\rho_{\mathbf{n}} = A\mathbf{n}$ квадратной решетки с периодом A в плоскости $z = -h_1 < 0$, где $\mathbf{n} = n_x \mathbf{e}_x + n_y \mathbf{e}_y$, n_{α} — целые числа.

Кулоновское взаимодействие дипольных плазмонов слоя наночастиц с квази-2D экситонами квантовой ямы (рис. 1) может приводить к образованию смешанных возбуждений. При их рассмотрении квазистатическое решение задачи (1)-(3) для экситонов является нулевым приближением, а слой точечных диполей с плазмонными поляризуемостями (4) считается возмущением. При учете этого резонансного возмущения в рамках самосогласованной теории [5,6] приходим к представлению о плазмон-экситонных комплексах, связанных с узлами ρ_n решетки. Такой комплекс образован дипольным плазмоном, который индуцируется на наночастице слоя в локальном (действующем) поле, включающем вклады полей других частиц слоя и их "изображений", обусловленных поляризацией поверхности полупроводника и экситонной поляризацией квантовой ямы. При возбуждении р-поляризованным светом когерентная мода плазмон-экситонов в решетке $ho=
ho_{
m n}$ определяет длинноволновый оптический отклик в излучении наноструктур, схематически показанных на рис. 1.

Следуя результатам работ [5,6], в приближении среднего поля [10,11] после преобразования Фурье по κ в координатном представлении получаем квазистатическое уравнение вида $\chi = \chi^0 + \chi^0(\Sigma U)\chi$. Здесь χ обозначает компоненты диагонального тензора дипольной поляризуемости плазмон-экситонного комплекса, а сумма ΣU учитывает вклад индуцированных диполей в локальное (действующее) поле. Для рассматриваемой модели (рис. 1) находим компоненты $\chi_{\alpha\beta} = \delta_{\alpha\beta}\chi_{\alpha\alpha}$ с $\alpha = x$ или у в виде

$$\chi_{\alpha\alpha} = \left\{ \frac{1}{\chi^0_{\alpha\alpha}} - \frac{1}{A^3} \left[S_0(0) + \mu S_1 \left(\frac{2h_1}{A} \right) \right] + \frac{6hL}{A^5} \left(1 - \mu^2 \right) \frac{\omega_{LT}}{\omega_\alpha - \omega - i\Gamma} S_2 \left(\frac{2h}{A} \right) \right\}^{-1}.$$
 (5)

Здесь $\mu = (\varepsilon_1 - \varepsilon_b)/(\varepsilon_1 + \varepsilon_b)$ — коэффициент r_{12} из формулы (2) в квазистатическом приближении ($\kappa \gg k_0$)

Параметры экситонов и плазмонов, использованные при вычислении $\chi_{\alpha\alpha}$ по формуле (8) и $\Delta = W^2/(2\omega_0)$ по формуле (9)

Наноструктура	ħω₀, эВ	ћω _{LT} , мэВ	а _в , нм	ε_b	ћГ, мэВ	a , нм (η)	<i>ћU</i> α, эВ	ћGα, мэВ	ћΔ, мэВ
GaAs/Ag	1.51	0.08	14	12.5	0.3	$10 \ (\eta = 0.148)$	5.92	30	2.7
ZnO/Al	3.4	2	1.8	6.7	3	$10 \ (\eta = 0.158)$	13.6	520	12

и $h = h_1 + h_2$. Суммы

$$S_{0}(\xi) = \sum_{\mathbf{n}(\neq 0)} \frac{3n_{\alpha}^{2} - \mathbf{n}^{2} - \xi^{2}}{(\mathbf{n}^{2} + \xi^{2})^{5/2}}, \quad S_{1}(\xi) = -\frac{1}{\xi^{3}} + S_{0}(\xi),$$
$$S_{2}(\xi) = -\frac{1}{\xi^{5}} + \sum_{\mathbf{n}(\neq 0)} \frac{5n_{\alpha}^{2} - \mathbf{n}^{2} - \xi^{2}}{(\mathbf{n}^{2} + \xi^{2})^{7/2}}$$
(6)

при $\alpha = x, y$ берутся по узлам $\rho_n = An$ решетки с $\mathbf{n}^2 = n_x^2 + n_y^2$. Они выражают вклады в локальное поле, действующее на выделенный α -поляризованный плазмонный диполь, выбранный в точке $\rho_{n=0} = 0, z = -h_1$. Сумма $S_0(0) \approx 4.51$ относится к диполям слоя наночастиц с центрами $\rho = \rho_{n\neq0}$, а суммы $S_1 < 0$ при $\xi = 2h_1/A$ и $S_2 < 0$ при $\xi = 2h/A$ учитывают вклады зарядов "изображения", обусловленных динамической поляризацией границы раздела z = 0 и квантовой ямы соответственно.

Для оценки величины L в формулах (3), (5) для ямы, ширина l которой обеспечивает существование квази-2D экситонов ($l_{\min} < l \leq a_B$), принимаем $\Phi(z) = (\sqrt{2/\pi}/\tilde{a})\psi^2(z)$ [7]. Здесь $\psi(z)$ — нормированная на единицу функция размерного квантования в яме электрона и дырки, $\tilde{a}(l)$ — зависящий от l вариационный радиус квази-2D экситона в интервале $1/2 < \tilde{a}/a_B < 1$. При $l_{\min} < l \leq a_B$ получаем $L = \sqrt{\pi/2}a_B^3/\tilde{a}^2$ в случае основного экситонного состояния, причем $l_{\min} \approx 5$ нм для ям GaAs/AlGaAs [7,12] и $l_{\min} \approx 2$ нм для ям ZnO/ZnMgO [13,14].

Из результатов работы [10] следует соотношение

$$\frac{1}{\chi^0_{\alpha\alpha}} - \frac{1}{A^3} \left[S_0(0) + \mu S_1\left(\frac{2h_1}{A}\right) \right] \approx \frac{3}{\eta a^3} \frac{u_\alpha^2 - \omega^2 - i\omega G_\alpha}{U_\alpha^2}$$
(7)

для дипольных плазмонов, поляризованных по α -оси наносфероида, находящегося в слое частиц вблизи поверхности полупроводника. В выражении (7) $u_{\alpha}^{2} = \omega_{p}^{2} \tilde{N}^{(\alpha)} / \tilde{\varepsilon}_{*}^{(\alpha)}$, $G_{\alpha} = \gamma$, $U_{\alpha}^{2} = \omega_{p}^{2} \varepsilon_{1} / (\tilde{\varepsilon}_{*}^{(\alpha)})^{2}$, где $\tilde{N}^{(\alpha)} = N^{(\alpha)} - (\eta/3)(a/A)^{3} [S_{0}(0) + \mu S_{1}(2h_{1}/A)]$, $\tilde{\varepsilon}_{*}^{(\alpha)} =$ $= (\varepsilon_{\infty} - \varepsilon_{1}) \tilde{N}^{(\alpha)} + \varepsilon_{1}$. Подстановка (7) в (5) дает для эффективной поляризуемости плазмон-экситонного комплекса формулу

$$\chi_{\alpha\alpha}(\omega) = \frac{\eta a^3}{3} \frac{U_{\alpha}^2(\omega_{\alpha}^2 - \omega^2 - 2i\omega\Gamma)}{(\omega_{\alpha}^2 - \omega^2 - 2i\omega\Gamma)(u_{\alpha}^2 - \omega^2 - i\omega G_{\alpha}) - W^4},$$
(8)

где $\alpha = x, y$. В резонансный знаменатель выражения (8) входят комплексные частоты $\omega_{\alpha} - i\Gamma$ "темных" экситонов квантовой ямы в отсутствие наночастиц и $u_{\alpha} - iG_{\alpha}/2$ плазмонов наночастиц в отсутствие квантовой ямы. С учетом соотношения $\omega_{\alpha} \approx \omega_0$, где ω_0 — частота 3D-экситона в материале квантовой ямы, получаем

$$W^{4} = \frac{\eta a^{3}L}{8h^{4}} (1 - \mu^{2}) \omega_{LT} \omega_{0} U_{\alpha}^{2} S_{W} \left(\frac{2h}{A}\right).$$
(9)

Эта константа характеризует кулоновское взаимодействие плазмонных и экситонных возбуждений при $a, L, h, A \ll c/\omega$. В (9) $S_W(\xi) \equiv -\xi^5 S_2(\xi) > 0$ — функция, монотонно убывающая от значения $S_W(0) = 1$, которое при $2h/A \ll 1$ соответствует взаимодействию плазмона частицы только с собственным "изображением" в квантовой яме, до $S_W(\xi) \ll 1$ при $\xi > 2$.

Применим теперь теоретические результаты к квази-2D экситонам $e_1 - hh_1$ квантовых ям GaAs/AlGaAs [7–9], к экситонам А и В ям на основе ZnO/ZnMgO [13,14] и в последнем случае сопоставим результаты теории с экспериментом [4]. Входящие в выражения (7)-(9) величины u_{α}, U_{α} и G_{α} находим, используя параметры функции $\varepsilon(\omega)$ металла, которые получаем при аппроксимации данных спектроскопии вблизи частоты ω_0 экситона соответствующей квантовой ямы. На основе данных работы [15] находим $\hbar \omega_p = 9.3$ эВ, $\hbar \gamma = 0.03$ эВ и $\varepsilon_{\infty} = 4.1$ для серебра вблизи $\hbar\omega_0 = 1.5$ эВ, а на основе данных [16] получаем $\hbar \omega_p = 13.6 \, \text{эB}, \, \hbar \gamma = 0.52 \, \text{эB}$ и $\varepsilon_{\infty} = 1$ для алюминия вблизи $\hbar \omega_0 = 3.4$ эВ. Для экситонов в квантовых ямах GaAs и ZnO используются значения $\varepsilon_b, \omega_{LT}$ и a_B , приведенные в таблице. Параметр нерадиационного затухания экситонов при их рассеянии на акустических и оптических (с частотой ω_{LO}) фононах оцениваем по формуле $\Gamma(T) = AT + B[\exp(\hbar\omega_{LO}/kT) - 1]^{-1}$. При T < 150 К для $e_1 - hh_1$ экситонов в квантовых ямах GaAs со значениями A и B из работы [17] находим $\hbar \Gamma < 0.4$ мэВ, а для экситонов в ямах ZnO с A и B из работы [13] получаем $\hbar \Gamma < 6$ мэВ.

Результаты расчета спектра $Im\chi_{\alpha\alpha}(\hbar\omega)$ поляризуемости (8) плазмон-экситонного комплекса представлены на рис. 2, *а* для наноструктур GaAs/Ag и на рис. 3, *а* — для структур ZnO/Al. Физически величина $Im\chi_{\alpha\alpha}$ выражает спектр поглощения света плазмон-экситонными комплексами в структуре, показанной на рис. 1. При расчете спектра $Im\chi_{\alpha\alpha}$ с параметрами из таблицы фиксируется частота экситона $\omega_{\alpha} = \omega_0$, а частота плазмона u_{α} отстраивается от ω_0 путем изменения параметра η , определяющего форму (сплюснутость) металлических сфероидов. На рис. 2, *a* и 3, *a* показано, что при плазмон-экситонном резонансе $u_{\alpha} = \omega_0$ в наноструктурах GaAs/Ag и ZnO/Al спектры Im $\chi_{\alpha\alpha}$ состоят из двух пиков, разделенных провалом при энергии экситона $\hbar\omega_0$. При отстройке частоты u_{α} от ω_0 пики разделяются на плазмонный и

Рис. 2. a — спектры поляризуемости (8) плазмон-экситонных комплексов в наноструктурах GaAs/Ag при разных энергиях $\hbar u_{\alpha}$ плазмонов в частицах Ag вблизи резонанса $u_{\alpha} = \omega_0$ с экситоном $e_1 - hh_1$ квантовой ямы GaAs/AlGaAs ($\hbar \omega_0 = 1.51$ эВ). Спектры соответствуют следующим значениям η : I — 0.148 ($u_{\alpha} = \omega_0$), 2 — 0.145 ($u_{\alpha} < \omega_0$), 3 — 0.153 ($u_{\alpha} > \omega_0$). b — энергии максимумов спектра Іт $\chi_{\alpha\alpha}$ (точки) и энергии $\hbar \omega_{\pm}$ из (10) (сплошные линии) при отстройке u_{α} от ω_0 . Вычислено с параметрами экситонов и плазмонов из таблицы, $\varepsilon_1 = 2.25$ и следующими геометрическими параметрами, нм: a = 10, A = 40, $h_1 = 5$, h = 10, L = 19. Параметр радиационного затухания $\hbar \Gamma_{0,x} = 40$ мкэВ при $\kappa = 0$ соответствует $l \approx 10$ нм в соответствии с [9].

Рис. 3. a — спектры поляризуемости (8) плазмон-экситонных комплексов в наноструктурах ZnO/Al при разных энергиях $\hbar u_{\alpha}$ плазмонов в частицах Al вблизи резонанса $u_{\alpha} = \omega_0$ с экситоном квантовой ямы ZnO/MgZnO ($\hbar \omega_0 = 3.4$ эВ). Спектры соответствуют следующим значениям η : I — 0.158 ($u_{\alpha} = \omega_0$), 2 — 0.143 ($u_{\alpha} < \omega_0$), 3 — 0.173 ($u_{\alpha} > \omega_0$). b — энергии максимумов спектра Im $\chi_{\alpha\alpha}$ (точки) и энергии $\hbar \omega_{\pm}$ из (10) (сплошные линии) при отстройке u_{α} от ω_0 . Вычислено с параметрами экситонов и плазмонов из таблицы, $\varepsilon_1 = 1$ и следующими геометрическими параметрами, нм: a = 10, A = 40, $h_1 = 5$, h = 10, L = 6.7. При этом $l \approx 2.7$ нм соответствует параметру радиационного затухания $\hbar \Gamma_{0,x} = 0.6$ мэВ при $\kappa = 0$ [14].

экситонный, для которых частоты максимумов при некоторых значениях u_{α} показаны точками на рис. 2, *b* для структур GaAs/Ag и на рис. 3, *b* для ZnO/Al. Видно, что зависимость от u_{α} частот, соответствующих максимумам рассчитанного спектра Im $\chi_{\alpha\alpha}$, обладает признаками антипересечения, характерного для расщепления Раби.

Подчеркнем, что точки на рис. 2, *b* и 3, *b* относятся к случаю, когда расстояние между спектральными пиками при $u_{\alpha} = \omega_0$ существенно меньше ширины одного из резонансов (согласно таблице — плазмонного с $G_{\alpha} = \gamma \gg 2\Delta$, где $\Delta = W^2/(2\omega_0)$). Для плазмон-экситонов эта ситуация довольно общая, так как обычно экситонные резонансы узкие ($\Gamma/\omega_0 \sim 10^{-3}$) и слабые ($\Gamma_{0,x}/(\Gamma + \Gamma_{0,x}) \lesssim 1$), а плазмонные резонансы относительно широкие ($\gamma/2\Gamma \sim 10^2$) и сильные ($U_{\alpha}/\gamma \sim 10-10^2$). Наличие на рис. 2, *а* и 3, *а* двухпиковой структуры спектра при $2\Delta \ll \gamma$ обусловлено узостью второго (экситонного) резонанса ($\Gamma \ll \Delta$), а нарушение этого условия при γ , $2\Gamma \gtrsim 2\Delta$ должно привести к подавлению двухпиковой структуры спектра.

Сравним поведение максимумов в спектрах $Im\chi_{\alpha\alpha}(\omega)$, вычисленных из (8), при расстройке частот u_{α} и ω_0 , с антипересечением спектров, полученным в элементарной модели связанных плазмонного и экситонного осцилляторов без затухания. Для этого из резонансного знаменателя поляризуемости (8) при $\Gamma = \gamma = 0$ получаем частоты

$$\omega_{\pm} = \frac{\omega_0 + u_{\alpha}}{2} \pm \sqrt{\left(\frac{\omega_0 - u_{\alpha}}{2}\right)^2 + \Delta^2}, \qquad (10)$$

определяющие расщепление $\omega_+ - \omega_- = 2\Delta$ при $u_\alpha = \omega_0$. Их зависимость от частоты плазмона u_α при $\omega_\alpha = \omega_0$ показана на рис. 2, *b* и 3, *b* непрерывными линиями, которые выражают расщепление Раби в форме антипересечения спектров. Существенно, что на эти зависимости хорошо ложатся точки, соответствующие положениям пиков в спектрах Im $\chi_{\alpha\alpha}(\omega)$, рассчитанных из (8) при разных u_α с реальными параметрами затухания плазмонов и экситонов. Отметим также, что вычисленное выше расстояние $\hbar(\omega_+ - \omega_-) = 24$ мэВ между пиками при плазмон-экситонном резонансе близко к величине расщепления Раби 15 мэВ, измеренной в работе [4] для наноструктур ZnO/Al. Этот факт позволяет констатировать, что представленная выше теория находится в соответствии с данными эксперимента.

Итак, в статье представлены результаты электродинамической теории плазмон-экситонов. Для модели близко расположенных квантовой ямы и металлических наночастиц рассчитаны спектры поляризуемости плазмонэкситонных комплексов, которые определяют наблюдаемые оптические спектры. Показано, что положения пиков в спектре вблизи плазмон-экситонного резонанса имеют признаки расщепления Раби с найденной в данной работе константой взаимодействия возбуждений.

Финансирование работы

Работа выполнена при финансовой поддержке РФФИ (проект № 18-02-00668) и правительства РФ (договор 14.W03.31.0011, лаборатория Оптики кристаллов и гетероструктур с экстремальной двумерностью, рук. Б. Жиль — В. Gil).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- Y. Sugawara, T.A. Kelf, J.J. Baumberg, M.E. Abdelsalam, P.N. Bartlett. Phys. Rev. Lett., 97, 266808 (2006).
- [2] S. Balci. Optics Lett., 38, 4498 (2013).
- [3] P. Vasa, R. Pomraenke, S. Schwieger, Yu.I. Mazur, Vas. Kunets, P. Srinivasan, E. Johnson, J.E. Kihm, D.S. Kim, E. Runge, G. Salamo, C. Lienau. Phys. Rev. Lett., **101**, 116801 (2008).
- [4] B.J. Lawrie, K.-W. Kim, D.P. Norton, R.F. Haglund, jr. Nano Lett., 12, 6152 (2012).
- [5] В.А. Кособукин. ФТТ, 57, 1413 (2015).
- [6] V.A. Kosobukin. Solid State Commun., 228, 43 (2016).
- [7] E.L. Ivchenko. *Optical spectroscopy of semiconductor nanostructures* (Alpha Science Internat., Ltd, 2005).
- [8] E.L. Ivchenko, V.P. Kochereshko, P.S. Kop'ev, V.A. Kosobukin, I.N. Uraltsev, D.R. Yakovlev. Solid State Commun., 70, 529 (1989).
- [9] E.S. Khramtsov, P.A. Belov, P.S. Grigoryev, I.V. Ignatiev, S.Yu. Verbin, Yu.P. Efimov, S.A. Eliseev, V.A. Lovtcius, V.V. Petrov, S.L. Yakovlev. J. Appl. Phys., **119**, 184301 (2016).
- [10] В.А. Кособукин, А.В. Коротченков. ФТТ, 58, 2446 (2016).
- [11] V.L. Berkovits, V.A. Kosobukin, A.B. Gordeeva. J. Appl. Phys., 118, 245305 (2015).
- [12] R.L. Greene, K.K. Bajaj, D.E. Phelps. Phys. Rev. B, 29, 1807 (1984).
- [13] T. Makino, Y. Segawa, M. Kawasaki, H. Koinuma. Semicond. Sci. Technol., 20, S78 (2005).
- [14] М.Н. Батаев, Н.Г. Философов, А.Ю. Серов, В.Ф. Агекян, С. Mohrain, В.П. Кочерешко. ФТТ, 60, 2450 (2018).
- [15] P.B. Johnson, R.W. Christy. Phys. Rev. B, 6, 4370 (1972).
- [16] K.M. McPeak, S.V. Jayanti, S.J.P. Kress, S. Meyer S. Iotti, A. Rossinelli, D.J. Norris. ACS Photonics, 2, 326 (2015).
- [17] J. Lee, E.S. Koteles, M.O. Vassell. Phys. Rev. B, 33, 5512 (1986).

Редактор А.Н. Смирнов

On the theory of plasmon-excitons: estimation of coupling constant and optical spectra

N.S. Averkiev, A.V. Korotchenkov, V.A. Kosobukin

loffe Institute, 194021 St. Petersburg, Russia

Abstract The structure of optical spectrum due to resonant coupling of quasi-two-dimensional excitons and local plasmons is studied theoretically. The constant of plasmon-exciton coupling is estimated in a model of closely located a quantum well in semiconductor and a layer of metal nanoparticles in adjacent dielectric. From numerical calculations for the nanostructures GaAs/Ag and ZnO/Al it is concluded that the polarizability spectrum of plasmon-exciton complexes has two-peak structure at the resonance between excitations of the two types. Behavior of the spectral structure in detuning the resonance demonstrates the anticrossing of plasmon and exciton spectra which is a sign of the plasmon-excitonic Rabi splitting.