Влияние рентгеновского излучения на оптические свойства фоторефрактивных кристаллов силиката висмута

© В.Т. Аванесян, И.В. Писковатскова, В.М. Стожаров

Российский государственный педагогический университет им. А.И. Герцена, 191186 Санкт-Петербург, Россия

E-mail: avanesyan@mail.ru

Поступила в Редакцию 26 марта 2019 г. В окончательной редакции 5 апреля 2019 г. Принята к публикации 8 апреля 2019 г.

Представлены результаты исследования спектров оптического поглощения в монокристаллах силиката висмута Bi₁₂SiO₂₀. Определены ширина запрещенной зоны и характеристическая энергия Урбаха. Установлено влияние предварительного рентгеновского облучения на поведение экспериментальных спектральных зависимостей и значения характеристических параметров, обусловленное дефектной структурой силиката висмута.

Ключевые слова: силикат висмута, силленит, спектральная зависимость, оптическое поглощение, рентгеновское излучение.

DOI: 10.21883/FTP.2019.08.47992.9115

1. Введение

Интерес к нецентросимметричным кубическим кристаллам силиката висмута Bi₁₂SiO₂₀ (BSO) связан с их высокой чувствительностью к оптическому излучению, которая проявляется в фотопроводимости, фоторефрактивном и фотохромном эффектах [1]. Благодаря уникальному сочетанию величины и скорости фотоотклика, а также возможности изготовления кристаллических образцов различной ориентации с необходимыми размерами указанные материалы силленитной группы типа Ві₁₂МО₂₀ (М — Si, Ge, Ti) широко используются в динамической голографии [2,3]. На процесс поглощения электромагнитного излучения кристаллом значительное влияние оказывает существование структурных дефектных центров, приводящее к формированию локальных энергетических уровней в запрещенной зоне и обусловливающее особенности оптических, электрических и других свойств нелегированных кристаллов силленитов. Присутствием локальных состояний, в частности, объясняется наличие у указанных материалов фоторефрактивных и фотохромных свойств.

Одним из методов повышения фоторефрактивной чувствительности кристаллов силленитной группы является рентгеновское облучение исследуемых образцов [4]. Воздействие рентгеновского излучения может приводить к нарушению стехиометрии, к изменениям в распределении и структуре дефектов в кристаллах, что в свою очередь оказывает существенное влияние на характер оптического поглощения материала. К настоящему времени проблемы, связанные с природой и энергетическими параметрами центров в кристаллах силленитной структуры, ответственных за оптические свойства в области края фундаментального поглощения, не получили решения. В настоящей работе исследовалось влияние предварительного рентгеновского облучения на оптические характеристики образцов фоторефрактивных кристаллов BSO при различном времени облучения.

2. Эксперимент

Образцами для исследования являлись кристаллы, выращенные методом Чохральского, которые представляли собой оптически полированные пластины желтого цвета толщиной d = 0.75-1 мм. При использовании однолучевого спектрофотометра СФ-56 регистрировались спектры оптической плотности монокристаллов с шагом 1 нм в диапазоне длин волн $\lambda = 200-1000$ нм. С применением рентгеновского дифрактометра ДРОН-7 проводилось предварительное облучение образцов кристаллов жестким излучением на линии Си K_{a1} при значении энергии рентгеновского кванта, равном 8.047 эВ. Все измерения проводились при температуре T = 293 К.

3. Результаты и обсуждение

На рис. 1 приведены спектральные зависимости оптической плотности $D(\lambda)$ исследуемых кристаллов BSO, полученные до и после процесса рентгеновского облучения в течение 30 и 90 мин соответственно. В спектрах $D(\lambda)$ можно выделить два участка: фундаментального и слабого поглощения, на котором функция имеет экспоненциальный характер. Зависимость, полученная без предварительного рентгеновского облучения, характеризуется резким уменьшением значения оптической плотности *D* в области длин волн 400 < λ < 500 нм. Как следует из полученных данных, максимальная оптическая плотность в исследуемых кристаллах наблюдается в ультрафиолетовой области спектра.

Рис. 1. Спектральная зависимость оптической плотности $D(\lambda)$ кристаллов BSO: I — в отсутствие рентгеновского облучения; 2, 3 — при облучении в течение 30 и 90 мин соответственно.

При воздействии рентгеновского излучения на исследуемый кристалл имеет место уменьшение параметра *D* в области, предшествующей краю фундаментального поглощения. Увеличение времени воздействия рентгеновского излучения приводит к снижению оптической плотности.

С учетом известных соотношений связь между коэффициентом поглощения α и оптической плотностью Dопределяется выражением

$$\alpha = 2.3D/d,\tag{1}$$

где *d* — толщина образца кристалла.

Для определения ширины запрещенной зоны обычно используется область фундаментального поглощения, соответствующая электронным переходам зона-зона, в которой спектральная зависимость коэффициента поглощения определяется формулой Тауца [5]

$$(\alpha h\nu)^{1/m} = A(h\nu - E_g), \qquad (2)$$

 α — коэффициент поглощения, h — энергия падающих фотонов (ν — частота оптического излучения), A постоянная, зависящая от природы оптических переходов, E_g — оптическая ширина запрещенной зоны, mопределяется типом перехода, зависящим от структуры материала. Для прямозонной структуры исследуемого полупроводника доминирующими должны быть переходы, соответствующие m = 1/2.

Таким образом, спектральная зависимость коэффициента поглощения для прямых разрешенных переходов описывается формулой

$$\alpha = [A(h\nu - E_g)]^{1/2}/h\nu.$$
 (3)

Экстраполяция линейного участка спектра края поглощения в виде функции $\alpha^2(hv)$ к оси hv (рис. 2) позволяет найти значение оптической ширины запрещенной зоны полупроводника как длину отрезка, отсекаемого на оси энергий. Предварительное воздействие рентгеновского излучения в течение 30 мин приводит к уменьшению оптической ширины запрещенной зоны с 3.05 до 2.95 эВ. При времени облучения 90 мин значение E_g уменьшилось до 2.85 эВ.

Область энергий E_g , в которой возможно поглощение оптического излучения, получила название "хвоста" Урбаха (Urbach tail). На этом участке зависимость $\alpha(h\nu)$ отвечает экспоненциальному характеру изменения и подчиняется правилу [6]

$$\alpha(\nu) = \alpha_0 \exp[(h\nu - E_g)/E_U], \qquad (5)$$

где α_0 — константа, E_U — так называемая характеристическая энергия Урбаха, которая определяется как отсечка при экстраполяции линейной части зависимости $\ln(\alpha) = f(hv)$ (рис. 3) на ось энергий. Формирование "урбаховского хвоста", в частности в кристаллических материалах, может быть обусловлено наличием разупорядочения в ближнем порядке при флуктуации значений постоянной решетки и углов между связями [7,8].

Найденное значение параметра E_U после предварительного рентгеновского облучения в течение 30 мин уменьшилось с 2.25 до 2.15 эВ и осталось неизменным при увеличении времени облучения до 90 мин.

Изучение спектральных зависимостей оптического поглощения полупроводника, кристаллическая решетка

Рис. 2. Зависимость $\alpha^2(hv)$ кристаллов BSO: 1 — в отсутствие рентгеновского облучения; 2, 3 — при облучении в течение 30 и 90 мин соответственно.

Рис. 3. Зависимость $\ln \alpha(h\nu)$ кристаллов BSO: 1 — в отсутствие рентгеновского облучения; 2, 3 — при облучении в течение 30 и 90 мин соответственно.

Физика и техника полупроводников, 2019, том 53, вып. 8

Рис. 4. Образование полости в структуре BSO с локализованными неподеленными электронными парами при объединении октаэдра BiO₅ и тетраэдра SiO₄ [11].

которого включает структурные дефекты, является одним из эффективных методов, позволяющих установить корреляцию между особенностями строения и оптическими свойствами кристалла. Энергию E_U , как известно, определяет поглощение электронами на ловушках в запрещенной зоне, появление которых вызвано присутствием структурных дефектов, формирующих "хвосты" валентной зоны и зоны проводимости и оказывающих влияние на распределение потенциала кристаллической решетки.

Формирование собственных дефектных центров, преобладающих в кристаллической решетке BSO, связано с изоморфизмом ионов Bi^{3+} и Si^{4+} в тетраэдрах SiO_4 [9] (рис. 4), в котором принимает участие стереохимически активная электронная одиночная пара $6s^2$ иона Bi^{3+} [10]. Эти пары принадлежат комплексам BiO_7 и расположены в полостях, образованных четырьмя пирамидами BiO_5 неправильной формы и двумя правильными тетраэдрами SiO_4 . Антиструктурные ионы (Bi_{Si}^{3+}) и (Bi_{Si}^{5+}) замещают ионы Si^{4+} в кислородных тетраэдрах, образуя дефекты $BiSiO_4$ и $BiSiO_3$ соответственно. Указанные группы дефектов обусловливают наличие в кристаллах силленитов спектра локальных состояний вблизи уровня Ферми, по которым осуществляется перенос (перезарядка) носителей заряда в процессе оптического возбуждения.

В процессе рентгеновского облучения исследуемых кристаллов вероятным является искажение октаэдров BiO₅, полиэдров BiO₇ и тетраэдров SiO₄, что приводит к формированию дополнительного числа глубоких и мелких локальных состояний в запрещенной зоне. Возникновение метастабильных радиационных локальных центров в процессе рентгеновского облучения и последующая их оптическая перезарядка под действием вторичных электронов вызывают локальные изменения

краев энергетических зон полупроводника и соответственно флуктуации ширины запрещенной зоны [11].

В процессе расшифровки данных, полученных с помощью дифрактометра ДРОН-7, было установлено блочное строение, полиморфизм кубической структуры исследуемого силленита и некоторое изменение постоянной решетки после предварительной рентгеновской обработки образцов. Средний размер блоков рассчитывался с применением формулы Селякова–Шеррера [12]:

$$d = K\lambda/(\beta\cos\theta),\tag{6}$$

где K — безразмерный коэффициент формы частиц (постоянная Шеррера), λ — длина волны рентгеновского излучения, β — ширина рефлекса на полувысоте пика и θ — угол дифракции рентгеновских лучей. Зависимость размера блоков d от длительности облучения образцов представлена на рис. 5 (кривая I).

Наличие структурных элементов (блоков) предполагает вероятность существования краевых дислокаций различного типа за счет возникновения значительных механических напряжений и, таким образом, представляет собой дополнительный источник дефектообразования в кристалле BSO. Плотность дислокаций, т. е. число линий дислокаций, пересекающих единичную площадку в кристалле, расположенную под определенным углом, является тензором второго ранга и для кубической решетки может быть рассчитана по формуле [13]

$$\rho = [3\eta g \varepsilon^2 / (d^2 b^2 F)]^{1/2}, \tag{7}$$

где η — фактор формы, составляющий для дифрактометра ДРОН-7 значение $\eta = 0.6$, ε — относительная деформация, $b = a/\sqrt{2}$ — вектор Бюргерса (a — постоянная решетки), g — коэффициент, зависящий от формы распределения, описывающего профиль пика и рассчитываемый с применением программного обеспечения установки ДРОН-7, F — параметр взаимодействия между дислокациями, n — число дислокаций в блоке (при отсутствии полигонизации F = n).

Длительность рентгеновского облучения может оказывать существенное влияние также на плотность дислокаций (рис. 5, кривая 2). При этом перестройка блоков,

Рис. 5. Зависимость размера блоков (1) и плотности дислокаций (2) от времени рентгеновского облучения кристаллов BSO.

которые отличаются в выбранном направлении своим значением межплоскостного расстояния, в процессе облучения может приводить как к их слиянию для малых времен облучения, так и к дроблению при повышенной плотности дислокаций с увеличением значения указанного времени.

4. Заключение

На основе экспериментальных данных получены спектральные зависимости оптического поглощения кристаллов силиката висмута. Анализ экспериментальных результатов позволил определить ширину запрещенной зоны и характеристическую энергию Урбаха. Установлено влияние длительности процесса предварительного рентгеновского облучения исследуемых образцов кристаллов BSO на характер поведения спектральных кривых и значения энергетических параметров. Комплексные ионы висмута ВіО7, связанные с вакансиями кремния, являются одним из основных структурных образований силиката висмута, обусловливающих оптическое поглощение вблизи края фундаментального поглощения в видимой области спектра. В процессе рентгеноструктурного анализа установлен дополнительный источник дефектообразования, а именно изменение геометрии блочной структуры образца Bi12SiO20 и плотности дислокаций в процессе рентгеновского облучения, что в свою очередь может приводить к варьированию значения характеристической энергии Урбаха.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- В.К. Малиновский, О.А. Гудаев, В.А. Гусев, С.И. Деменко. *Фотоиндуцированные явления в силленитах* (Новоси-бирск, Наука, 1990).
- [2] М.П. Петров, С.И. Степанов, А.В. Хоменко. Фоторефрактивные кристаллы в когерентной оптике (СПб., Наука, 1992).
- [3] M.G. Kisteneva, A.S. Akrestina, S.M. Shandarov, S.V. Smirnov. J. Holography Speckle, 5, 280 (2009).
- [4] Ig. Dementiev, E. Maximov, E. Pocotilov, L. Tarakanova. J. Moldavian J. Phys. Sci., 4 (1), 54 (2005).
- [5] J. Tauc, R. Grigorovici, A. Vancu. Phys. Status Solidi, 15, 627 (1966).
- [6] F. Urbach. Phys. Rev., 92, 1324 (1953).
- [7] Г.Я. Клява. ФТТ, **27** (5), 1350 (1985).
- [8] П.Г. Петросян, Л.Н. Григорян. ЖТФ, 87 (3), 443 (2017).
- [9] В.Т. Аванесян, К.И. Пайма, В.М. Стожаров. ФТТ, **59** (6), 1056 (2017).
- [10] В.Т. Аванесян, Н.М. Абрамова. ФТТ, 57 (6), 1084 (2015).
- [11] L. Wiehl, A. Friedrich, E. Haussühl, W. Morgenroth, A. Grzechnik, K. Friese, B. Winkler, K. Refson, V. Milman. J. Phys.: Condens. Matter, 22, 505401 (2010).

- [12] В.Б. Вайнштейн, Л.М. Инденбом, В.М. Фридкин. Современная кристаллография (М., Наука, 1979).
- [13] C.K. De, N.K. Mishra. Indian J. Phys., 71, 530 (1997).

Редактор Л.В. Шаронова

Effect of *X*-ray radiation on optical properties of bismuth silicate photorefractive crystals

V.T. Avanesyan, I.V. Piskovatskova, V.M. Stozharov

Herzen State Pedagogical University of Russia, 191186 St. Petersburg, Russia

Abstract The results of the study of optical absorption spectra bismuth silicate $(Bi_{12}SiO_{20})$ in single crystals are presented. The energy gap width and the characteristic Urbach energy are determined. The effect of preliminary *x*-ray on the behavior of the experimental spectral dependences and the characteristic parameters values due to the bismuth silicate defect structure is established.