^{19,06} Эффект Шоттки в Bi_{0.95}Sm_{0.05}FeO₃

© Р.Г. Митаров², С.Н. Каллаев^{1,¶}, З.М. Омаров¹, Л.А. Резниченко³

¹ Институт физики им. Х.И. Амирханова ДагНЦ РАН,

Махачкала, Россия ² Дагестанский государственный технический университет,

Махачкала, Россия

³ Научно-исследовательский институт физики Южного федерального университета,

Ростов на Дону, Россия

[¶] E-mail:kallaev-s@mail.ru

Поступила в Редакцию 15 апреля 2019 г. В окончательной редакции 15 апреля 2019 г. Принята к публикации 17 апреля 2019 г.

Исследована температурная зависимость теплоемкости мультиферроика Bi_{0.95}Sm_{0.05}FeO₃ в интервале температур 130–780 К. Обнаружено, что замещение ионов висмута ионами самария в феррите висмута приводит к появлению дополнительной компоненты теплоемкости, которая обусловлена проявлением эффекта Шоттки для трехуровневых состояний и мультиплетной структурой 4*f*-электронов ионов самария.

Ключевые слова: эффект Шоттки, теплоемкость, мультиферроики.

DOI: 10.21883/FTT.2019.08.47988.456

1. Введение

Важнейшей особенностью мультиферроиков является совместное существование в них магнитного и электрического упорядочения, возможность изменения электрической поляризации и магнитного упорядочения при помощи внешних полей (электрического и магнитного). Повышенный интерес к мультиферроикам связан с тем, что они относятся к перспективным материалам микроэлектроники, спинтроники и сенсорной техники. Феррит висмута BiFeO₃ и твердые растворы на его основе относятся к модельным объектам в области магнитоэлектричества благодаря высоким температурам сегнетоэлектрического ($T_C = 1080 \,\mathrm{K}$) и магнитного (*T_N* = 643 K) упорядочений и простой кубической структуре [1]. При температуре ниже температуры антиферромагнитного перехода Т_N феррит висмута обладает сложной пространственно модулированной антиферромагнитной структурой и в нем не обнаружены свойства антиферромагнетика [2]. Для появления магнитоэлектрического эффекта необходимо разрушить эту структуру и один из способов достижения этой цели — это легирование BiFeO₃ редкоземельными элементами (РЗЭ). Замещение ионов висмута ионами РЗЭ в феррите висмута приводит к изменению его физических параметров (смещение температуры фазового перехода, параметров кристаллической решетки, фазового состава, теплоемкости и т.д.) [3,4]. Анализ результатов проведенных исследований по этой проблеме показывает, что не всегда удается однозначно интерпретировать полученные результаты, не выявлены закономерности структурных фазовых переходов, а также температурные интервалы, в которых возникают различные фазы и их зависимость от концентрации легированных РЗЭ. Остается открытым

вопрос влияния 4f-электронов РЗЭ на физические свойства мультиферроиков на основе BiFeO₃. Кроме того, несмотря на большой объем накопленного материала по физическим свойствам мультиферроиков, еще не создана теория, которая объяснила бы их свойства. Поэтому необходимо продолжить экспериментальное исследование этих материалов и определение тех параметров, которые необходимы для создания теории частично упорядоченных систем к которым относятся и мультиферроики.

В работе [3] нами приведены экспериментальные данные теплоемкости системы $Bi_{1-x}Sm_xFeO_3$ в области высоких температур 300-800 К. Было установлено, что замещение висмута самарием приводит к заметному смещению температуры Нееля T_N и увеличению общей теплоемкости. В данной работе проведено детальное исследование теплоемкости мультиферроика состава $Bi_{0.95}Sm_{0.05}FeO_3$ в широком температурном интервале 130-800 К, а также проведен сравнительный анализ температурной зависимости аномальной составляющей теплоемкости $Bi_{0.95}Sm_{0.05}FeO_3$, $Bi_{0.95}La_{0.05}FeO_3$, $Bi_{0.95}Eu_{0.05}FeO_3$ для выяснения влияния 4f-электронов РЗЭ на теплоемкость.

2. Образцы и эксперимент

Керамика Bi_{0.95}Sm_{0.05}FeO₃ была получена по обычной керамической технологии, путем твердофазного синтеза с последующим спеканием без приложения давления в воздушной атмосфере [3]. Синтез осуществлялся методом твердофазных реакций оксидов высокой чистоты в две стадии с промежуточным помолом и гранулированием порошков. Режимы синтеза: температура первого обжига $T_1 = 800^{\circ}$ С, второго — $T_2 = 800 - 850^{\circ}$ С. Придание порошкам нужных для прессования свойств достигали введением в них пластификатора и последующим гранулированием. Подбор оптимальной температуры спекания произведен путем выбора из различных температур спекания, лежащих в интервале 900-950°С. Рентгенографические исследования при комнатной температуре проводили методом порошковой дифракции с использованием дифрактометра ДРОН-3 на FeK_aи Си K_{α} -излучении. Для состава x = 0.05 обнаружена ромбоэдрическая фаза, свойственная BiFeO₃ [5]. Определялся фазовый состав, параметры ячейки, степень совершенства кристаллической структуры при различных температурах. Полученные твердые растворы обладали достаточно высокими значениями экспериментальной и относительной (89-94)% плотностей и соответствовали предельно достижимым по обычной керамической технологии (90-95)%, что свидетельствует о достаточно хорошем качестве керамик.

Измерение теплоемкости проводилось на дифференциальном сканирующем калориметре DSC 204 F1 Phoenix[®] фирмы NETZSCH. Образец для измерения теплоемкости — эта пластина диаметром четыре и толщиной один mm соответственно. Скорость изменения температуры составляла 5 К/min. Погрешность измерения теплоемкости меньше трех процентов.

3. Результаты и обсуждения

Экспериментальные данные теплоемкост C_p мультиферроика Bi_{0.95}Sm_{0.05}FeO₃ в интервале температур 140–780 К представлены на рис. 1. На кривой температурной зависимости теплоемкости от температуры в области антиферромагнитного фазового перехода наблюдается λ аномалия, характерная для фазовых переходов. Кроме того, легирование феррита висмута BiFeO₃ самарием приводит к увеличению общей теплоемкости в широкой области температур, и это свидетельствует о наличии дополнительной компоненты теплоемкости.

Для расчета теплоемкости кристаллической решетки нами применена модель Дебая, а для выделения ангармонической компоненты теплоемкости использованы литературные данные коэффициента теплового расширения Bi_{1-x}La_xFeO₃ [6] и модуля объемной сжимаемости керамики Pb(TiZr)O₃, близкого по структуре BiFeO₃ [7]. Расчеты показывают, что ангармоническая компонента теплоемкости составляет менее двух процентов от общей теплоемкости Bi0.95Sm0.05FeO3, и поэтому можно допустить что $C_p \approx C_v$. Фононная теплоемкость Bi_{0.95}Sm_{0.05}FeO₃ рассчитанная по модели Дебая на рис. 1 изображена сплошной линией. Теплоемкость феррита висмута, модифицированного самарием, превышает фононную теплоемкость и это свидетельствует о наличии избыточной теплоемкости. Избыточная компонента теплоемкости определялась как разность между измеренной и рассчитанной по модели Дебая фо-

Рис. 1. Температурная зависимость теплоемкости Ві0.95 Sm0.05 FeO₃ (*1*), ВіFeO₃ (*2*). Сплошная линия — результат аппроксимация фононной теплоемкости функцией Дебая.

Рис. 2. Температурная зависимость аномальной составляющей теплоемкости $Bi_{0.95}La_{0.05}FeO_3$ (*I*), $Bi_{0.95}Sm_{0.05}FeO_3$ (*2*), $Bi_{0.95}Eu_{0.05}FeO_3$ (*3*), сплошные линии — результат аппроксимации выражением (1).

нонной теплоемкостью $Bi_{0.95}Sm_{0.05}FeO_3$: $\Delta C = C_p - C_p^0$. Температурная зависимость аномальной теплоемкости $\Delta C(T)$ приведена на рис. 2. (На этом же рисунке для сравнения приведены зависимости $\Delta C(T)$ и для составов Ві0.95 La0.05 FeO3, Ві0.95 Eu0.05 FeO3 [10]). Температурная зависимость выделенной таким образом теплоемкости позволяет интерпретировать ее как аномалию Шоттки для трехуровневых состояний, возникающих при легировании BiFeO3 самарием. Такие энергетические состояния связаны с атомами, которые могут занимать три структурно-эквивалентные позиции разделенные барьерами ΔE_1 , ΔE_2 . Появление таких состояний, разделенных энергетическими барьерами ΔE_1 и ΔE_2 от основного состояния авторы [8] связывают с изменением параметров кристаллической решетки при легировании вследствие полярных смещений ионов железа и висмута,

Параметры	Bi _{0.95} La _{0.05} FeO ₃ [9]	Bi _{0.9} Sm _{0.05} FeO ₃	Bi _{0.95} Eu _{0.05} FeO ₃ [9]
D_1	13.694	27.567	60.742
ΔE_1 , eV	0.195	0.254	0.284
D_2	0.744	1.56	2.691
ΔE_2 eV	0.014	0.047	0.081

Модельные параметры мультиферроиков Bi0.95 La0.05 FeO3, Bi0.9 Sm0.05 FeO3 и Bi0.95 Eu0.05 FeO3

а также с изменением угла связи между кислородными октаэдрами FeO₆.

В общем случае выражение для теплоемкости Шоттки можно получить, дифференцируя среднюю энергию частиц на энергетических уровнях:

$$\Delta C_p = (kT^2)^{-1} (\langle \Delta E_i^2 \rangle - \langle \Delta E_i \rangle^2) \ [9]. \tag{1}$$

Для трехуровневой системы эта формула принимает вид [10]:

$$\Delta C_p = \frac{\nu R [D_1 (\Delta E_1 / kT)^2 \exp(-\Delta E_1 / kT) + D_2 (\Delta E_2 / kT)^2 \exp(-\Delta E_2 / kT)]}{[1 + D_1 \exp(-\Delta E_1 / kT) + D_2 \exp(-\Delta E_2 / kT)]^2},$$
(2)

где D_1 и D_2 — отношение кратностей вырождения уровней.

Путем сравнения теплоемкости, рассчитанной по формуле (2) и экспериментально выделенной избыточной теплоемкости ΔC , получены модельные параметры $\text{Bi}_{0.95}\text{Sm}_{0.05}\text{FeO}_3$: $D_1 = 26.567$, $D_2 = 1.560$, $\Delta E_1 = 0.254 \text{ eV}$ и $\Delta E_2 = 0.047 \text{ eV}$. Согласие экспериментально выделенной аномальной теплоемкости $\Delta C(T)$ с вычисленной по формулу (2) достаточно хорошее (рис. 2). В области антиферромагнитного фазового перехода T_N наблюдается характерная для магнитного упорядочения λ -аномалия теплоемкости (рис. 1 и 2). В таблице приведены модельные параметры мультиферроиков $\text{Bi}_{0.95}\text{La}_{0.05}\text{FeO}_3$, $\text{Bi}_{0.95}\text{Sm}_{0.05}\text{FeO}_3$ и $\text{Bi}_{0.95}\text{Eu}_{0.05}\text{FeO}_3$.

В феррите висмута легированном парамагнитными РЗЭ дополнительная компонента теплоемкости ΔC больше чем в составе, легированном РЗ-элементом не содержащем 4f-электроны (рис. 2). Это обусловлено наличием шоттковской компоненты теплоемкости C_f , возникающей при термическом возбуждении 4f-электронов РЗЭ и их переходе на более высокие энергетические уровни. Лантан не имеет 4f-электронов и в Bi_{0.95}La_{0.05}FeO₃ отсутствует компонента C_f . Так как фононная теплоемкость у этих составов близки между собой, то наблюдаемое различие обусловлено, по всей вероятности, наличием шоттковской компоненты C_f . Теплоемкость C_f можно представить в виде суммы [10]:

$$C_f = C_{f \mathrm{III}} + C_{f \mathrm{M}},\tag{3}$$

где $C_{f \text{III}}$ и $C_{f \text{III}}$ — теплоемкость, обусловленная штарковской структурой основного состояния и мультиплетной структурой термов РЗ-ионов соответственно.

Компоненту С fm можно наблюдать при низких температурах, а компоненту С_{fм} при средних и высоких температурах [11]. Поэтому наблюдаемое увеличение теплоемкости феррита висмута, при легировании парамагнитными РЗ-элементами (Sm, Eu) можно связать с переходами 4f-электронов РЗ-ионов на более высокие уровни мультиплета. Расстояние между мультиплетными уровнями ионов самария $\rm Sm^{3+}$ ($^{6}\rm H_{5/2},\,^{6}\rm H_{7/2},\,^{6}\rm H_{9/2},\,^{6}\rm H_{11/2}$ — 0, 1100, 2300, 3600 см $^{-1}$) и европия Eu $^{3+}$ ($^{7}\rm F_{0},\,^{7}\rm F_{1},\,^{7}\rm F_{2},\,^{7}\rm F_{3},\,^{7}\rm F_{4},\,^{7}\rm F_{5}$ — 0, 400, 1000, 1900, 2900, 3900 см⁻¹) [12,13] сравнимо с энергией фононов уже при средних температурах и переходы между этими уровнями ионов самария и европия приводит к увеличению общей теплоемкости Bi_{0.95}Sm_{0.1}FeO₃ и Ві0.95 Eu0.05 FeO3 по сравнению с Ві0.95 La0.05 FeO3. Кроме того, избыточная теплоемкость ΔC Bi_{0.95}Eu_{0.05}FeO₃ больше $\Delta C \operatorname{Bi}_{0.95}\operatorname{Sm}_{0.05}\operatorname{FeO}_3$ (рис. 2) и это связано с тем, что мультиплетные уровни ионов европия Eu³⁺ расположены близко от основного, чем у ионов самария Sm³⁺.

4. Заключение

Таким образом, легирование феррита висмута РЗ-элементом самарием приводит к появлению дополнительной компоненты теплоемкости ΔC в широком интервале температур (170–700 К), которую можно интерпретировать как аномалия Шоттки в теплоемкости для трехуровневых состояний, возникающих при изменении параметров кристаллической решетки при замещении ионов висмута ионами самария из-за смещения ионов висмута и железа в BiFeO₃. Легирование феррита висмута парамагнитными РЗ-элементами (Sm, Eu) приводит к увеличению аномальной компоненты теплоемкости ΔC за счет термического возбуждения 4f-электронов РЗ-ионов.

Финансирование работы

Работа выполнена, в том числе, в рамках государственного задания Минобрнауки России проект № 3.6371.2017/8.9 с использованием оборудования Центра коллективного пользования Института физики ДНЦ РАН.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] А.П. Пятаков, А.К. Звездин. Магнитоэлектрические материалы и мультиферроики. УФН Е **182**, *6*, 593 (2012).
- [2] G. Catalan, F. Scott. Adv. Mater. 21, 2463 (2009).
- [3] С.Н. Каллаев, С.А. Садыков, З.М. Омаров, А.Я. Курбайтаев, Л.А. Резниченко, С.В. Хасбулатов. ФТТ 58, 664 (2016).
- [4] S.N. Kallaev, A.G. Bakmaev, S.M. Omarov, R.G. Mitarov, A.R. Bilalov, L.A. Reznichenko. J. Allous Comp. 695, 2, 3044 (2017)
- [5] С.В. Хасбулатов, А.А. Павелко, Л.А. Шилкина, В.А. Алешин, Л.А. Резниченко. Инженерн. вестн. Дона 6 (2015).
- [6] А.А. Амиров, А.Б. Батдалов, С.Н. Каллаев, З.М. Омаров, И.А. Вербинко. ФТТ 51, 1123 (2009).
- [7] J. Ronguette, J. Haines, V. Bornand, V. Bornand, M. Pintard. Phys. Rev. B 65, 214102 (2002).
- [8] D.C. Arnold, K.S. Knight, F.D. Morrison, Ph. Lightfoot. Phys. Rev. Lett. 102, 027602 (2009).
- [9] R.G. Mitarov, V.V. Tikhonov, L.V. Vasilev, A.V. Golubkov, I.A. Smirnov. Phys. Status Solidi A **30**, 457 (1975).
- [10] С.Н. Каллаев, Р.Г. Митаров, З.М. Омаров, Г.Г. Гаджиев, Л.А. Резниченко. ЖЭТФ **145**, *2*, 320 (2014).
- [11] Р.Г. Митаров. ТВТ 46, 951 (2008).
- [12] В.П. Жузе. Физические свойства халькогенидов редкоземельных элементов. Наука, Л. (1973). 304 с.
- [13] G.H. Dieke. Spectra and energy levels of rare earth ions in crystals. Intersciense Publ., N.Y. (1968). 457 p.

Редактор Т.Н. Василевская