13

Об адсорбции газов на карбиде кремния: простые оценки

© С.Ю. Давыдов¹, О.В. Посредник²

¹ Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия ² Санк-Петербургский государственный электротехнический университет (ЛЭТИ), Санкт-Петербург, Россия E-mail: Sergei_Davydov@mail.ru

Поступила в Редакцию 19 марта 2019 г. В окончательной редакции 19 марта 2019 г. Принята к публикации 2 апреля 2019 г.

В рамках двух физически различных подходов (твердотельном и квантово-химическом) рассмотрена адсорбция атомарного азота и молекул азота и аммиака на карбиде кремния. В твердотельной подходе с использованием модели Халдейна–Андерсона для плотности состояний 4*H* и 6*H* политипов SiC показано, что энергии связи атомов N и молекулы N₂ с подложкой равны 6 и 3 eV соответственно. В квантово-химическом подходе в модели двухатомной поверхностной молекулы для энергии связи атомарного азота получены величины, равные 6 eV для адсорбции на C-грани и 4 eV для адсорбции на Si-грани. Установлено, что во всех рассмотренных случаях переходом заряда между адсорбатом и подложкой можно пренебречь. Высказано предположение, что, как и в случае адсорбции аммиака на Si(100), для карбида кремния имеет место диссоциация молекулы с последующей пассивацией оборванных *sp*³-орбиталей карбида кремния атомами водорода.

Ключевые слова: модель Халдейна-Андерсона, модель поверхностной молекулы, переход заряда, энергия адсорбции.

DOI: 10.21883/FTT.2019.08.47985.429

1. Введение

Карбид кремния привлекает внимание исследователей, прежде всего, как широкозонный материал с повышенной стойкостью к температурным, механическим и радиационным воздействиям, что позволяет использовать приборы на его основе в экстремальных условиях [1-3]. В последнее десятилетие карбид кремния обрел новую область применения в качестве исходного объекта для получения углеродных наноструктур [4,5]. Недавно предложен также оригинальный способ получения SiC из кремния (метод сборки) [6]. В свете сказанного, представляет интерес вопрос об адсорбционной способности карбида кремния. В настоящей работе мы приведем теоретические оценки перехода заряда и энергии связи некоторых атомов и молекул с поверхностью карбида кремния. Отметим, что помимо популярных и широко применяемых в настоящее время расчетов из первых принципов (в основном, в рамках различных вариантов функционала плотности), к задаче об адсорбции существуют и модельные походы. Здесь наиболее последовательным является приближение, основанное на модели Халдейна-Андерсона [7-9]. Идеологически близкий, но упрощенный подход состоит в использовании модифицированной модели Андерсона [10,11]. И, наконец, рассматривая адсорбцию в режиме поверхностной молекулы [7], можно получить простые оценки, воспользовавшись методом связывающих орбиталей Харрисона [12]. В настоящей работе используются первый и третий

подходы. В качестве адсорбатов рассмотрены N_2 и NH_3 и атомы N. Отметим, что проблема взаимодействия газов N_2 и NH_3 с поверхностью SiC возникла в связи с изучением интерфейса SiO_2/SiC [13–17]. При этом имеет место диссоциация молекул. Найти какие-либо работы непосредственно по адсорбции N_2 , N и NH_3 на SiC не удалось. Поэтому ниже мы будем основываться на косвенных данных и некоторых предположениях, так как экстраполировать на случай поверхности результаты работ [13–17], полученные для объема, не корректно.

2. Модель Халдейна-Андерсона

2.1. Общие соотношения

Из самых общих соображений [7–9] функция Грина $G_a(\omega)$ для адсорбированной частицы (адчастицы) может быть записана в виде

$$G_a^{-1}(\omega) = \omega - \varepsilon_a - \Lambda_a(\omega) + i\Gamma_a(\omega).$$
(1)

Здесь ω — энергетическая переменная, ε_a — энергия одноэлектронного уровня адчастицы; $\Gamma_a(\omega) = \pi V_a^2 \rho_{sub}(\omega)$ — функция уширения квазиуровня адчастицы, где $\rho_{sub}(\omega)$ — плотность состояний (ПС) субстрата, V_a — матричный элемент взаимодействия адчастица-подложка; $\Lambda_a(\omega) = \frac{1}{\pi} P \int_{-\infty}^{\infty} \frac{\Gamma_a(\omega')d\omega'}{\omega - \omega'}$ — функция сдвига квазиуровня, где P — символ главного значения. Плотность состояний (ПС) на адчастице. Плотность

состояний на адчастице $\rho_a(\omega)$, отвечающая функции Грина (1), имеет вид

$$ho_a(\omega) = rac{1}{\pi} rac{\Gamma_a(\omega)}{[\omega - arepsilon_a - \Lambda_a(\omega)]^2 + \Gamma_a^2(\omega)}$$

а число заполнения n_a уровня ε_a адчастицы при нулевой температуре равно

$$n_a = \int_{-\infty}^{E_F} \rho_a(\omega) d\omega, \qquad (2)$$

где *E_F* — уровень Ферми подложки.

Энергия адсорбции — $E_{ads} = E_{ads}^{met} + E_{sub}^{ion}$, где первое слагаемое есть металлическая составляющая энергии адсорбции, вторая — ионная составляющая. Можно показать [7,8], что

$$E_{ads}^{met} = \int_{-\infty}^{E_F} (\omega - E_F) \Delta \rho_{sys}(\omega) d\omega, \qquad (3)$$

где $\Delta \rho_{sys} = \rho_{sys} - \rho_{sys}^0$ и ρ_{sys}^0 и ρ_{sys} есть ПС системы до и после адсорбции. Ионная составляющая может быть оценена выражением

$$E_{abs}^{ion} = -\frac{(Z_a e)^2}{4d},\tag{4}$$

где Z_a — заряд адчастицы, равный $1 - n_a$, если изначально орбиталь была заполнена, и $(-n_a)$, если орбиталь пуста, d — длина адсорбционной связи.

Отметим, что здесь и далее мы рассматриваем одноэлектронную (или однодырочную) частицу, которая в силу внутриатомного кулоновского отталкивания может содержать на внешней орбитали лишь один электрон (одну дырку) [7–9].

Для описания полупроводниковой подложки весьма удобна простая модель Халдейна–Андерсона [7–9], в которой $\rho_{sub}(\omega) = \rho_s$ для $|\omega - E_0| \ge E_g/2$ и $\rho_{sub}(\omega) = 0$ для $|\omega - E_0| < E_g/2$, где $E_0 = \chi + E_g/2$ — центр запрещенной зоны относительно вакуума, χ — электронное сродство политипа карбида кремния. Тогда $\Gamma_s = \pi V_a^2 \rho_s = \text{const}, \quad \Lambda(\omega) = (\Gamma/\pi) \ln |(\omega - E_0 - E_g/2)/(\omega - E_0 + E_g/2)|$. При этом, в отсутствии вырождения для полупроводниковой подложки, число заполнения адчастицы $n_a = n_v + n_l$ [7–9], где вклад валентной зоны, согласно (2), есть

$$n_{\nu} = \int_{-\infty}^{-E_g/2} \rho_a(\omega) d\omega, \qquad (5)$$

а вклад локального состояния

$$n_l = \left(1 + \frac{1}{\pi} \frac{\Gamma_s E_g}{(E_g/2)^2 - \omega_l^2}\right)^{-1} \cdot \Theta(E_F - \omega_l), \quad (6)$$

где ω_l — энергия лежащего в запрещенной зоне локального состояния, являющаяся корнем уравнения $\omega - \varepsilon_a - \Lambda_a(\omega) = 0$ в интервале $|\omega| < E_g/2$, $\Theta(\ldots)$ — функция Хэвисайда.

2.2. Адсорбция молекулы N₂

Рассмотрим адсорбцию молекулы N₂ на SiC. Согласно [18], для политипов 4*H*- и 6*H*-SiC электронное сродство χ и ширина запрещенной зоны E_g равны соответственно 3.17, 3.23 eV и 3.45, 3.00 eV. В дальнейшем за нуль энергии примем положение центра запрещенной зоны относительно вакуума: $E_0 = \chi + E_g/2$. Энергия ионизации молекулы N₂ равна I = 15.58 eV [19]. Энергия квазиуровня $\varepsilon_a = -I + e^2/4d + E_0$, где второе слагаемое описывает кулоновский сдвиг квазиуровня адчастицы [7,8]. Полагая d = 1 Å (порядка межатомного расстояния в молекуле N₂ [20]), получим $\varepsilon_a = -7.20$ eV (4H–SiC) и $\varepsilon_a = -7.03$ eV (6H–SiC). Ясно, что столь глубоко залегающие уровни содержат 1 электрон, так что заряд у адмолекулы практически отсутствует, и ионная составляющая (4) энергии адсорбции $E_{ads}^{in} \sim 0$.

Действительно, оценим значения вкладов валентной зоны n_v (5) в числа заполнения по формуле n_a (см. [9]):

$$n_{\nu} = \frac{1}{\pi} \operatorname{arcctg} \frac{\varepsilon_a + R}{\Gamma_s}, \quad R = \frac{E_g}{4} \sqrt{1 + \frac{8\Gamma_s}{\pi E_g}}.$$
 (7)

При $\Gamma_s = 0.5 \text{ eV}$ из (7) получим $n_v \sim 1$ как для 4H–SiC, так и для 6H–SiC. С другой стороны, $n_l \sim 0$ (см. (6) и рис. 1 в [9]), так что $n_a \sim 1$ и $Z_a \sim 0$.

Для оценки металлической (или ковалентной) составляющей энергии адсорбции E_{ads}^{met} (3) воспользуемся соотношением неопределенности $\Delta x \cdot \Delta p \sim \hbar$. Полагая, что в изолированной молекуле $\Delta x \sim d$, а в адсорбированном состоянии $\Delta x \sim 2d$, получим выигрыш в кинетической энергии $\Delta E_{kin} \sim 3\hbar^2/8md^2 \approx 3 \text{ eV} \sim |E_{ads}^{met}|$, где m — масса свободного электрона.

Отметим, что при использовании модели Халдейна– Андерсона различия в адсорбции на Si- и С-гранях входят только через матричный элемент V_a , и, следовательно, Γ_s . Если в рамках твердотельного подхода считать, что длины адсорбционной связи для Si- и С-граней одинаковы, то различия вообще исчезают (см., однако, ниже раздел 2).

Как уже отмечалось, нам, к сожалению, не удалось отыскать в литературе данных по энергии адсорбции молекулы N_2 на SiC. По данным [21] молекула N_2 не диссоциирует на W(110). Мы в приведенных оценках также предполагали, что на SiC адсорбируется именно молекула, а не атомы азота.

2.3. Адсорбция молекулы NH₃ и атома N

В случае адсорбции молекул NH₃ на Si(100) имеет место диссоциация молекулы [21]. Возникающие при этом атомы водорода пассивируют оборванные sp^3 -орбитали кремния, прекращая реакцию. Нет каких-либо оснований полагать, что на Si- и C-гранях карбида кремния дело обстоит иначе. Таким образом, адсорбция аммиака в молекулярном виде на карбиде кремния не происходит.

Рассмотрим теперь адсорбцию атомарного азота на карбиде кремния. Энергия ионизации атома азота I = 14.53 eV [19], что мало отличается от энергии ионизации молекулы N₂. Вновь полагая d = 1 Å (порядка межатомного расстояния в молекуле N₂ [20]), получим $\varepsilon_a = -6.15 \text{ eV}$ (4H–SiC) и $\varepsilon_a = -5.98 \text{ eV}$ (6H–SiC). Это, также как и в случае N₂/SiC, глубокие уровни, так что переходом заряда можно пренебречь. Таким образом, ионная составляющая энергии адсорбции $E_{ads}^{ion} \sim 0$. Для выигрыша в кинетической энергии вновь имеем выражение $\Delta E_{kin} \sim 3\hbar^2/8md^2$, где d можно положить равным атомному радиусу азота $r_{\rm N} = 0.71$ Å. Тогда получаем $\Delta E_{kin} \sim 6 \text{ eV} \sim |E_{ads}^{met}|$.

3. Метод связывающих орбиталей

Подход к задаче об адсорбции, рассмотренный в предыдущем разделе, можно назвать твердотельным, эквивалентным задаче о примеси в твердотельной матрице. В этом разделе мы используем квантово-химическое приближение к проблеме, в рамках которого рассматривается кластер, состоящий из адсорбированной частицы и ближайших к ней атомов подложки. В предельном случае такой кластер можно свести к двухатомной молекуле, состоящей из адатома и связанного непосредственно с ним атома подложки (модель поверхностной молекулы) [7].

Начнем с рассмотрения адсорбции атома азота на С-грани SiC. В рамках метода связывающих орбиталей (МСО) [12], получим длину связи С-N равной $d_{\rm CN} = r_{\rm N} + r_{\rm C} = 1.48$ Å, где атомный радиус углерода $r_{\rm C} = 0.77 \,\text{\AA}$ [19]. Для σ -связи sp^3 -орбитали углерода с р-орбиталью азота ковалентная энергия связи равна $V_2 = (\hbar^2/md_{
m CN}^2)(\eta_{sp\sigma} + \sqrt{3}\eta_{pp\sigma})/2$ [22], где $\eta_{sp\sigma} = 1.42$, $\eta_{pp\sigma} = 2.22$ [12,23], откуда получаем $V_2(\text{CN}) = 9.16 \,\text{eV}.$ Энергия гибридизованной sp³-орбитали углерода равна $-\varepsilon_h(\mathbf{C})=(\varepsilon_s+3\varepsilon_p)/4=13.15\,\mathrm{eV},$ а энергия p-орбитали азота есть s_p = -13.84 eV (таблицы атомных термов Манна [12,24]). Отсюда полярная энергия связи C–N, определяемая как $V_3(CN) = (\varepsilon_h(C) - \varepsilon_p(N))/2$ = 0.35 eV. Тогда ковалентность связи $\alpha_c = V_2/\sqrt{V_2^2 + V_3^2}$ ≈ 1. В простейшем виде энергию связи можно представить в виде

$$E_b \approx \frac{2V_2}{\alpha_c} \left(1 - \frac{2}{3}\,\alpha_c^2\right)$$

(см., например, формулу (3) работы [25], где, однако, мы поменяли знак E_b), откуда находим $E_b(\text{CN}) \approx 2V_2/3 \approx 6 \text{ eV}$. Отметим, что в данной модели мы считаем $E_b = -E_{ads}$, так что полученное нами значение $E_b(\text{CN})$ совпадает с результатом раздела 2. То же относится и к переходу заряда, который, в рамках MCO, оценивается величиной полярности связи $\alpha_P = \sqrt{1 - \alpha_c^2} \ll 1$.

Перейдем теперь к адсорбции атомов азота на Si-грани SiC. Так как $r_{Si} = 1.18$ Å, имеем $d_{SiN} = r_N + r_{Si} = 1.89$ Å и $V_2(SiN) = 5.62$ eV. Так как $-\varepsilon_h(Si) = (\varepsilon_s + 3\varepsilon_p)/4 = 9.39$ eV, получаем $V_3(SiN) = (\varepsilon_h(Si) - \varepsilon_p(N))/2 = 2.23$ eV, $\alpha_c \approx 0.97$ и $E_b(SiN) \approx 4$ eV. Таким

образом, энергия связи атома азота с С-гранью в полтора раза больше, чем с Si-гранью. В обоих случаях связь практически гомополярная.

4. Заключительные замечания

Итак, в настоящей работе для оценок перехода заряда между адчастицей и SiC-подложкой и значений энергии адсорбции использованы две принципиально различные модели: 1) твердотельная модель, в которой явным образом учитывается наличие запрещенной зоны подложки, но игнорируются природа адсорбирующей грани (С или Si) и геометрия адсорбционного комплекса, и 2) модель поверхностной молекулы, где зонная структура подложки вообще не учитывается, но принимается во внимание различие длин адсорбционной связи на С- и Si-гранях. Сопоставление полученных в различных моделях результатов показывает хорошее соответствие. Помимо близких значений энергий адсорбции, следует указать на совпадение оценок для практически нулевого перехода заряда между адсорбатом и адсорбентом. Интересно отметить, что при адсорбции газов на *d*-металлах переход заряда также крайне мал [26]. Стоит подчеркнуть также, что оба использованных здесь простых приближения достаточно легко могут быть модифицированы для более строгого учета особенностей адсорбционной системы (см., например, [27,28]).

Благодарности

Авторы признательны С.А. Кукушкину за предложение темы и полезные обсуждения.

Конфликт интересов

Авторы заявляют, что у них отсутствует конфликт интересов.

Список литературы

- Silicon Carbide: recent major advances / Ed. W.J. Choyke, H. Matsunami, G. Pensl. Berlin-Heidelberg, Springer (2004). http://www.springer.de.
- [2] Advances in Silicon Carbide. Processing and Applications / Ed. S.E. Saddow, A. Agarwal. Boston–London, Artech House (2004). www.artechhouse.com.
- [3] A.A. Lebedev. Semicond. Sci. Technol. 21, R17 (2006).
- [4] Y.H. Woo, T. Yu, Z.X. Chen. Appl. Phys. Rev. 108, 071301 (2010).
- [5] Г.В. Бенеманская, П.А. Дементьев, С.А. Кукушкин, А.В. Осипов, С.Н. Тимошнев. Письма в ЖТФ 45, 5, 17 (2019).
- [6] С.А. Кукушкин, А.В. Осипов, Н.А. Феоктистов. ФТТ 56, 1457 (2014).
- [7] С.Ю. Давыдов. Теория адсорбции: метод модельных гамильтонианов. СПб.: Изд-во СПбГЭТУ "ЛЭТИ" (2013). 235 с. twirpx.com/file/1596114/.

- [8] С.Ю. Давыдов, А.А. Лебедев, О.В. Посредник. Элементарное введение в теорию наносистем. Изд-во "Лань", СПб (2014).
- [9] С.Ю. Давыдов, С.В. Трошин. ФТТ 49, 1508 (2007).
- [10] С.Ю. Давыдов, А.В. Павлык. ФТП 35, 831 (2001).
- [11] С.Ю. Давыдов, А.В. Павлык. Письма в ЖТФ 29, 12, 33 (2003).
- [12] С.Ю. Давыдов, О.В. Посредник. Метод связывающих орбиталей в теории полупроводников. Учеб. пособие. Изд-во СПбГЭТУ "ЛЭТИ", СПб (2007). 96 с. (twirpx.com/file/1014608/).
- [13] J.P. Xu, P.T. Lai, C.L. Chan, Y.C. Cheng. Appl. Phys. Lett. 76, 372 (2000).
- [14] Y.S. Liu, S. Hashimoto, K. Abe, R. Hayashibe, T. Yamakami, M. Nakao, K. Kamimura. Jap. J. Appl. Phys. 44, 673 (2005).
- [15] Y. Iwasaki, H. Yano, T. Hatayama, Y. Uraoka, T. Fuyuki. Appl. Phys. Express 3, 026201 (2010).
- [16] F. Liu, C. Carraro, A.P. Pisano, R. Maboudian. J. Micromech. Microeng. 20, 035011 (2010).
- [17] E. Pitthan, A.L. Gobbi, H.I. Boudinov, F.C. Stedile. J. Electronic Mater. 44, 2823 (2009).
- [18] С.Ю. Давыдов. ФТП 53, 706.(2019).
- [19] Физические величины. Справочник / Под ред. Е.С. Григорьева, Е.З. Мейлихова. Энергоатомиздат, М (1991).
- [20] Tables of Interatomic Distances and Configuration in Molecules and Ions / Ed. L.E. Sutton. The Chemical Society, London (1958).
- [21] M.D. Ramsier, J.T. Yates, Jr. Surf. Sci. Rep. 12, 243 (1991).
- [22] С.Ю. Давыдов, С.К. Тихонов. ФТТ 37, 2749 (1995).
- [23] W.A. Harrison. Phys. Rev. B 27, 3552.(1983).
- [24] W.A. Harrison. Phys. Rev. B 31, 2121 (1985).
- [25] С.Ю. Давыдов, О.В. Посредник. ФТТ 57, 819 (2015).
- [26] Л.А. Большов, А.П. Напартович, А.Г. Наумовец, А.Г. Федорус. УФН 122, 125 (1977).
- [27] С.Ю. Давыдов. ЖТФ 84, 4, 155 (2014).
- [28] С.Ю. Давыдов, А.В. Зубов, А.А. Лебедев. Письма в ЖТФ 45, 9, 40 (2019).

Редактор Т.Н. Василевская