Optical analysis using effective medium theory and finite element method to study the enhanced light absorption in porous BaMgAl$_{10}$O$_{17}$: Eu$^{2+}$ phosphor

© Ying-Lin Liang1, Liang-Jun Yin2, Hao-Van Bui3,4, Xian Jian2, Guang Yang5, Jie-Xiong Ding1

1 School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, 2006 Xiyuan Road, Chengdu, P.R.China
2 School of Materials and Energy, University of Electronic Science and Technology of China, 2006 Xiyuan Road, Chengdu, P.R.China
3 Phenikaa Institute for Advanced Study, Phenikaa University, Yen Nghia, Ha-Dong district, Hanoi 10000, Vietnam
5 National Engineering Research Center of Electromagnetic Radiation Control Materials, University of Electronic Science and Technology of China, 2006 Xiyuan Road, Chengdu 610054, P. R. China

E-mail: liang_yinglin@uestc.edu.cn, ylj@mail.ustc.edu.cn

Received January 30, 2019; Revised March 11, 2019; Accepted March 29, 2019

The main objective of this paper is to reveal the mechanism of enhanced excitation light absorption in nano-pores structure BaMgAl$_{10}$O$_{17}$: Eu$^{2+}$ (BAM) phosphor by optical analysis. The optical refractive index of the BAM was calculated from the reflectance spectra by Kramers-Kronig dispersion relation. And based on the effective medium theory, the anisotropic optical properties of porous BAM layer and its relations of absorption enhancement with porosity and thickness were investigated. A finite element simulation model was used for study the influence of pores size on optical properties. All the numerically evaluated results were match the experimental data.

DOI: 10.21883/FTT.2019.08.47978.003