07,11

Откольная прочность ударно-разогретого гафния и уравнения состояния его полиморфных модификаций

© А.М. Молодец, А.А. Голышев

Институт проблем химической физики РАН, Черноголовка, Россия E-mail: molodets@icp.ac.ru

Поступила в Редакцию 2 апреля 2019 г. В окончательной редакции 2 апреля 2019 г. Принята к публикации 2 апреля 2019 г.

Выполнено определение откольной прочности гафния, разогретого нагружающей ударной волной до тысячных температур и испытавшего превращения в более плотные полиморфные модификации. Для достижения этой цели решены следующие задачи. Измерены профили давления на границе образец-мягкая преграда в откольных экспериментах при плоском одномерном нагружении. Построены уравнения состояния трех полиморфных модификаций гафния в диапазоне давлений до 100 GPa. Рассчитаны термодинамические состояния гафния в условиях выполненных экспериментов, что в комплекте с результатами измерений профилей давления позволило определить откольную прочность гафния, разогретого в цикле ударное сжатие-разгрузка. Величина откольной прочности гафния составила –4(1) GPa при температуре 1680(380) К. Выполнено математическое моделирование откольных экспериментов в рамках одномерного гидрокода.

Ключевые слова: откол, гафний, полиморфизм, ударные волны, фазовая диаграмма.

DOI: 10.21883/FTT.2019.08.47976.442

1. Введение

Как хорошо известно, гафний вместе с другими переходными металлами IV группы Ti, Zr, обладая развитым полиморфизмом, является функциональным и конструкционным материалом ряда важных отраслей промышленности. Поэтому полиморфизм и физико-механические свойства гафния в том числе при ударно-волновых нагрузках представляют собой важную информацию для фундаментальных и прикладных задач металлофизики переходных металлов IV группы элементов.

Ранее в [1] исследованы прочностные свойства гафния при ударно-волновом нагружении вне области полиморфных переходов и отмечался дефицит экспериментальных сведений о прочностных свойствах гафния при высокоскоростном нагружении. Цель данной работы заключалась в определении откольной прочности гафния, испытавшего в фазе ударного сжатия сильный разогрев и превращения в более плотные полиморфные модификации.

Образцы для исследования и схема ударно-волнового нагружения образцов

Как и в [1] исследовался гафний марки ГФИ-1 с массовой концентрацией примесей 0.9%Zr, 0.034%Fe, 0.022%O, 0.02%C, 0.016%Si, 0.008%N. Образцы гафния представляли собой плоскопараллельные пластины. Большие плоские поверхности образцов шлифовались. Плотность образцов составила $\rho_0 = 13.280(5)$ g/cm³.

Продольная скорость звука при нулевом давлении равна $C_l = 3.765(5)$ km/s. Для объемной скорости звука C_b использовалось значение $C_b = (K_0/\rho_0)^{1/2} = 2.86$ km/s, где $K_0 = 108.78$ GPa [2] — справочное значение адиабатического модуля объемного сжатия гафния при нормальных условиях. Используемые образцы имели примерно равноосную микроструктуру с размером зерна 50 μ m. Местоположение и относительная интенсивность рефлексов дифрактограммы поликристаллических образцов в исходном состоянии соответствовали справочным данным для гексагональной плотноупакованной ГПУ структуры α -фазы гафния α -Hf.

На рис. 1, а представлена схема ударноволновых экспериментов по исследованию откольной прочности с использованием традиционной методики образец-"мягкая" преграда (см., например, [3]). Здесь ударник 1, разогнанный продуктами взрыва до скорости W₀, соударялся с исследуемым образцом 2 и генерировал в нем плоскую ударную волну. Образец соприкасался с мягкой преградой 3. На границы раздела 2-3, ударная волна распадалась на встречную волну разгрузки, уходящую в образец, и волну сжатия, распространяющуюся в преграду. В эксперименте регистрировалось падение электрического напряжения U на чувствительном элементе манганинового датчика 4 во время прохождения по нему волны сжатия. Электрическое напряжение пересчитывалось в электросопротивление датчика, а затем в профиль P(t) (зависимость давления P, от времени t) с помощью калибровки манганинового датчика из [4].

Откольное разрушение образца возникало в области взаимодействия встречной волны разгрузки с проходящей волной разгрузки от тыльной стороны ударника.

Рис. 1. Схема нагружения образцов гафния по регистрации профилей давления на границе образцов гафния с мягкой средой. *a)* I — стальной (нержавеющая сталь 12X18H10T) ударник толщиной $h_0 = 3.0(1)$ mm, разогнанный до скорости $W_0 = 3.2(1)$ km/s; 2 — образец ГФИ-1 толщиной $H_0 = 4.95(5)$ mm; 3 — пластина плексигласа (РММА) толщиной 10.0(1) mm; 4 — манганиновый датчик толщиной 0.03 mm располагался на расстоянии 2 mm от поверхности образца; *b)* 1, 2 — те же что и на рис. 1, *a*, 3 — изолирующая прослойка из ТВС среды толщиной 0.4 mm, 4 — манганиновый датчик толщиноё вый датчик толщиной 0.03mm, расположенный на расстоянии 0.2 mm от поверхности образца, 5 — алюминиевая пластина толщиной 14(1) mm.

Информация об откольном разрушении образца отражалась на профиле P(t) в форме откольного импульса, что позволяло определить откольную прочность образца.

На рис. 1, *а* "мягкой" преградой служил плексиглас (РММА). На рис. 1, *b* "мягкой" преградой является слоистая преграда, состоящая из изолирующей прослойки *3*, в виде двух тефлоновых пленок, склеенных вакуумной смазкой (ТВС [4] среда) и алюминиевой пластины *5*. Использование тефлона позволило исключить паразитные поляризационные сигналы, имевшие место при использовании РММА. Использование алюминия позволило получить экспериментальные данные по откольному разрушению образца гафния в усложненных условиях слоистой преграды.

На рис. 2, *а* представлены профили P(t) в экспериментах по схеме рис. 1, *а*. На рис. 2, *b* представлены профили P(t) в экспериментах по схеме рис. 1, *b*.

3. Обсуждение эксперимента

Профили P(t) на рис. 2, *а* содержат псевдопредвестник в области t = 0. Этот предвестник обусловлен поляризационной наводкой от плексигласа, искажающий первичный электрический сигнал *U* манганинового датчика. Использование в качестве материала преграды неполярного материала (тефлона) приводит, как это видно на рис. 2, *b*, к исчезновению этого псевдопредвестника.

Возвращаясь к рис. 2, *a*, отметим, что профили P(t) на этом рисунке содержат характерные значения P_1 и P_2 ,

которые служат базовыми величинами при определении откольной прочности σ_s образца. Так, величина σ_s может быть определена графически (см., например, [3]), если известны P_1 , P_2 , ударные адиабаты образца и преграды, а также их изэнтропы разгрузки в координатах давление (P)-массовая скорость (u). Для целей настоящей работы необходимые ударные адиабаты в виде эмпирических зависимостей скорости ударной волны D от массовой скорости

$$D = C_0 + su \tag{1}$$

были взяты из таблицы GMX-6, представленной на стр. 377 в [3]. Коэффициенты C_0 , *s*, и начальная плотность ρ_0 рассматриваемых материалов приведены в табл. 1. Ударные адиабаты используемых материалов в координатах P-u рассчитывались как

$$P = \rho_0 D u. \tag{2}$$

Изэнтропы материалов в этих же координатах считались совпадающими с ударными адиабатами. Рассчитанные

Рис. 2. Профили давления P(t) в экспериментах по схеме рис. 1. a — эксперименты по схеме рис. 1, a: 1, 2 профили P(t)от двух идентичных манганиновых датчиков P_1 — максимальное значение P, P_2 — значение P в момент t_S прихода откольного импульса на датчик; b — эксперимент по схеме рис. 1, b: 1 — экспериментальный профиль P(t), 2 — модельный профиль при $\sigma_s = -4$ GPa, 3 — "безоткольный" модельный профиль, c — эксперимент по схеме рис. 1, a, 1 — экспериментальный профиль P(t), 2 — модельный профиль при $\sigma_s = -4$ GPa, 3 — "безоткольный" модельный профиль.

Таблица 1. Ударные адиабаты материалов из [3]

Материал	ρ_0 , g/cm ³	C_0 , km/s	S	Comments
Гафний-1	12.885	2.954	1.121	Ниже $u = 0.81$ km/s
Гафний-2	12.885	2.453	1.353	Выше перехода
Нерж. сталь	7.896	4.569	1.490	
Плексиглас	1.186	2.598	1.516	Ниже $u = 2.9$ km/s

с использованием формул (1), (2) и данных табл. 1 ударные адиабаты и изэнтропы разгрузки приведены на рис. 3 в виде графиков *1*, *2*, *5*, *6*.

Рассмотрим с учетом (1), (2) и данных рис. 2, а графическое определение откольной прочности на диаграмме рис. 3. Здесь пересечение 1 и 2 определяет состояние 3 ударно-сжатого гафния в ударной волне с амплитудой $P_{\rm sh} = 91(2) \, {\rm GPa.}$ После распада этой ударной волны на границе образец-преграда в гафнии и плексигласе реализуется состояние 4 с давлением P_1 , которое регистрируется манганиновым датчиком. В дальнейшем давление в плексигласе уменьшается вдоль изэнтропы 5 плексигласа до величины Р2, соответствующей моменту прихода откольного импульса (значение Р₂ на рис. 3 приведено с учетом гистерезиса манганинового датчика в разгрузке). Через состояния плексигласа при P₁ и P₂ проведены изэнтропы разгрузки гафния 6, пересечение которых определяет значение откольной прочности гафния $\sigma_s = -4(1)$ GPa.

Таким образом, данные рис. 2, а и рис. 3 позволяют заключить, что откольная прочность гафния, предвари-

Рис. 3. Диаграмма давление (P)-массовая скорость (u) ударного сжатия и разгрузки гафния при отколе. I — ударная адиабата Наfnium-2; 2 — ударная адиабата торможения ударника из нержавеющей стали с начальной скоростью $W_0 = 3.2(1)$ km/s; 3 — состояние ударно-сжатого гафния при $P_{\rm sh} = 91(2)$ GPa; 4 — состояние гафния разгруженного на плексиглас (стрелкой схематически указано изменение состояния гафния после распада ударной волны на границе с плексигласом); 5 — ударная адиабата Плексигласа, совпадающая с его изэнтропой разгрузки; 6 — ударная адиабата Наfnium-1 и его изэнтропы разгрузки; 7 — полуэмпирический расчет ударной адиабаты гафния, проходящей через области существования полиморфных модификаций α -Hf, ω -Hf, и β -Hf; 8 — экспериментальные точки ударной адиабаты гафния из[5].

тельно сжатого ударной волной амплитудой 91(2) GPa, составляет величину $\sigma_s = -4(1)$ GPa.

Как хорошо известно, ударно-волновое сжатие вещества сопровождается его разогревом, увеличивающимся с увеличением амплитуды ударной волны. Грубые оценки температуры ударно-волнового разогрева гафния в проведенных экспериментах дают значения температур на уровне 2000 К. Для уточнения этого значение, а также для оценки температуры гафния в разгрузке, где развивается откольное разрушение, были построены уравнения состояния полиморфных модификаций гафния, а затем рассчитана температура вдоль ударной адиабаты и вдоль последующей изэнтропы разгрузки до области растяжения. Ниже приведены техника построения уравнений состояния и соответствующие расчеты.

Уравнения состояния, фазовая диаграмма гафния и моделирование эксперимента по откольному разрушению

Как упоминалось выше гафний при нормальных условиях имеет гексагональную плотноупакованную ГПУ(hcp) структуру (α -Hf фаза). При повышении температуры и атмосферном давлении происходит мартенситное превращение α -Hf в β -Hf фазу с объемно центрированной кубической ОЦК(bcc) упаковкой атомов. Температура этого превращения составляет 2014 К. При увеличении давления вдоль комнатной изотермы гафний претерпевает последовательность полиморфных переходов α -Hf $\rightarrow \omega$ -Hf $\rightarrow \beta$ -Hf, то есть сначала в ω -Hf фазу с гранецентрированной кубической ГЦК(fcc) упаковкой и затем в β -Hf фазу.

Расчеты фазовой диаграммы гафния до мегабарных давлений и тысячеградусных температур, где происходят α -Hf $\leftrightarrow \omega$ -Hf $\leftrightarrow \beta$ -Hf полиморфные превращения этого металла предпринимались неоднократно (см. [6-8] и ссылки в них). Однако следует отметить, что фазовые диаграммы гафния различных авторов согласуются между собой лишь качественно. В частности, местоположения тройной точки и линий равновесия α -Hf $\leftrightarrow \beta$ -Hf в этих трех работах существенно различаются. Кроме этого, в [7,8] не вовлечены в рассмотрение ударно-волновые экспериментальные данные [9,10], которые важны для анализа экспериментальных результатов представляемой статьи. Поэтому в данной работе предпринято построение уравнений состояния и фазовой диаграммы гафния, которые дополняют имеющиеся прототипы, а также позволяют провести математическое моделирование откольных экспериментов в рамках ранее разработанного гидрокода

4.1. Уравнения состояния полиморфных модификаций гафния

Индивидуальные уравнения состояния для каждой полиморфной модификации гафния рассчитывались на

основе полуэмпирического выражения для свободной энергии всесторонне сжатого изотропного твердого тела $\Phi = \Phi(V, T)$, представляющего сумму фононной F = F(V, T) и электронной $F_e = F_e(V, T)$ составляющих

$$\Phi = F(V,T) + F_e(V,T).$$
(3)

Фононная составляющая, базирующаяся на модели эйнштейновских осцилляторов, имеет вид

$$F = 3R\left[\frac{\Theta}{2} + T\ln\left(1 - \exp\left(-\frac{\Theta}{T}\right)\right)\right] + E_x, \quad (4)$$

где R — удельная газовая постоянная, V — удельный объем материала, T — его температура, $\Theta = \Theta(V)$ — объемная зависимость характеристической температуры, определяемая согласно [11,12] как

$$\Theta = \Theta_0 \left(\frac{\nu_0 - V}{\nu_0 - V_0}\right)^2 \left(\frac{V_0}{V}\right)^{2/3},\tag{5}$$

$$\nu_0 = V_0 \left(1 + \frac{2}{\gamma_0 - 2/3} \right).$$
 (6)

В (1)-(4) $\Theta_0 = \Theta(V_0)$ — характеристическая температура, $\gamma_0 = \gamma(V_0)$ — термодинамический коэффициент Грюнайзена, V_0 — удельный объем в начальных условиях. Под начальными условиями (T_0 , P_0) везде ниже подразумевается состояние с комнатной температурой T_0 и атмосферным давлением P_0 .

Объемная зависимость потенциальной энергии $E_x = E_x(V)$ также взята из [11,12] в виде

$$E_x = -\nu_x (C_1 H_x + C_2 x) + C_3 + E_m, \tag{7}$$

$$H_x = 9\left(\frac{1}{10}x^{-\frac{2}{3}} + 2x^{\frac{1}{3}} + \frac{3}{2}x^{\frac{4}{3}} - \frac{1}{7}x^{\frac{7}{3}} + \frac{1}{70}x^{\frac{10}{3}}\right), \quad (8)$$

$$x = \frac{V}{\nu_x},\tag{9}$$

В (7)–(9) v_x — подгоночный параметр, первое приближение которого есть v_0 . Параметры C_1 , C_2 , C_3 константы, выражающиеся через справочные характеристики материала (плотность, модуль объемного сжатия, характеристическая температура, коэффициент Грюнайзена при начальных условиях) и подгоночный параметр v_x . Постоянное слагаемое E_m задает уровень отсчета энергии для рассматриваемых фаз высокого давления.

Электронная составляющая *F_e* записывалась согласно литературным данным [13]

$$F_e = -\frac{1}{2}\beta_0 T^2 \left(\frac{V}{V_0}\right)^{1/2},$$
 (10)

где V_0 — начальный удельный объем, β_0 — коэффициент электронной теплоемкости. Уравнения состояния находились с помощью частных производных (3) согласно общим термодинамическим соотношениям. Калорическое уравнение состояния (зависимость внутренней энергии *E* от объема и температуры) определяется

Рис. 4. Комнатные изотермы высокого давления (зависимость давления P от объема V при температуре $T_0 = 300$ K) полиморфных модификаций гафния. I-3 — расчет данной работы соответственно α -Hf, ω -Hf и β -Hf с помощью (12), 4-6 — эксперимент соответственно для α -Hf, ω -Hf и β -Hf из [14].

частной производной свободной энергии по температуре $E = \Phi - T(\partial \Phi / \partial T)$. Теплоемкость при постоянном давлении C_p рассчитывалась как

$$C_p = -\left(\frac{\partial^2 \Phi}{\partial T^2} + \frac{(\partial P/\partial T)^2}{(\partial T/\partial V)}\right).$$
 (11)

Термическое уравнение состояния (зависимость давления P от объема и температуры T) определяется частной производной свободной энергии по объему $P = P(V, T) = -\partial \Phi / \partial V$, которое после дифференцирования приобретает вид

$$P = C_1 F(x) + C_2 + 3R \frac{\gamma}{V} \Theta\left(\frac{1}{2} + \frac{1}{\exp(\Theta/T) - 1}\right) + P_e,$$
(12)

$$F(x) = 3\left(-\frac{1}{5}x^{-\frac{5}{3}} + 2x^{-\frac{2}{3}} + 6x^{\frac{1}{3}} - x^{\frac{4}{3}} + \frac{1}{7}x^{\frac{7}{3}}\right), \quad (13)$$

$$\gamma = \frac{2}{3} + \frac{2V}{\nu_0 - V},$$
 (14)

$$P_e = \frac{\beta_0}{V_0} \left(\frac{T}{2}\right)^2 \left(\frac{V_0}{V}\right)^{1/2}.$$
 (15)

Величины подгоночного параметра v_x для каждой модификации гафния находились из условия наилучшего совпадения расчетной комнатной изотермы с экспериментальными данными из [14]. При этом расчетные изотермы рассчитывались с помощью уравнения состояния (10), в котором значение *T* считалось постоянным и равным значению комнатной температуры T_0 . Найденные величины v_x вместе с формульной молярной массой M_f , Θ_0 , v_0 и C_1 , C_2 , C_3 для полиморфных модификаций гафния представлены в табл. 2, 3.

Рис. 4 демонстрирует удовлетворительное согласие между расчетными и экспериментальными [14] изотермами α -Hf, ω -Hf и β -Hf фаз гафния. Видно, что расчет совпадает с экспериментом в пределах разброса экспериментальных данных.

Фаза	M_f , g/mol	$V_0,$ cm ³ /mol	$\frac{\nu_0}{\mathrm{cm}^3/\mathrm{mol}}$	Θ ₀ , Κ	$eta_0, \ mJ/mol \cdot K$
α-Hf	178.490	13.470	89.5015	147.3	2.64
ω -Hf	178.490	13.460	124.0901	138.0	2.64
β -Hf	178.490	12.900	37.7724	101.3	6.019
PMMA	100.117	84.416	492.879	630.0	0
Тефлон	50.007	22.73	89.259	142.5	0

Таблица 2. Параметры для тепловых составляющих свободной энергии (3) α -Hf, ω -Hf и β -Hf фаз гафния (формула Hf), плексигласа (РММА, формула C₅H₈O₂) и тефлона (формула CF₂) при нормальных условиях

4.2. Фазовая диаграмма гафния

Как хорошо известно, знание свободной энергии фаз как функции своих переменных позволяет рассчитать линии равновесия между этими фазами. Техника расчета фазовой диаграммы с используемым в данной работе функциональным видом (3) свободной энергии была проиллюстрирована в [12]. С использованием техники [12] рассчитана фазовая диаграмма гафния в области высоких давлений и температур, содержащая три линии равновесия между фазами α-Hf, ω-Hf, и β-Hf (см. рис. 5).

В выполненных расчетах основным состоянием считалась α -фаза с величиной $E_m = 0$ из (5). Коэффициент электронной теплоемкости β_0 из (10) для α -фазы считался известным и был взят из справочной литературы $\beta_0 = 2.64 \text{ mJ/mol} \cdot \text{K}$. Значения E_m и β_0 для ω -фазы и β -фазы рассматривались как подгоночные коэффициенты, которые определялись исходя из требования равенства химических потенциалов на известных точках линий равновесия фаз. Для α -Hf и β -Hf фаз такой точкой служило состояние при давлении 1 атм и температуре 2014 K. Для α -Hf, и ω -Hf такой точкой служило состояние при давлении 44.5 GPa [14] и температуре 300 K. Значения E_m и β_0 для ω -Hf и β -Hf также приведены в табл. 2 и 3.

Определенные вышеописанным способом соответствующие линии равновесия фаз гафния показаны линиями 1 на рис. 5. Здесь же показан расчетная ударная адиабата гафния 2, пересекающая линии равновесия фаз. Как видно, 2 проходит через точку 3 фазового перехода ударно-сжатого гафния из [9], и согласуется с оценками температуры и давления в точке излома ударной адиабаты гафния 4 из [10]. Кроме этого расчетная ударная

Рис. 5. Фазовая диаграмма гафния в координатах давление P-температура T. I — линии равновесия α -Hf, ω -Hf, β -Hf фаз, рассчитанные в данной работе; 2 — расчетная ударная адиабата гафния, пересекающая линии равновесия фазовых превращений; 3 — давление и температура фазового превращения ударно-сжатого гафния из [9]; 4 — оценка температуры и давления в точке излома ударной адиабаты гафния из [10]; 5 — расчетная изэнтропа разгрузки β -Hf; 6, 7, 8 — линии равновесия α -Hf $\leftrightarrow \beta$ -Hf соответственно из [6], [7], [8]; 9 — тройные точки из [6-8]; 10 — состояние ($P_{\rm sh}, T_{\rm sh}$) ударно-сжатого гафния в экспериментах данной работы; 11 — состояние (P_s, T_s) метастабильной фазы β -Hf в области растяжения; стрелками обозначен путь ударно-волнового сжатия и последующей разгрузки.

адиабата гафния в координатах давление(P)-массовая скорость(u) (см. 7 на рис. 3) оптимально располагается среди экспериментальных точек [5] (см. 8 на рис. 3). Иными словами, можно сказать, что расчеты ударных адиабат всех фаз гафния согласуются качественно и количественно с экспериментом, что свидетельствует в пользу достоверности разработанного термодинамического описания гафния при давлениях ударного сжатия до ~ 100 GPa. Расчеты в рамках этого описания дают значение температуры ударного сжатия гафния $T_{\rm sh}$ при давлении $P_{\rm sh}$ равное $T_{\rm sh} = 2300$ K.

Обсудим значение температуры гафния в разгрузке, когда развивается откольное разрушение в экспериментах по схеме рис. 1. На рис. 5 графиком 5 представлена расчетная изэнтропа разгрузки ударно-сжатой фазы β -Hf, выходящая из точки $(T_{\rm sh}, P_{\rm sh})$. Как видно 5 достигает линию равновесия $\alpha \leftrightarrow \beta$, минуя область существования

Таблица 3. Параметры для потенциальной энергии (7) α-Hf, ω-Hf и β-Hf (формула Hf), плексигласа (РММА, формула C₅H₈O₂) и тефлона (формула CF₂)

Фаза	v_x , cm ³ /mol	C ₁ , GPa	C ₂ , GPa	<i>C</i> ₃ , kJ/g	E_m , kJ/g	<i>P_{range}</i> , GPa
α-Hf	43.1040	-68.9555	1410.7346	-175.7854	0.0	-10-60
ω -Hf	56.5320	-28.5181	563.7952	-97.0094	0.0277	-10-60
β -Hf	43.8600	-58.2587	1185.2920	-151.6091	0.153	-10 - 90
PMMA	141.818	-76.3468	1587.7589	-1128.1953	0	1 - 25
Teflon	28.277	-703.9228	14660.2894	-4145.8364	0	3-40

фазы ω -Нf. Отметим, что этот вывод не изменяется, если опираться на фазовые диаграммы гафния других авторов — 6 из [6], 7 из [7] и 8 из [8]. Действительно, изэнтропа 5 во всех случаях пресекает только линию равновесия $\alpha \leftrightarrow \beta$.

Заметим далее, что если для ударного сжатия эксперименты [9] свидетельствуют о фазовом переходе гафния, то для разгрузки такие данные отсутствуют. Поэтому, вообще говоря, после пересечения изэнтропы 5 с линией равновесия $\alpha \leftrightarrow \beta$ возможны два сценария. По первому сценарию обратный переход β -Hf $\rightarrow \alpha$ -Hf не происходит. В этом случае откольное разрушение развивается в метастабильной фазе β -Нf при температуре, обозначенной точкой 11, которая составляет $T_s = 1300$ К. Если же β -Нf фаза превращается в разгрузке в исходную α -Нf фазу с выделением тепла, то температура разрушающегося металла будет больше. Увеличение температуры можно оценить воспользовавшись соотношением $\Delta T = E_m/C_p$, где согласно табл. 3 величина $E_m = 0.153 \text{ kJ/g}$, теплоемкость C_p согласно формуле (11) в точке (T_s, P_s) равна $C_p = 35.8 \text{ J/mK}$. Эти значения дают $\Delta T = 760 \text{ K}$. Таким образом, объединяя оценки ΔT и T_s , можно сказать, что в проведенных экспериментах температура гафния при его откольном разрушении составляла $T_s = 1680(380)$ К.

В заключение отметим, что изэнтропа 5 на рис. 5 пересекает линию равновесия $\alpha \leftrightarrow \beta$ при давлении ~ 20 GPa. Этот результат послужил обоснованием для того, чтобы при определении откольной прочности в графических построениях на рис. 3 использовать изэнтропу разгрузки фазы α -Hf.

4.3. Математическое моделирование ударно-волновых экспериментов

В качестве иллюстрации комплексного использования полученных результатов применительно к прикладной задаче прогнозирования откольного разрушения гафния было выполнено математическое моделирование выполненных экспериментов. Моделирование осуществлялось в рамках одномерного гидрокода [15], опирающегося на уравнения состояния материалов ударника, образца и слоистой мягкой преграды в схеме рис. 1.

Уравнение состояния нержавеющей стали взято из [16]. Уравнения состояния плексигласа и тефлона (см. табл. 2, 3) были специально разработаны для диапазона давлений ниже 26 GPa для плексигласа и ниже 40 GPa для тефлона. При этом величины подгоночного параметра v_x для плексигласа и тефлона находились из условия наилучшего совпадения расчетной ударной адиабаты с экспериментальными данными из [17]. Уравнение состояния алюминия взято из [18]. В качестве уравнения состояния образца использовано уравнение состояния α -Hf, приведенное в предыдущем разделе.

Откольное разрушение гафния моделировалось в рамках модели мгновенного откола. Считалось, что в лагранжевой частице образца мгновенно образуются две свободные поверхности, как только давление в этой частице достигнет значения $\sigma_s = -4$ GPa. Было проведено также моделирование "безоткольных" экспериментов, соответствующих бесконечно большой (по абсолютной величине) откольной прочности. Результаты моделирования представлены на рис. 2, *b* и рис. 2, *c*.

Как видно, в случае моделирования экспериментов с простой преградой в постановке рис. 1, a, модельный профиль 2 на рис. 2, c удовлетворительно воспроизводит откольный импульс в момент t_S и последующую его циркуляцию в откольной пластине в виде ступенчатой разгрузки. Видно также существенное различие "безот-кольного" профиля 3 и экспериментального профиля 1 после момента t_S .

Модельный профиль 2 на рис. 2, b, соответствующий усложненной преграде по схеме рис. 1, b, также практически совпадает с экспериментальным профилем 1. Отметим, что в этом случае "безоткольный" профиль 3 незначительно отличается от профиля 2, содержащего откольный импульс. Этот результат позволяет идентифицировать малозаметную особенность на экспериментальном профиле 1 в области t_S как откольное разрушение образца в усложненной постановке рис. 2, b. Таким образом, рассматриваемая модель, во-первых, обладает прогностическими возможностями и, во-вторых, позволяет квалифицировать экспериментальные профили в постановке эксперимента рис. 1, b как экспериментальные данные по откольному разрушению образца гафния в усложненных условиях слоистой преграды.

5. Заключение

Проведены эксперименты по измерению откольной прочности образцов гафния ГФИ-1 в плоской одномерной постановке. Амплитуда нагружающей ударной волны в гафнии составила величину 91(2) GPa. Температура ударного сжатия образцов составила 2300 К. Откольная прочность гафния, предварительно сжатого и разогретого в ударной волне, составила величину $\sigma_s = -4(1)$ GPa при температуре 1680(380) К. Построены полуэмпирические уравнения состояния полиморфных модификаций гафния α -Hf и β -Hf и линии равновесия этих модификаций в области давлений до ~ 100 GPa и температур до ~ 2000 К. С использованием полученных экспериментальных и расчетных результатов проведено прогностическое моделирование откола в выполненных экспериментах.

Финансирование работы

Работа выполнена при поддержке Госкорпорации "Росатом" в рамках государственного контракта № Н.4х.241.9Б.17.1013 от 20.02.2017 и Госзадания № 0089-2019-0001. с использованием оборудования Уникальной научной установки "Экспериментальный взрывной стенд".

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] А.М. Молодец, А.С. Савиных, А.А. Голышев, Г.В. Гаркушин. Письма в ЖТФ **45**, *2*, 29 (2019).
- [2] K.A. Gschneidner. Solid State Phys. 16, 275 (1964).
- [3] D.E. Grady, M.E. Kipp. In: High-Pressure Shock Compression of Condensed Matter / Eds J.R. Asay and M. Shahinpoor. Springer-Verlag, N.Y. Berlin Heidelberg. (1992). P. 265.
- [4] А.А. Голышев, А.М. Молодец. ФГВ 49, 2, 106 (2013).
- [5] S.P. Marsh, Shock Hugoniot Data / Eds S.P. Marsh. Univ. California LASL Press, Berkeley (1980).
- [6] S.A. Ostanin, V.Y. Trubitsin. Comput. Mater. Sci. 17, 174 (2000).
- [7] Hrubiak R. Exploring thermal and mechanical properties of selected transition elements under extreme conditions: experiments at high pressures and high temperatures [PhD thesis]. Miami, Florida International University (2012).
- [8] Cheng-Bin Zhang, Wei-Dong Li, Ping Zhang, Bao-Tian Wang. Comput. Mater. Sci. 157, 121 (2019).
- [9] R. McQueen, S. Marsh, J. Taylor, J. Fritz, W. Carter. in High Velocity Impact Phenomena. High-Velocity Impact Phenomena / Ed. R. Kinslow. Academic Prss, N.Y. and London (1970). P. 293.
- [10] А.А. Баканова, И.П. Дудоладов, Ю.Н. Сутулов. ФТТ 11, 1881 (1969).
- [11] А.М. Молодец. ЖЭТФ 107, 3, 824 (1995).
- [12] A.M. Molodets. High Press. Res. 30, 325 (2009).
- [13] Л.В. Альтшулер, С.Б. Кормер, А.А. Баканова, Р.Ф. Трунин. ЖЭТФ 38, 3, 790 (1960).
- [14] K. Pandey, J. Gyanchandani, M. Somayazulu, G.K. Dey, Surinder M. Sharma, S.K. Sikka. J. Appl. Phys. 115, 233513 (2014).
- [15] В.В. Ким, А.А. Голышев, Д.В. Шахрай, А.М. Молодец. В сб.: Тр. XI Междунар. конф. "Забабахинские научные чтения". Снежинск (2012); http://www.vniitf.ru/images/zst/2012/s6/6-24.pdf.
- [16] А.М. Молодец. ФТТ 57, 10, 1992 (2015).
- [17] W. Carter, S. Marsh. Hugoniot equation of state of polymers, Report № LA-13006-MS, Los Alamos National Laboratory, NM (1995).
- [18] А.М. Молодец. ФТТ 56, 11, 2162 (2014).

Редактор Ю.Э. Китаев