10

Люминесцентные и нелинейно-оптические свойства боратов $LnGa_3(BO_3)_4$ (Ln = Nd, Sm, Tb, Er, Dy, Ho)

© Н.Н. Кузьмин^{1,2}, К.Н. Болдырев^{1,3,¶}, Н.И. Леонюк², С.Ю. Стефанович⁴, М.Н. Попова¹

¹ Институт спектроскопии РАН,

108840 Троицк, Москва, Россия

² Московский государственный университет, геологический факультет,

119234 Москва, Россия

³ Национальный исследовательский университет "Высшая школа экономики",

101000 Москва, Россия

⁴ Московский государственный университет, химический факультет,

119234 Москва, Россия

[¶]e-mail:kn.boldyrev@gmail.com

Поступила в редакцию 15.05.2019 г. В окончательной редакции 15.05.2019 г. Принята к публикации 17.05.2019 г.

Впервые представлены спектры люминесценции монокристаллов редкоземельно-галлиевых боратов $LnGa_3(BO_3)_4$ (Ln = Nd, Sm, Tb, Er, Dy, Ho) при комнатной (300 K) и криогенной (10 K) температурах. Фотолюминесценция регистрировалась в диапазоне длин волн $470-5000 \text{ nm} (21300-2000 \text{ cm}^{-1})$ с высоким спектральным разрешением (до 0.1 cm^{-1}) при возбуждении различными диодными лазерами. Полученные спектры не удается однозначно интерпретировать в рамках одного люминесцирующего центра, что может быть связано с наличием дефектов и/или включений других кристаллических фаз. Проведена оценка оптической нелинейности редкоземельно-галлиевых боратов с помощью порошковой методики Курца-Перри. Типичные значения интенсивности генерации второй гармоники в порошках галлиевых боратов по отношению к кварцу — 30-40, а оптическая нелинейность не уступает нелинейности эффективного редкоземельно-алюминиевого бората YAl₃(BO₃)₄.

Ключевые слова: кристаллы редкоземельных галлиевых боратов, спектры люминесценции, генерация второй гармоники.

DOI: 10.21883/OS.2019.07.47937.101-19

Введение

Редкоземельные (РЗ) галлиевые бораты составляют подсемейство обширного семейства двойных боратов с общей формулой RM₃(BO₃)₄ (где R = Y или Ln = La - Nd, Sm - Lu; M = Al, Ga, Sc, Fe, Cr), 12 первых представителей которого были отнесены к структурному типу минерала хантита CaMg₃(CO₃)₄ с пространственной группой R32(D₃⁷) [1,2]. Соединения RM₃(BO₃)₄ в зависимости от размеров катионов R³⁺ и M³⁺, а также условий роста могут иметь иную симметрию — C2/c (D_{2h}^6) , Z = 4 и C2 (C_2^3) , Z = 4 [3-7]. Во всех структурах присутствуют три сорта координационных полиэдров: октаэдры MO₆, тригональные призмы RO₆ и два типа треугольников ВО3. При этом соединенные ребрами октаэдры МО₆ образуют винтовые цепочки вдоль тройной кристаллографической оси с, а призмы RO₆, расположенные между цепочками, изолированы друг от друга — в результате мало концентрационное тушение люминесценции. В структурах R32 и C2/c имеется только одна кристаллографическая позиция для ионов \mathbb{R}^{3+} , однако ее симметрия понижается от D_3 в группе R32 до C_2 в группе C2/c. В структуре C2 две позиции для ионов \mathbb{R}^{3+} , C_2 и C_1 . Группы R32

и С2 — нецентросимметричные, в них допускается генерация второй гармоники. Высокий квантовый выход люминесценции и большая оптическая нелинейность в сочетании с высокой механической прочностью, высокой теплопроводностью, химической стабильностью привели к созданию различных лазеров с самоудвоением и самосмешением частот на основе кристаллов алюминиевых и скандиевых боратов. На кристаллах $Y_{1-x}Gd_xAl_3(BO_3)_4:Nd$ (YGAB:Nd) получена генерация света трех основных цветов ([8] и ссылки в этой работе). Высокоэффективный непрерывный перестраиваемый лазер с диодной накачкой и с самоудвоением частоты был создан на кристаллах YAl₃(BO₃)₄:Yb (YAB:Yb) [9]. На основе кристаллов $RAl_3(BO_3)_4$: Er, Yb (R = Y, Lu, Gd) работают условно безопасные для глаз лазеры различных типов ([10] и ссылки в этой работе). Концентрированные кристаллы бората NdAl₃(BO₃)₄ были использованы для создания минилазеров ([11] и ссылки в этой работе). Недавно было показано, что нанокристаллы NdAl₃(BO₃)₄ — эффективная рабочая среда для порошкового лазера [12]. В работе [13] продемонстрирована генерация в порошках EuAl₃(BO₃)₄ и предложено использовать этот материал для разработки систем визуальной информации повышенной яркости. В настоящее время многие исследовательские группы работают над созданием лазеров и люминофоров на основе YAI- и GdAI-боратов, легированных различными РЗ и *d*-ионами [14–17]. Нелегированные кристаллы YAI-боратов оказались эффективной средой для генерации четвертой гармоники неодимового лазера (266 nm) [18].

Гораздо менее изучены галлиевые бораты из семейства хантитов. Имеются единичные работы по изучению кристаллической структуры, условий роста [3,19–22] и спектроскопических свойств [22]. В частности, в работе [22] приведены спектры поглощения и люминесценции боратов EuGa₃(BO₃)₄ и HoGa₃(BO₃)₄ при комнатной температуре.

В настоящей работе получены спектры люминесценции галлиевых боратов $LnGa_3(BO_3)_4$ (Ln = Nd, Sm, Tb, Er, Dy, Ho) при комнатной (300 K) и криогенной (10 K) температурах при возбуждении коммерческими диодными лазерами. Кроме того, проведена оценка оптической нелинейности этих соединений с помощью порошковой методики Курца-Перри [23].

Эксперимент

Методика приготовления кристаллических образцов

LnGa-бораты размером около $1 \times 1 \times 1$ mm были получены в результате спонтанной кристаллизации из раствора в расплаве на основании данных о фазовых соотношениях в псевдотройной системе LnGa₃(BO₃)₄- $Bi_2O_3-B_2O_3$ при соотношении $Bi_2O_3:B_2O_3$ от 1:1 до 3:1 [3,22]. Исходные компоненты Ln₂O₃, Ga₂O₃, Bi₂O₃ и В2О3 квалификации ХЧ перемешивались в агатовой ступке до гомогенной смеси и помещались в 10-15 ml платиновые тигли, которые нагревались в печи с резистивным нагревателем из Cr-Ni-сплава до 1000°C в течение 24-48 h. Затем осуществлялось предельно быстрое охлаждение до 900°C с последующим понижением температуры до 700°С со скоростью 1-2°С/h. Контроль температуры осуществлялся Pt-Rh/Pt-термопарой (в комплекте с контроллером PROTHERM-100) с точностью ±0.1°С. В конце процесса роста тигель быстро (20-30°C/h) охлаждался до 300°С и извлекался из печи.

Люминесцентная спектроскопия

Спектры фотолюминесценции неориентированных кристаллов редкоземельно-галлиевых боратов регистрировались на фурье-спектрометре Bruker IFS 125 HR с разрешением до $0.1 \,\mathrm{cm^{-1}}$ в широком спектральном диапазоне (2000–21300 cm⁻¹, что соответствует длинам волн от 5 до $0.47\,\mu\mathrm{m}$) при низкой (10 K) и комнатной (300 K) температурах без поправки на спектральную чувствительность приемников. Низкотемпературные измерения осуществлялись с использованием

криостата замкнутого цикла Cryomech PT403. В качестве источников возбуждения использовался набор коммерческих непрерывных диодных лазеров синего и ультрафиолетового диапазонов (462 nm, 445 nm и 365 nm). Мощность лазерного излучения на образце не превышала 10 mW/mm², диаметр пятна фокусировки ~ 0.5 mm.

Методика оценки нелинейно-оптических свойств

Нелинейно-оптическая активность галлиевых боратов оценивалась по относительной интенсивности генерации второй гармоники (ГВГ) в исследуемом материале в виде мелкодисперсного порошка (с размером кристаллитов ~ 5 μ m) и в α -кварце [23] с использованием схемы на отражение [24].

Результаты порошкового метода Курца-Перри [23] в его традиционном варианте для кристаллов с фазовым синхронизмом, к которым относятся хантитоподобные бораты, сильно зависят от длины волны зондирующего лазерного излучения (λ_{ω}) и его второй гармоники ($\lambda_{2\omega}$). Наиболее высокий выход ГВГ достигается в случае прозрачности кристаллов на обеих длинах волн и при оптимальных условиях фазового синхронизма. Именно в таких условиях получена рекордная интенсивность второй гармоники в кристаллах в работах [9,18]. Умеренное оптическое поглощение на λ_{ω} и $\lambda_{2\omega}$ может быть учтено путем введения коэффициентов в виде соответственно $\exp(-\alpha_{\omega}L)$ и $\exp(-\alpha_{2\omega}L)$, где α_{ω} и $\alpha_{2\omega}$ — поглощение в данной части спектра, а L — толщина кристалла. С учетом всех этих обстоятельств для коэффициента d_{11} тензора оптической нелинейности YAl₃(BO₃)₄ было получено значение 1.7 pm/V [18]. Для аналогичных галлатов нам не удалось найти количественных данных по их оптической нелинейности.

Чтобы минимизировать влияние оптического поглощения в использованной нами методике, использовались тщательно перетертые кристаллические порошки, для которых *L* составляет около 5 μ m. Это позволяет получить приемлемую ошибку в определении интенсивности (10–20%) даже при коэффициентах поглощении $\alpha \sim 10-20 \text{ cm}^{-1}$. Одновременно малый размер кристаллита исключает эффекты, связанные с влиянием на ГВГ эффекта наличия или отсутствия фазового синхронизма [23]. Для измерений ГВГ был использован YAG:Nd-лазер Minilite-I ($\lambda_{\omega} = 1.064 \,\mu$ m), работавший в режиме модулированной добротности. Регистрация сигнала ГВГ от порошкового препарата проводилась с помощью фотоэлектрического умножителя по схеме на отражение [24].

Подобная кристаллу кварца симметрия хантитоподобных веществ (*R*32) делает α -кварц наиболее удобным для использования в качестве эталона сравнения с известным для него значением $d_{11}(SiO_2) = 0.364 \text{ pm/V}.$

Рис. 1. Спектр люминесценции NdGa₃(BO₃)₄ при температуре 10 К (синяя линия) и комнатной (красная линия). Сверху указаны соответствующие переходы. Длина волны возбуждающего света $\lambda_{exc} = 445$ nm.

Расчет проводился по формуле

$$d_{11}^{2\omega} = d_{11}(\text{SiO}_2) \, \frac{(n^{2\omega} + 1)^3}{(n_{\text{SiO}_2}^{2\omega})^3} \sqrt{\frac{I_{2\omega}}{I_{2\omega}(\text{SiO}_2)}}.$$
 (1)

Формула (1) получена из формулы, приведенной в [23], при условии $L \ll l_{\rm coh}$, где $l_{\rm coh}$ — длина когерентности. Последнее условие при $L = 5\,\mu{\rm m}$ заведомо выполняется, так как $l_{\rm coh} = 20\,\mu{\rm m}$ для кварца, и $l_{\rm coh} \to \infty$ в случае хантитоподобных боратов [3,18].

Спектры люминесценции

На рис. 1–6 показаны обзорные спектры люминесценции галлиевых боратов $LnGa_3(BO_3)_4$ (Ln = Nd, Sm, Tb, Dy, Ho, Er) при двух значениях температуры.

Спектры состоят из сравнительно узких линий, соответствующих оптическим переходам в незаполненной $4f^n$ -оболочке РЗ ионов. Минимальные ширины линий (по полувысоте) составляют $3-4 \text{ cm}^{-1}$ при низкой температуре и несколько десятков волновых чисел при комнатной температуре. Примечательно, что даже при комнатной температуре все РЗ галлиевые бораты интенсивно люминесцируют. Глазом видно яркое зеленое свечение TbGa₃(BO₃)₄ и яркое красное свечение EuGa₃(BO₃)₄ [22]. В спектре люминесценции NdGa₃(BO₃)₄ при комнатной температуре выделяется интенсивная линия 1.065 μ m, соответствующая лазерному переходу ${}^{4}F_{3/2} \rightarrow {}^{4}I_{11/2}$ в ионе Nd³⁺. Интенсивная ИК люминесценция кристаллов ErGa₃(BO₃)₄ около 1.6 μ m представляет особый интерес, так как попадает в область телекоммуникационных длин волн, для которых минимальны потери в оптических волокнах, используемых для линий связи.

Надо отметить, что для всех кристаллов число линий в низкотемпературных спектрах люминесценции превышает максимально возможное для одного люминесцирующего центра. На рис. 3, b показан участок спектра люминесценции TbGa₃(BO₃)₄, соответствующий переходу с нижнего штарковского уровня в мультиплете ⁵*D*₄ на синглет ⁷*F*₀ (следующий по энергии штарковский уровень в мультиплете 5D_4 расположен на $\sim 50\,{
m cm}^{-1}$ выше). Здесь должна быть одна спектральная линия в случае однофазного одноцентрового кристалла. Тем не менее видны две линии, разделенные интервалом $\sim 30\,{
m cm^{-1}}$, при этом высокочастотная имеет отчетливую тонкую структуру, состоящую, как минимум, из четырех компонент. Такая тонкая структура может быть связана с центрами, расположенными рядом с дефектами. Как было показано для RAl-боратов, примеси, входящие в кристалл из флюса в процессе раствор-расплавной кристаллизации, приводят к такому неоднородному расщеплению спектральных линий РЗ иона [25]. Наличие двух хорошо разделенных линий говорит, скорее всего, о неоднофазности кристалла. Сосуществование двух политипов (R32 и C2/c) в одном кристалле P3 галлиевых боратов неодима и европия было ранее обнаружено методом колебательной ИК спектроскопии [22].

Рис. 2. Спектр люминесценции SmGa₃(BO₃)₄ при температуре 10 К (синяя линия) и комнатной (красная линия). Сверху указаны соответствующие переходы. Длина волны возбуждающего света $\lambda_{exc} = 445$ nm.

Рис. 3. (*a*) Обзорный спектр люминесценции TbGa₃(BO₃)₄ при температурах 10 К (синяя линия) и 300 К (красная линия). Сверху указаны соответствующие переходы; (*b*) участок спектра, соответствующий переходу с нижнего штарковского уровня в мультиплете ${}^{5}D_{4}$ на основной синглет (${}^{7}F_{0}$). Длина волны возбуждающего света $\lambda_{exc} = 365$ nm.

 $RGa_3(BO_3)_4$

Рис. 4. Спектр люминесценции DyGa₃(BO₃)₄ при температуре 10 К (синяя линия) и комнатной (красная линия). Сверху указаны соответствующие переходы. Длина волны возбуждающего света $\lambda_{\text{exc}} = 445$ nm.

R Цвет $I_{2\omega}/I_{2\omega}(\text{SiO}_2)$ d_{11} , pm/V

Нелинейно-оптические свойства РЗ галлиевых

Nd	Сиреневый	10	1.0
Sm	Бледно-желтый	40	1.9
Eu	Бледно-желтый	36	1.8
Gd	Бесцветный	27	1.6
Tb	Бесцветный	35	1.8
Dy	Бледно-желтый	28	1.6
Ho	Слабо-желтый	30	1.7
Er	Бледно-розовый	23	1.5

боратов

Нелинейно-оптические свойства

В таблице приведены значения относительной интенсивности ГВГ и нелинейно-оптического коэффициента d_{11} для хантитоподобных боратов галлатного ряда. Значения интенсивности ГВГ в порошках галлиевых боратов по отношению к α -кварцу пересчитывались в абсолютные значения нелинейно-оптического коэффициента d_{11} по формуле (1) с использованием $n \approx 1.70$ для боратов [3], $n_{SiO_2} \approx 1.55$ и $d_{11}(SiO_2) = 0.364$ pm/V для кварца [26].

Исключая первое соединение в таблице, на расчете оптической нелинейности которого в наибольшей степени сказалось сильное поглощение излучения неоди-

мового лазера, исследованные бораты галлатного ряда демонстрируют один порядок оптической нелинейности, совпадающий с имеющимися данными для $YAl_3(BO_3)_4$, $d_{11} = 1.7$ [18]. Существенно меньшее значение для $NdGa_3(BO_3)_4$ может быть также обусловлено примесью центросимметричной фазы C2/c [22].

Обращает на себя внимание ослабление оптической нелинейности изученных хантитов по мере уменьшения размера катиона РЗЭ. Наблюдаемое явление имеет достаточно общий характер и, по-видимому, отражает уменьшение нелинейной поляризуемости в треугольниках ВО₃ по мере сокращения связей В–О.

Заключение

Выполнено спектроскопическое исследование люминесцентных свойств серии кристаллов редкоземельногаллиевых боратов LnGa₃(BO₃)₄ (Ln = Nd, Sm, Tb, Er, Dy, Ho) со структурой минерала хантита. Все эти соединения интенсивно люминесцируют даже при комнатной температуре. Яркое зеленое свечение TbGa₃(BO₃)₄ и красное свечение EuGa₃(BO₃)₄ хорошо видны глазом. Эти кристаллические материалы могут быть перспективны в качестве люминофоров.

В ИК спектрах люминесценции $NdGa_3(BO_3)_4$ и ErGa₃(BO₃)₄ при комнатной температуре выделяются соответственно интенсивные линии 1.065 и 1.6 μ m, что представляет интерес для возможных лазерных приме-

Рис. 5. Спектр люминесценции HoGa₃(BO₃)₄ при температуре 10 К (синяя линия) и комнатной (красная линия). Сверху указаны соответствующие переходы. Длина волны возбуждающего света $\lambda_{exc} = 462$ nm.

Рис. 6. Спектр люминесценции $ErGa_3(BO_3)_4$ при температуре 10 К (синяя линия) и комнатной (красная линия) на переходе ${}^4I_{13/2} \rightarrow {}^4I_{15/2}$. Длина волны возбуждающего света $\lambda_{exc} = 445$ nm.

нений. Отсутствие концентрационного тушения люминесценции обусловлено особенностями кристаллической структуры хантитов, в которой LnO₆-полиэдры изолированы друг от друга и не имеют общих ионов кислорода.

Анализ спектров высокого разрешения показал наличие нескольких типов РЗ центров в боратах LnGa₃(BO₃)₄. Это может быть связано с присутствием политипных модификаций в одном кристалле и с искажением кристаллического поля центра расположенной рядом примесью, вошедшей в кристалл в процессе его выращивания раствор-расплавным методом. Установлено, что порошки LnGa₃(BO₃)₄, за исключением NdGa₃(BO₃)₄, под действием YAG:Nd-лазера дают эффект ГВГ в 30-40 раз интенсивнее кварца. Соответствующий этому коэффициент оптической нелинейности d_{11} составляет 1.5-1.9 pm/V с тенденцией к уменьшению к концу лантаноидного ряда LnGa₃(BO₃)₄. Меньшее значение ГВГ для NdGa₃(BO₃)₄ связано прежде всего с невозможностью корректного учета в этом веществе сильного поглощения излучения неодимового лазера, а также с вероятной примесью центросимметричной фазы.

Благодарности

Спектроскопическое исследование выполнено на Уникальной Научной Установке ИСАН "Мультифункциональная широкодиапазонная спектроскопия высокого разрешения" [27].

Финансирование работы

Работа выполнена при поддержке гранта РНФ № 19-12-00413.

Список литературы

- Ballman A.A. // American Mineralogist: J. Earth and Planetary Materials. 1962. V. 47. N 11–12. P. 1380.
- Mills A.D. // Inorganic Chemistry. 1962. V. 1. N 4. P. 960. doi 10.1021/ic50004a063
- [3] Leonyuk N.I., Leonyuk L.I. // Progress in Crystal Growth and Characterization of Materials. 1995. V. 31. N 3–4. P. 179. doi 10.1016/0960-8974(96)83730-2
- [4] Белоконева Е.Л., Тимченко Т.И. // Кристаллография. 1983.
 Т. 28. № 6. С. 1118.
- [5] Белоконева Е.Л., Леонюк Н.И., Пашкова А.В., Тимченко Т.И. // Кристаллография. 1988. Т. 33. № 5. С. 1287.
- [6] Белоконева Е.Л., Симонов М.А., Пашкова А.В., Тимченко Т.И., Белов Н.В. // ДАН СССР. 1980. Т. 255. № 4. С. 854.
- [7] Plachinda P.A., Belokoneva E.L. // Cryst. Res. Technol. 2008.
 V. 43. N 2. P. 157. doi 10.1002/crat.200711071
- [8] Burns P.A., Dawes J.M., Dekker P., Piper J.A., Li J., Wang J. // Opt. Commun. 2002. V. 207. N 1–6. P. 315. doi 10.1016/S0030-4018(02)01500-6
- Dekker P, Dawes J.M., Piper J.A., Liu Y, Wang J. // Opt. Commun. 2001. V. 195. N 5–6. P. 431. doi 10.1016/S0030-4018(01)01347-5
- [10] Gorbachenya K.N., Kisel V.T., Yasukevich A.S., Maltsev V.V., Leonyuk N.I., Kuleshov N.V. // Opt. Lett. 2016. V. 41. N 5. P. 918. doi 10.1364/OL.41.000918
- Bovero E., Luo Z.D., Huang Y.D., Benayas A., Jaque D. // Appl. Phys. Lett. 2005. V. 87. N 21. P. 211108. doi 10.1063/1.2133893
- [12] Moura A.L., Maia L.J., Gomes A.S., De Araujo C.B. // Opt. Mater. 2016. V. 62. P. 593. doi 10.1016/j.optmat.2016.11.010
- [13] Малашкевич Г.Е., Сигаев В.Н., Голубев Н.В., Мамаджанова Е.Х., Данильчик А.В., Луценко Е.В. // Письма в ЖЭТФ. 2010. Т. 92. № 8. С. 547.
- Malysa B., Meijerink A., Jüstel T. // J. Luminesc. 2016. V. 171.
 P. 246. doi 10.1016/j.jlumin.2015.10.042
- [15] Ryba-Romanowski W., Lisiecki R., Beregi E., Martin I.R. // J. Luminesc. 2015. V. 167. P. 163. doi 10.1016/j.jlumin.2015.06.010
- [16] Reddy G.L., Moorthy L.R., Packiyaraj P., Jamalaiah B.C. // Opt. Mater. 2013. V. 35. N 12. P. 2138. doi 10.1016/j.optmat.2013.05.038
- [17] Açıkgöz M., Gnutek P. // Opt. Mater. 2014. V. 36. N 8. P. 1311. doi 10.1016/j.optmat.2014.03.021
- [18] Ilas S., Loiseau P., Aka G., Taira T. // Optics Express. 2014.
 V. 22. N 24. P. 30325. doi 10.1364/OE.22.030325
- [19] Belokoneva E.L., Al'shinskaya L.I., Simonov M.A., Leonyuk N.I., Timchenko T.I., Belov N.V. // J. Structural Chemistry. 1978. V. 19. N 2. P. 332. doi 10.1007/BF00746983
- [20] Al'Shinskaya L.I., Leonyuk N.I., Timchenko T.I. // Kristall und Technik. 1979. V. 14. N 8. P. 897. doi 10.1002/crat.19790140802

- Beregi E., Watterich A., Madarász, J., Tóth M., Polgár K. // J. Crystal Growth. 2002. V. 237. P. 874. doi 10.1016/S0022-0248(01)02042-5
- [22] Borovikova E.Y., Boldyrev K.N., Aksenov S.M., Dobretsova E.A., Kurazhkovskaya V.S., Leonyuk N.I., Savon A.E., Deyneko D.V., Ksenofontov D.A. // Opt. Mater. 2015. V. 49. P. 304. doi 10.1016/j.optmat.2015.09.021
- [23] Kurts C.K., Perry T.T. // J. Appl. Phys. 1968. V. 39. N 8. P. 3798. doi 10.1063/1.1656857
- [24] Beskorovaynaya D.A., Deyneko D.V., Baryshnikova O.V., Stefanovich S.Y., Lazoryak B.I. // J. Alloys and Compounds. 2016. V. 674. P. 323. doi 10.1016/j.jallcom.2016.02.218
- [25] Boldyrev K.N., Popova M.N., Bettinelli M., Temerov V.L., Gudim I.A., Bezmaternykh L.N., Loiseau P., Aka G., Leonyuk N.I. // Opt. Mater. 2012. V. 34. N 11. P. 1885. doi 10.1016/j.optmat.2012.05.021
- [26] Прохоров А.М. Справочник по лазерам. М.: Сов. Радио, 1978. Т. 1, 2.
- [27] Уникальные научные установки. [Электронный ресурс] Режим доступа: http://www.ckp-rf.ru/usu/508571