06;13

Исследование многослойных тонкопленочных структур методом резерфордовского обратного рассеяния

© В.И. Бачурин, Н.С. Мелесов, Е.О. Паршин, А.С. Рудый, А.Б. Чурилов

Ярославский филиал Физико-технологического института им. К.А. Валиева РАН, Ярославль, Россия E-mail: vibachurin@mail.ru

Поступило в Редакцию 20 марта 2019 г. В окончательной редакции 20 марта 2019 г. Принято к публикации 25 марта 2019 г.

> Представлены результаты изучения возможностей метода резерфордовского обратного рассеяния для анализа многослойной структуры, содержащей слои нанометрового масштаба с близкими по массам элементами. Показано, что резерфордовское обратное рассеяние позволяет с достаточно высокой точностью определять состав таких структур, толщину пленки в целом и толщины отдельных слоев и может использоваться для входного контроля технологических структур, применяемых в микро- и нанотехнологиях.

> Ключевые слова: многослойные тонкопленочные структуры, послойный анализ, резерфордовское обратное рассеяние.

DOI: 10.21883/PJTF.2019.12.47914.17798

Многослойные тонкопленочные структуры находят широкое применение в микро- и нанотехнологиях. Для оптимизации свойств таких пленок, зависящих от химического состава слоев и их толщин, необходимо иметь информацию о распределении элементов по глубине, а также о толщине и плотности слоев пленки. Эти данные можно получать, используя как разрушающие поверхность образца методы (вторично-ионная массспектрометрия, растровая электронная оже-спектроскопия и др.), так и неразрушающие методы анализа (резерфордовское обратное рассеяние, РОР) [1,2]. К преимуществам первых относится достаточно хорошее разрешение по глубине, которое при подборе условий ионной бомбардировки может составлять единицы нанометров. Однако ионное перемешивание и развитие топографического рельефа при распылении приводят к ухудшению послойного разрешения при увеличении числа слоев, а проведение количественного анализа требует применения эталонных образцов. РОР является неразрушающим количественным методом анализа поверхности и широко применяется при изучении химического состава и толщин пленок субмикронного масштаба. К недостаткам метода можно отнести невысокое послойное разрешение (5-15 nm) и трудности, возникающие при анализе структур с близкими по массе элементами. Но имеющиеся возможности моделирования экспериментальных спектров позволяют получать надежную информацию при послойном анализе многослойных тонкопленочных структур нанометрового масштаба, содержащих элементы с близкими массами [3,4].

В работе представлены результаты изучения возможностей метода РОР для анализа таких структур. В качестве образца использовались многослойные пленки, полученные методом магнетронного напыления. В табл. 1 представлены толщины слоев и содержание в них

элементов. Числа перед составом слоя указывают его толщину в нанометрах по данным технологического процесса. Подобного типа пленки используются в настоящее время для создания магнитно-туннельных переходов с высокими функциональными характеристиками. Встраивание их в последующие схемы требует проведения более 20 технологических операций. Поэтому желательно проведение входного контроля подобных структур на предмет состава и толщины слоев. Анализ, проведенный ранее с помощью вторично-ионной масс-спектрометрии, не позволил получить достоверную информацию о распределении элементов в слоях и их толщинах в пленке [5].

Исследование образцов проводилось на установке К2МV (HVEE). Использовались ионы He⁺ с энергией 1.2 и 1.9 MeV и ионы He⁺⁺ с энергией 3.1 MeV. Угол рассеяния ионов во всех экспериментах составлял $\theta = 165^{\circ}$, угол падения ионного пучка на образец при энергии $1.2\,\mathrm{MeV}$ был равен $\alpha=30^\circ$ (угол выхода из образца $\beta = 45^{\circ}$), при остальных энергиях $\alpha = 8.6^{\circ}$ ($\beta = 22.5^{\circ}$). Для создания модели образца в точке P1 (рис. 1) регистрировались спектры обратнорассеянных ионов при различных экспериментальных условиях. Из-за различных параметров измерений на этих спектрах происходит наложение сигналов элементов в отличающихся комбинациях, что использовалось для подбора модели, удовлетворяющей всем спектрам сразу [6]. Моделирование экспериментальных спектров проводилось с помощью программы SIMNRA [7].

При рассеянии ионов He⁺⁺ с энергией 3094 keV удалось практически полностью разрешить сигналы от Ru (слои 1 и 6) и от внутренних слоев Ta (слои 10 и 12). В спектрах, полученных при рассеянии ионов He⁺ с энергией 1237 и 1856 keV, большинство пиков соседних элементов накладывается друг на друга, но из них

	Слой	Состав			
Номер слоя		Элемент	Содержание		Толщина, 10^{15} atom/cm ² (nm)
			at.%	10 ¹⁵ atom/cm ²	
1	2	3	4	5	6
1	7Ru	Ru	100	51.479	51.479 (6.96)
2	10Ta	Та	100	51.512	51.512 (9.30)
3	$2.5 Co_{0.60} Fe_{0.20} B_{0.20}$	Co Fe B	60 20 20	10.5 3.5 3.5	17.5
4	2MgO	Mg O	50 50	10.1 10.1	20.2 (1.89)
5	$2.5 Co_{0.60} Fe_{0.20} B_{0.20}$	Co Fe B	60 20 20	10.5 3.5 3.5	17.5
6	0.9Ru	Ru	100	5.904	5.904 (0.8)
7	2.0Co _{0.70} Fe _{0.30}	Co Fe	63.1557 36.8443	15.343 8.951	24.294
8	$16 Ir_{0.18} Mn_{0.82}$	Ir Mn	24.3649 75.6351	26.632 82.673	109.305
9	3NiFe	Ni Fe	62.6456 37.3544	20.435 12.185	32.620
10	5Ta	Та	100	26.555	26.555 (4.79)
11	30CuN	Cu N	87.1679 12.8321	230.471 33.928	264.399
12	5Ta	Та	100	26.552	26.552 (4.79)

Таблица 1. Структура и состав образца по данным технологического процесса напыления пленки и результатам моделирования спектров POP

удалось выделить уровень сигнала Со и положение экстремума пика Ir.

Получение информации о легких элементах в образце (B, N, O, Mg) затруднено, поскольку их сигналы сравнимы с уровнем шума. Однако использование ионов He⁺⁺ с энергией 3052 keV позволило оценить содержание O в слое MgO с помощью резонансного ядерного рассеяния, сечение которого более чем в 20 раз превышает резерфордовское сечение рассеяния [8].

В табл. 1 представлены состав и толщины слоев пленки. В столбце 1 указан номер слоя от поверхности, в столбце 2 — толщина и химический состав слоя по данным технологического процесса осаждения пленки, в столбце 3 — элементы, содержащиеся в слое, в столбцах 4 и 5 — содержание элементов в слое, а в столбце 6 — толщина слоев по результатам моделирования. При переводе толщины слоев из принятой в методе РОР шкалы atom/cm² в пт плотность моноэлементных слоев и слоя оксида магния принималась равной плотности массивных материалов. Количество Ru и Ta в слоях определено с ошибкой, не превышающей $\pm 5\%$, а О — с точностью не хуже $\pm 9\%$. Оценка погрешности в определении содержания остальных элементов

в образце затруднительна, поскольку при построении модели изменение содержания одного элемента может компенсироваться изменением содержания другого.

Из табл. 1 видно, что химический состав слоев модельного образца заметно отличается от заявленного начиная со слоя 7. Отметим низкое содержание N в слое CuN. По данным рентгеноструктурного анализа, выполненного в [5], в слое 11 присутствует стехиометрический Cu₃N. По результатам POP-анализа можно заключить, что состав этого слоя представляет собой смесь чистой меди и нитрида меди (Cu₃N). Различия состава в многокомпонентных слоях могут быть связаны с подгонкой модели к экспериментальным спектрам. Видно, что толщины слоев и их состав, измеренные по результатам анализа спектров POP, довольно близки в большинстве случаев к данным технологического процесса напыления структуры.

Для исследования возможности контроля изменения толщины по образцу проводились сравнения спектров, полученных в различных точках пленки, расположенных вблизи края пластины (рис. 1). На рис. 2 представлены низкоэнергетические и высокоэнергетические части спектров POP, полученные в точках P1, P3,

Рис. 1. Расположение точек многослойной структуры вблизи края пластины SiO₂/Si, в которых регистрировались спектры POP.

Рис. 2. Сравнение низкоэнергетической (a) и высокоэнергетической (b) частей спектров РОР, полученных в точках *P*1, *P*3, *P*4 и *P*5, при энергии зондирующих ионов He⁺, равной 1856 keV.

Р4, Р5. Здесь и далее значения по оси ординат приводятся в нормированных единицах: выходной сигнал многоканального анализатора (МКА) делился на дозу экспозиции (в μ C), телесный угол детектора (в sr) и ширину канала МКА (в eV). Точка РЗ расположена

Таблица 2. Сравнение толщины пленки в различных точках образца

№ п/п	Точка	Расстояние до края, mm	Энергия, keV	Толщина, %
1	<i>P</i> 1	9.0	1237, 3094, 1856	100
2	P2	9.0	3054	100
3	P4	8.4	1856	99.7 ± 0.3
4	P3	7.3	1856	98.9 ± 0.4
5	<i>P</i> 6	6.4	3094	95.7 ± 0.4
6	P7	4.8	1237	91.4 ± 0.7
7	<i>P</i> 5	2.5	1856	65.5 ± 0.8

недалеко от точки P1, но несколько ближе к краю напыления. Точка P4 расположена на большом удалении от точки P1, но на примерно равном с ней расстоянии от края напыления. Точка P5 была взята вблизи края напыления.

Детальный анализ спектров, полученных при различных экспериментальных условиях, показывает, что спектры РОР в точках Р4 и Р1 практически совпадают. Для спектра, полученного в точке РЗ, наблюдается смещение сигнала от глубоких слоев относительно спектра в точке Р1. Особенно отчетливо это заметно по смещению в область более высоких энергий сигнала Та слоя 12. Данный факт свидетельствует об интегральном уменьшении толщины пленки, наблюдение дифференциального уменьшения толщины каждого слоя выходит за пределы точности измерения. На спектре, полученном в точке Р5, отчетливо наблюдается уменьшение толщины как всей пленки, так и каждого слоя по отдельности, причем уменьшение толщины в данном случае существенно превосходит наблюдаемые изменения в точке РЗ.

Если считать, что уменьшение толщины пленки при приближении к краю напыления происходит пропорционально во всех слоях модельной мишени, полученной для спектров, то можно получить количественные значения изменения толщины в каждой точке. При таком допущении толщина в точке P3 меньше толщины в точке P1 на $1.1 \pm 0.4\%$, в точке P4 — на $0.3 \pm 0.3\%$, в точке P5 — на $34.5 \pm 0.8\%$.

На рис. З в качестве примера приведено сравнение экспериментального спектра (точка *P5*) со спектром, полученным на основе модели образца с уменьшенной на 34.5% толщиной. Наблюдается хорошее согласие экспериментального спектра со спектром модельного образца, что позволяет достаточно точно определять толщину тонкопленочной структуры. Более того, видно, что положение экстремума экспериментального сигнала последнего слоя тантала совпадает с модельным пиком, но высота его несколько ниже. Это может быть связано с некорректностью предположения пропорционального уменьшения толщины всех слоев при приближении к краю напыления. Наилучшего совпадения по высоте сигнала от последнего слоя удается добиться при умень-

Рис. 3. Сравнение экспериментального спектра РОР в точке *P*5 с симулированным спектром (линия), полученным на основе модели образца с уменьшенной на 34.5% толщиной.

шении его толщины на 43%, а остальных по-прежнему на 34.5%. В этом случае наилучшим оказывается и смещение сигнала от подложки. Этот факт может свидетельствовать о возможности оценивать не только толщину многослойной структуры, но и толщины отдельных слоев.

Данные по анализу толщины образца сведены в табл. 2. Точки, с которых регистрировались спектры, приводятся в порядке уменьшения расстояния до края напыления.

Таким образом, в результате проведенных экспериментальных исследований показано, что метод резерфордовского обратного рассеяния позволяет с достаточно высокой точностью определять состав многокомпонентных многослойных тонкопленочных структур нанометрового масштаба, толщину пленки в целом и толщины отдельных слоев и может использоваться для входного контроля технологических структур, применяемых в микро- и нанотехнологиях.

Финансирование работы

Работа выполнена в рамках государственного задания Министерства образования и науки РФ Ярославскому филиалу Физико-технологического института им. К.А. Валиева РАН по теме № 0066-2019-0003 на оборудовании Центра коллективного пользования "Диагностика микро- и наноструктур".

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] Oswald S., Baunack S. // Thin Solid Films. 2003. V. 425. P. 9–19. DOI: 10.1016/S0040-6090(02)01097-0
- [2] Escobar Galindo R., Gago R., Lousa A., Albella J.M. // Trends Anal. Chem. 2009. V. 28. P. 494–505.
 DOI: 10.1016/j.trac.2009.01.004

- [3] Коломиец В.Н., Кононенко И.Н., Кравченко С.Н., Захарец М.И., Сторижко В.Е., Ввозный В.И., Бугай А.Н., Девизенко А.Ю. // Металлофизика и новейшие технологии. 2016. Т. 38. № 6. С. 815–823. DOI: 10.15407/mfint.38.06.0815
- [4] Бачурин В.И., Мелесов Н.Н., Мироненко А.А., Паршин Е.О., Рудый А.С., Симакин С.Г., Чурилов А.Б. // Поверхность. 2019. № 4. С. 38–43. DOI: 10.1134/S0207352819040024
- [5] Трушин О.С., Симакин С.Г., Васильев С.В., Смирнов Е.А. // Микроэлектроника. 2018. Т. 47. № 6. С. 424–430. DOI: 10.31857/S054412690002768-1
- [6] Reis M.A., Chaves P.C., Corregitor V., Barradas N.P., Alves E., Dimroth F., Bett A.W. // X-ray Spectrom. 2005. V. 34. P. 372–375. DOI: 10.1002/xrs.841
- [7] Mayer M. SIMNRA User's Guide. Garching, Germany: Max-Planck-Institut für Plasmaphysik, 2011. 220 p.
- [8] Knapp J.A., Barbour J.C., Doyle B.L. // J. Vac. Sci. Technol. A. 1992. V. 10. P. 2685–2690. DOI: 10.1116/1.577959