26 июня

03;09

Диагностика наличия твердых частиц в каплях водяного аэрозоля по их интерференционной картине

© Р.С. Волков, С.В. Чванов, Д.Д. Андриянов

Национальный исследовательский Томский политехнический университет, Томск, Россия E-mail: romanvolkov@tpu.ru

Поступило в Редакцию 28 февраля 2019 г. В окончательной редакции 28 февраля 2019 г. Принято к публикации 25 марта 2019 г.

Представлены результаты экспериментальных исследований по определению влияния твердых частиц в каплях водяного аэрозоля на интерференционную картину последних. Для создания интерференционной картины использованы импульсный Nd: YAG-лазер и CCD-видеокамера. Радиусы капель водяного аэрозоля составляли 10–140 µm. Использованы четыре вида твердых частиц с массовой концентрацией 0.003–1 g/l. Выделены специфические типы интерференционных картин, обусловленные наличием в капле примеси. Установлено влияние типа и концентрации примеси на интегральные характеристики интерференционных картин (количество и вид). Предложен подход для определения концентрации и размеров частиц примеси, основанный на анализе интерференционных картин.

Ключевые слова: капля, аэрозоль, примеси, интерференционная картина.

DOI: 10.21883/PJTF.2019.12.47913.17762

Развитие промышленности сопровождается ростом объемов сточных и технологических вод. Качество очистки последних влияет на технологические, экономические, экологические и социальные проблемы. Это способствует интенсивному развитию способов очистки воды от различного рода загрязняющих примесей. Актуальная задача при выборе эффективных способов очистки состоит в необходимости определения качественных (тип) и количественных (концентрация) характеристик загрязняющих веществ. Известна группа способов определения наличия примеси в жидкости, зависящих от типа загрязняющих веществ [1]: органолептические, химические, физико-химические, микробиологические и др. Большое внимание уделяется наличию в воде инородных органических (как правило, растворимых водой) и неорганических примесей, таких как металлы и их производные, частицы глины, ила и прочих твердых включений [1]. Для диагностики такого типа примесей используют химические методы исследований качества воды [1]. Нередко для исследования примесей применяют оптические (рефрактометрический, интерференционный и др.) методы. Главной особенностью таких методик являются их бесконтактность и невозмущающий характер измерений. Интерферометрические методы имеют целый ряд расширений, среди которых исследование размеров оптически прозрачных капель и пузырей [2-4], контроль поверхности тел [5], определение размеров непрозрачных частиц по спекловой картине [6,7] и др. В области же диагностики наличия примеси наибольшее распространение получили исследования содержания растворимых добавок по изменению коэффициента преломления жидкости [8,9]. Известны работы (например, [10,11]), в которых выполнен анализ интерференционных и спекловых картин капель с целью определения наличия в последних кристалликов льда. Пока отсутствуют результаты исследований, обосновывающих возможность использования интерферометрической техники для определения характеристик и концентрации твердых частиц в каплях жидкости.

Цель настоящей работы — обоснование возможности исследования типа и концентрации примеси твердых частиц в каплях воды по их интерференционной картине.

Методика проведения эксперимента аналогична использованной в [10,11]. С применением малорасходной распылительной форсунки ФМТ-30 генерировался полидисперсный аэрозольный поток с радиусами капель 10-140 µm и начальной скоростью движения около 3 m/s. Поток рассекался в вертикальной плоскости по оси симметрии факела распыла форсунки световым ножом импульсного Nd: YAG-лазера "Quantel EverGreen 70" (длина волны 532 nm, угол раскрытия ножа 22° , толщина ножа 0.2 mm, номинальная мощность в импульсе 37 mJ, частота повторений 4 Hz). При попадании капли аэрозоля в плоскость лазерного ножа регистрировалась интерференция (на расфокусированном изображении) между преломленным и отраженным каплей светом [2]. Регистрация интерференционных картин капель осуществлялась видеокамерой "ImperX IGV-B2020М" (разрешение кадра 2048 × 2048 px, размер регистрационной области 50×50 mm, расстояние от центра регистрационной области до распылительной форсунки 0.19 m), оптическая ось которой была перпендикулярна плоскости лазерного ножа. В комплекте с видеокамерой использовался объектив "Sigma DG 105 mm f/2.8 EX Масто" (расстояние от линзы объектива до области регистрации составило 200 mm, расстояние расфокуси-

Рис. 1. Интерференционные картины капель, полученные в экспериментах: *1* — нормальная, *2* — угловая, *3* — кривая, *4* — гексагональная, *5* — зашумленная.

ровки для последующего получения интерференционной картины около 13 mm).

При проведении экспериментов использовались дистиллированная (ГОСТ 6709-72), водопроводная (ГОСТ Р 51232-98) вода, а также вода с примесью твердых нерастворимых включений. В качестве последних применялись диоксид титана — TiO₂ (средний размер частиц $d_p \approx 1 \,\mu$ m, средняя плотность $\rho_p \approx 4100 \,\text{kg/m}^3$); оксид алюминия — Al₂O₃ ($d_p \approx 3 \,\mu$ m, $\rho_p \approx 1700 \,\text{kg/m}^3$); порошок глины $(d_p \approx 3.5 \,\mu\text{m}, \,\rho_p \approx 1300 \,\text{kg/m}^3);$ полиамидные частицы трех различных размеров ($d_p \approx 5 \, \mu m$, $\rho_p \approx 900 \text{ kg/m}^3$; $d_p \approx 20 \,\mu\text{m}$, $\rho_p \approx 800 \text{ kg/m}^3$; $d_p \approx 50 \,\mu\text{m}$, $\rho_p \approx 700 \, \text{kg/m}^3$). Все используемые типы частиц на длине волны 532 nm не проявляют видимых абсорбционных свойств. При этом вследствие отсутствия в составе частиц специализированных флуорофоров эмитированный частицами свет также находится на уровне 532 nm. Массовая концентрация примеси в воде варьировалась в диапазоне $G_m = 0.003 - 1$ g/l. Примесь взвешивалась лабораторными микровесами "Vibra HT 84RCE" (дискретность 10^{-5} g), после чего смешивалась с необходимым объемом воды. Приготовленный состав заливался в баллон, подключенный к распылительной форсунке, в котором создавалось избыточное давление 10⁵ Ра. Осуществлялись распыление и регистрация образов капель (интерференционных картин). Для каждого состава и каждой концентрации примеси выполнялись три эксперимента, в которых регистрировалось не менее 150 кадров. При этом каждый кадр содержал от 70 до 120 образов. Выводы относительно каждой концентрации примеси делались на основе анализа около 3000 интерференционных картин капель.

В ходе обработки результатов установлены пять видов интерференционных картин капель (рис. 1): *1* — нормальная (характеризуется вертикально расположенными полосами); *2* — угловая (интерференционные полосы расположены под углом к вертикали); *3* — кривая

(характеризуется искривленными или невыраженными полосами); *4* — гексагональная (имеет ярко выраженные ромбы или многоугольники, равномерно заполняющие весь образ); *5* — зашумленная (соответствует спекловой картине).

При анализе результатов рассчитывалось интегральное содержание (количество) образов (интерференционных картин) каждого типа

$$N_{(i)} = n_i / (n_1 + n_2 + \dots + n_5) \cdot 100\%$$

где n_i — количество образов отдельного типа. Далее строились гистограммы распределения образов капель в потоке (рис. 2). На рис. 2, *а* приведено содержание образов каждого типа для различных исследованных составов (вертикальные линии на гистограмме соответствуют рассчитанным доверительным интервалам). Первый тип интерференционных картин представляет образ, соответствующий прозрачной сферической капле [2]. Видно, что содержание образов данного типа зависит от типа примеси. Второй тип картин соответствует несферическим каплям, количество образов практически не менялось и во всех экспериментах составляло 4—9%. Интерес представляют образы третьего, четвертого и пятого типов, так как они обусловливают наличие, концентрацию и тип примеси в капле.

Установлено, что образы четвертого типа зависят главным образом от размера частиц примеси: при неизменном значении G_m (рис. 2, *a*) увеличение d_p в диапазоне $1-50\,\mu$ m приводит к росту числа образов данного типа от 3 до 19%. При этом выполненные эксперименты показывают, что изменение G_m незначительно (в пределах 2-3%) влияет на количество данных картин. Руководствуясь результатами экспериментов, а также значениями d_p , мы получили зависимость для оценки размеров частиц в капле по содержанию образов четвертого типа

$$d_p = 0.6259 \exp(0.2171 N_{(4)}) \,[\mu \text{m}]. \tag{1}$$

Рис. 2. Содержание $N_{(i)}$ образов пяти выделенных типов в аэрозольном потоке. a — для воды и каждого исследованного состава при $G_m \approx 0.35$ g/l: l — дистиллированная вода, 2 — водопроводная вода, 3 — полиамидные частицы размером $50 \,\mu$ m, 4 — полиамидные частицы размером $20 \,\mu$ m, 5 — полиамидные частицы размером $50 \,\mu$ m, 6 — Al₂O₃, 7 — частицы глины, 8 — TiO₂; b — для водопроводной воды с добавлением TiO₂ ($G_m = 0-0.35$ g/l).

Опыты показали, что добавление в воду твердых нерастворимых частиц приводит к увеличению числа образов третьего и пятого типа. С ростом G_m их количество значительно (в несколько раз) увеличивается. Так, например, для примеси TiO_2 (рис. 2, *b*) количество образов третьего и пятого типов может возрастать в десятки раз по сравнению с водой, что служит интегральным показателем наличия примеси в каплях. Зарегистрировано, что при определенных значениях G_m прослеживаются снижение числа образов третьего типа и существенный рост количества образов пятого типа (предельная концентрация, приводящая к образованию спекловых картин). Для примеси TiO₂ эти значения соответствуют $G_m = 0.1 - 0.15$ g/l, для Al_2O_3 $G_m = 0.7 - 0.8$ g/l, для частиц глины $G_m = 0.8 - 1$ g/l. Иными словами, чем крупнее средний размер частиц примеси, тем выше значения G_m.

С целью обобщения полученных результатов построены зависимости $N_{(3+5)} = f(G_m)$ (рис. 3, *a*). Видно, что значения $N_{(3+5)}$ для одних и тех же G_m существенно различаются. Последнее связано со средним размером частиц d_p . Очевидно, что тип полученной интерференционной картины (рис. 1) зависит от числа частиц в капле, попавших в плоскость лазерного ножа. Однако при разных значениях ρ_p и d_p данное число может различаться на несколько порядков. Как следствие, целесообразно вместо массовой (G_m) использовать количественную (G_q) концентрацию частиц

$$G_q = G_m / (\rho_p (4/3)\pi (d_p/2)^3) [l^{-1}].$$

Параметр G_q иллюстрирует количество частиц в одном литре воды. На рис. 3, *b*, *c* приведены зависимости типа $N_{(3+5)} = f(G_q)$ и $N_{(1)} = f(G_q)$. Видно, что в данном случае полученные результаты хорошо коррелируют между собой. Значения G_q также могут быть определены по количеству образов первого типа (рис. 3, *b*). Такой подход является менее точным, так как не учитывает образы четвертого типа. Однако он значительно упрощает вычислительный процесс. Для определения параметра G_q по содержанию отдельных образов (рис. 3, *b*, *c*)

Рис. 3. Зависимость содержания $N_{(3+5)}$ образов третьего и пятого типов от массовой $G_m(a)$ и количественной $G_q(b)$ концентрации частиц примеси в воде, а также зависимость содержания $N_{(1)}$ образов первого типа от количественной концентрации G_q частиц примеси в воде (c). $1 - \text{TiO}_2$, $2 - \text{Al}_2\text{O}_3$, 3 - частицы глины, 4 - полиамидные частицы размером 5μ m, 5 - полиамидные частицы размером 20μ m, 6 - полиамидные частицы размером 50μ m.

25

получены аппроксимационные зависимости

$$G_q = -6.81699 \cdot 10^9 + 8.58538 \cdot 10^8 N_{(3+5)}$$

- 2.59886 \cdot 10^7 N_{(3+5)}^2 + 4.10951 \cdot 10^5 N_{(3+5)}^3 [1^{-1}], (2)
$$G_q = -4.67861 \cdot 10^8 + 8.36818 \cdot 10^{11}$$

При использовании выражений (2) и (3) следует учитывать, что они могут быть применены для прогнозирования G_q в диапазоне от G_q^{\min} до G_q^{\max} (рис. 3, *b*, *c*), так как за пределами этих значений практически не наблюдается существенного изменения количества соответствующих интерференционных картин капель. Экспериментально установлено, что в первом приближении этот диапазон соответствует $G_q = 3 \cdot 10^9 - 5 \cdot 10^{10} 1^{-1}$ для $N_{(3+5)}$ (рис. 3, *b*) и $G_q = 3 \cdot 10^9 - 8 \cdot 10^{10} 1^{-1}$ для $N_{(1)}$ (рис. 3, *c*).

В заключение следует подчеркнуть, что по результатам выполненных исследований впервые предпринята попытка диагностики типа и концентрации частиц твердой примеси в каплях водяного аэрозоля по их интерференционной картине. Такой интерференционный анализ позволяет по содержанию образов прогнозировать размеры частиц и их количественную концентрацию в каплях (по формулам (1)-(3)). Результаты выполненного цикла экспериментов способствуют развитию современных методов диагностики твердых нерастворимых примесей в жидкости [1,6,7,10,11], а также потенциально способствуют разработке перспективных газопарокапельных технологий, в частности в области термической очистки жидкостей.

Финансирование работы

Исследование выполнено при финансовой поддержке Российского фонда фундаментальных исследований в рамках научного проекта № 18-38-00007 мол_а.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- Нефедова Е.Д. Методы и технические средства мониторинга, контроля качества воды в местах водозаборов и управление технологическим процессом водоподготовки в условиях изменения качества воды поверхностных водоисточников. Канд. дис. СПб.: Сев.-Зап. гос. заоч. техн. ун-т, 2010. 308 с.
- [2] Бильский А.В., Ложкин Ю.А., Маркович Д.М. // Теплофизика и аэромеханика. 2011. Т. 18. № 1. С. 1–13.
- [3] Волков Р.С., Кузнецов Г.В., Стрижак П.А. // Письма в ЖТФ. 2016. Т. 42. В. 12. С. 73–81.
- [4] Maeda M., Kawaguchi T., Hishida K. // Meas. Sci. Technol. 2000. V. 11. N 12. P. L13–L18.

- [5] Жижин Г.Н., Никитин А.К., Рыжова Т.А., Логинов А.П. // Письма в ЖТФ. 2004. Т. 30. В. 21. С. 88–94.
- [6] Ruiz S.G., Beeck J. // Exp. Fluids. 2017. V. 58. N 8. P. 100.
- [7] Павлов П.В., Астахов М.О., Манучаров Д.Р. // Информатика: проблемы, методология, технологии. Материалы XVIII Междунар. научн.-метод. конф. Воронеж: Научноисследовательские публикации, 2018. Т. 4. С. 189–194.
- [8] Mahdieh M.H., Nazari T. // Optic. 2013. V. 124. N 20.
 P. 4393–4396.
- [9] Kachiraju S.R., Gregory D.A. // Opt. Laser Technol. 2012.
 V. 44. N 8. P. 2361–2365.
- [10] Brunel M., Talbi M., Coetmellec S., Grehan G., Wu Y., Kielar J.J. // Opt. Commun. 2019. V. 433. P. 173–182.
- [11] Kielar J.J., Wu Y., Coëtmellec S., Lebrun D., Gréhan G., Brunel M. // J. Quant. Spectr. Rad. Transfer. 2016. V. 178. P. 108–116.