¹⁹ Высокотемпературная теплоемкость апатитов $Pb_{10-x}Nd_x(GeO_4)_{2+x}(VO)_{4-x}$ (x = 0-3)

© Л.Т. Денисова, Е.О. Голубева, Н.В. Белоусова, В.М. Денисов, Н.А. Галиахметова

Институт цветных металлов и материаловедения Сибирского федерального университета, Красноярск, Россия

E-mail: antluba@mail.ru

Поступила в Редакцию 12 марта 2019 г. В окончательной редакции 12 марта 2019 г. Принята к публикации 12 марта 2019 г.

Твердофазным синтезом из исходных оксидов PbO, Nd₂O₃, GeO₂ и V₂O₅ последовательным обжигом на воздухе в интервале температур 773–1073 К получены соединения $Pb_{10-x}Nd_x(GeO_4)_{2+x}(VO_4)_{4-x}$ (x = 0-3) со структурой апатита. Измерена их высокотемпературная теплоемкость методом дифференциальной сканирующей калориметрии. По экспериментальным зависимостям $C_p = f(T)$ рассчитаны термодинамические функции (изменения энтальпии, энтропии и приведенной энергии Гиббса).

Ключевые слова: ванадатогерманаты свинца-неодима, высокотемпературная теплоемкость, термодинамические свойства.

DOI: 10.21883/FTT.2019.07.47858.414

1. Введение

К соединениям со структурой апатита $M_{10}(ZO_4)_6X_2$ (M = Ca, Ba, Pb и др.; Z = V, Ge, Si и др.; X = F,Cl, OH, O) в течение длительного времени не ослабевает интерес исследователей. Обусловлено это широким спектром областей их применения: в качестве лазерных и флуоресцентных материалов [1], акустооптических устройствах [2,3], в медицине, энергетике, нефтепереработке, охране окружающей среды [4], катализаторов реакций органического синтеза [5]. Важной особенностью соединений со структурой апатита является способность их структурных единиц к замещению другими ионами, что позволяет расширить диапазон практического применения [6,7]. Согласно [6], замена свинца в соединении $Pb_5(GeO_4)(VO_4)_2$ на редкоземельные элементы позволяет получить соединения с общей формулой $Pb_{10-x}R_x(GeO_4)_{2+x}(VO_4)_{4-x}$ (R - P3Э, x = 0-3). Соединения такого типа исследованы крайне мало. Имеются сведения о структуре $Pb_5(GeO_4)(VO_4)_2$ [2,3,6,8], $Pb_8La_2(GeO_4)_4(VO_4)_2$ [6,9], $Pb_8Pr_2(GeO_4)_4(VO_4)_2$ [10] и оптическим свойствам $Pb_5(GeO_4)(VO_4)_2$ [11,12]. Несмотря на такое внимание к апатитам $Pb_{10-x}R_x(GeO_4)_{2+x}(VO_4)_{4-x}$, сведения об их теплофизических свойствах практически отсутствуют. Такие данные имеются только для соединений Pb₈La₂(GeO₄)₄(VO₄)₂ [13,14] и Pb₈Nd₂(GeO₄)₄(VO₄)₂ [14]. Имеющиеся сведения по термодинамическим свойствам относятся к другим соединениям со структурой апатита (фтор-, хлор- и гидроксиапатитам) [15,16].

Целью настоящей работы является синтез, исследование высокотемпературной теплоемкости апатитов $Pb_{10-x}Nd_x(GeO_4)_{2+x}(VO_4)_{4-x}$ (*R* — РЗЭ, x = 0-3) и определение их термодинамических свойств.

2. Эксперимент

Мелкокристаллические порошки апатитов $Pb_{10-x}Nd_x(GeO_4)_{2+x}(VO_4)_{4-x}$ (*R* — P3Э, x = 0-3) получали твердофазным синтезом. Для этого стехиометрические смеси предварительно прокаленных оксидов (PbO, Nd₂O₃, V₂O₅ — ос.ч, GeO₂ — 99.999%) перетирали в агатовой ступке и прессовали в таблетки, которые обжигали на воздухе при 773, 873, 973 К (по 10 h) и 1073 К (200 h). Через каждые 10 h таблетки перетирали и снова прессовали.

Контроль фазового состава синтезированных апатитов проводили с использованием рентгенофазового анализа (дифрактометр X'Pert Pro MPD, PANalytical, Нидерланды) на излучении Cu K_{α} . Регистрацию дифрактограмм выполняли высокоскоростным детектором PIXcel в угловом интервале $2\theta = 8-108^{\circ}$ с шагом 0.013° . Структура апатита Pb₁₀(GeO₄)₂(VO₄)₄ исследована ранее [2,3,8]. Данные о структуре Pb₈Nd₂(GeO₄)₄(VO₄)₂ приведены в работе [14]. Поэтому нами на рис. 1 показаны данные рентгенофазового анализа только для однофазных образцов Pb₉Nd(GeO₄)₃(VO₄)₃ и Pb₇Nd₃(GeO₄)₅(VO₄), для которых сведения о структуре в литературе отсутствуют. Параметры решеток определены путем полнопрофильного уточнения методом минимизации производной разности [17].

Теплоемкость апатитов $Pb_{10-x}Nd_x(GeO_4)_{2+x}(VO_4)_{4-x}$ измеряли методом дифференциальной сканирующей калориметрии при помощи термоанализатора STA 449 C Jupiter (NETZSCH, Германия) в платиновых тиглях

Рис. 1. Экспериментальный (1), расчетный (2) и разностный (3) профили рентгенограммы $Pb_9Nd(GeO_4)_3(VO_4)_3$ (a) и $Pb_7Nd_3(GeO_4)_5(VO_4)$ (b) после уточнения методом минимизации производной разности; штрихи указывают расчетные положение рефлексов.

с крышкой. Погрешность измерений теплоемкости не превышала 2%. Методика измерения описана нами ранее [18,19].

3. Результаты и их обсуждение

Параметры решеток синтезированных апатитов приведены в табл. 1. Полученные результаты для апатита $Pb_{10}(GeO_4)_2(VO_4)_4$ удовлетворительно согласуются с данными других авторов: (a = 10.089 и

Таблица 1. Параметры элементарных ячеек $Pb_{10-x}Nd_x(GeO_4)_{2+x}(VO_4)_{4-x}$ (пр. гр. $P6_3/m$; a = b)

x	a, Å	c,Å	$V, \text{ Å}^3$	$d_{est}, \text{ g/cm}^3$
0	10.0876(2)	7.3927(1)	651.49(2)	7.148
1	10.0918(2)	7.3535(2)	648.51(3)	7.075
2	10.0922(3)	7.2350(2)	638.03(3)	6.976
3	10.0927(2)	7.3021(2)	642.00(4)	7.030

c = 7.393 Å, d = 7.15 g/cm³ [2]), (a = 10.099(3) и c = 7.400(2) Å [3]), (a = 10.099(3) и c = 7.396(2) Å [8]). Для Pb₈Nd₂(GeO₄)₄(VO₄)₂ наши данные по структуре хорошо согласуются с результатами работы [14].

На рис. 2 показано влияние состава апатитов $Pb_{10-x}Nd_x(GeO_4)_{2+x}(VO_4)_{4-x}$ на параметры их элементарной ячейки. Видно, что с ростом замещения свинца неодимом а незначительно изменяется, а с. V — уменьшаются. Отметим, что согласно [9] при вхождении в структуру лантана в апатит состава Pb₈La₂(GeO₄)₄(VO₄)₂, атомы P3Э располагаются в основном в позиции Pb(1), несмотря на то, что эффективный заряд La³⁺ больше, чем эффективный заряд Pb²⁺. Подобное наблюдалось в соединении Рb₈Pr₂(GeO₄)₄(VO₄)₂ при замещении атомов свинца на атомы празеодима [10] и при замещении стронция европием в соединении $Sr_{10-x}Eu_x(VO_4)_6(OH)_{2-x}O_x$ [20]. Можно предположить, что подобное наблюдается и в нашем случае, а уменьшение в целом параметров элементарной ячейки апатита $Pb_{10-x}Nd_x(GeO_4)_{2+x}(VO_4)_{4-x}$ при увеличении содержания в нем неодима обусловлено различием в величинах ионных радиусов Pb^{2+} (1.35 Å) и Nd^{3+} (1.163 Å) [21] (в структуре апатита положение M(1) имеет координационное окружение, состоящее из девяти атомов кислорода [2,7]).

На возможность эффективных люминесцентных свойств $Pb_8La_2(GeO_4)_4(VO_4)_2$ и $Pb_8Pr_2(GeO_4)_4(VO_4)_2$ указано в работах [9] и [10] соответственно. Можно предположить, что подобное должно наблюдаться и для апатитов $Pb_{10-x}Nd_x(GeO_4)_{2+x}(VO_4)_{4-x}$. Последнее основывается не только на выводах работ [9,10], но и на наших наблюдениях. Установлено, что во время приготовления образцов при перетирании при дневном освещении они имеют серый цвет, а при искусственном.

На рис. З показано влияние температуры на теплоемкость поликристаллических апатитов $Pb_{10-x}Nd_x(GeO_4)_{2+x}(VO_4)_{4-x}$. Здесь же, для сравнения

Рис. 2. Зависимость параметров элементарной ячейки $Pb_{10-x}Nd_x(GeO_4)_{2+x}(VO)_{4-x}$ a = b (1), c (2), V (3) от содержания x.

<i>Т</i> ,К	C_p , J/mol · K	$H^{\circ}(T)-H^{\circ}$ (350 K), kJ/mol	$S^{\circ}(T) - S^{\circ}(350 \mathrm{K}), \mathrm{J/mol} \cdot \mathrm{K}$	$\Phi^{\circ}(T)$, J/mol · K			
$Pb_9Nd(GeO_4)_3(VO_4)_3$							
350	893.3	_	_	—			
400	905.9	44.98	120.1	7.66			
450	918.5	90.59	227.5	26.22			
500	931.1	136.8	325.0	51.30			
550	943.6	183.7	414.3	80.29			
600	956.2	231.2	496.9	111.6			
650	968.7	279.3	574.0	144.2			
700	981.3	328.1	646.2	177.5			
750	993.8	377.4	714.3	211.1			
800	1006	427.4	778.9	244.6			
850	1019	478.1	840.3	277.8			
900	1032	529.3	898.9	310.7			
950	1044	581.2	955.0	343.2			
1000	1056	633.7	1009	375.1			
$Pb_7Nd_3(GeO_4)_5(VO_4)$							
350	871.6	_	_	_			
400	895.8	44.20	118.0	7.51			
450	916.1	89.51	224.7	25.81			
500	934.1	135.8	322.2	5064			
550	950.5	182.9	412.0	79.47			
600	965.8	230.8	495.3	110.7			
650	980.4	279.5	573.2	143.3			
700	994.4	328.8	646.4	176.6			
750	1008	378.9	715.5	210.3			
800	1021	429.6	781.0	243.9			
850	1034	481.0	843.3	277.3			
900	1047	533.1	902.8	312.8			
950	1060	585.8	959.8	343.2			
1000	1073	639.1	1014	375.4			

Таблица 2. Термодинамические свойства апатитов Pb₉Nd(GeO₄)₃(VO₄)₃ и Pb₇Nd₃(GeO₄)₅(VO₄)

Рис. 3. Температурная зависимость молярной теплоемкости $Pb_{10-x}Nd_x(GeO_4)_{2+x}(VO)_{4-x}$, x = 0 (1), 1 (2), 2 (3), 3 (4): точки — эксперимент, линии — аппроксимирующие кривые.

приведены данные для Pb₁₀(GeO₄)₂(VO₄)₄ и для $Pb_8Nd_2(GeO_4)_4(VO_4)_2$, полученные нами ранее [14] и [22] соответственно. Видно, что с ростом температуры значения С_р для всех исследованных составов апатитов $Pb_{10-x}Nd_x(GeO_4)_{2+x}(VO_4)_{4-x}$ увеличиваются. Можно отметить, что теплоемкость апатита $Pb_7Nd_3(GeO_4)_5(VO_4)$ оказывается при этом выше, чем для $Pb_8Nd_2(GeO_4)_4(VO_4)_2$. Не исключено, что это связано с тем, что при замещении свинца в апатите $Pb_{10}(GeO_4)_2(VO_4)_4$ неодимом одновременно происходит и изменение содержания германия (увеличивается) и ванадия (уменьшается).

Полученные данные по влиянию температуры на теплоемкость $Pb_9Nd(GeO_4)_3(VO_4)_3$ и $Pb_7Nd_3(GeO_4)_5(VO_4)$ могут быть описаны соответственно уравнениями

$$C_{p} = (805.8 \pm 5.56) + (250.8 \pm 6.00) \cdot 10^{-3}T$$
$$- (0.284 \pm 0.58) \cdot 10^{5}T^{2}, \qquad (1)$$
$$C_{p} = (839.8 \pm 7.70) + (239.5 \pm 8.3) \cdot 10^{-3}T$$

$$-(63.74 \pm 7.83) \cdot 10^5 T^2.$$
 (2)

Коэффициенты корреляции для уравнений (1) и (2) равны 0.9975 и 0.9969 соответственно.

С использованием последних уравнений по известным термодинамическим соотношениям рассчитаны термодинамические функции свинец замещенных апатитов $(x = 1 \text{ и } 3 \text{ (таблица 2)}; для апатитов с } x = 0 \text{ и 2 данные приведены в работах [14,22]}.$

4. Заключение

Оксидные соединения со структурой апатита $Pb_{10-x}Nd_x(GeO_4)_{2+x}(VO_4)_{4-x}$ получены твердофазным синтезом из PbO, Nd_2O_3 , GeO_2 и V_2O_5 . Методом дифференциальной сканирующей калориметрии измерена их теплоемкость в области 350-1000 К. С использованием экспериментальных зависимостей $C_p = f(T)$ рассчитаны термодинамические свойства.

Финансирование

Работа выполнена при финансовой поддержке работ, выполняемых в рамках Государственного задания Министерства науки и высшего образования Российской Федерации Сибирскому федеральному университету на 2017–2019 гг. (проект 4.8083.2017/8.9 "Формирование банка данных термодинамических характеристик сложнооксидных полифункциональных материалов, содержащих редкие и рассеянные элементы").

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- Т. Каназава. Неорганические фосфатные материалы. Наук. думка, Киев (1998). 298 с.
- [2] T. Yano, Y. Nabeta, A. Watanabe. Appl. Phys. Lett. 15, 12, 570 (1971).
- [3] С.А. Иванов. ЖСХ 31, 4, 80 (1990).
- [4] С.В. Добрыднев, М.Ю. Молодцова. Изв. ТулГУ. Естеств. науки. 1, 1, 212 (2014).
- [5] S. Kale, S. Kahaudal, S. Disale, R. Jayaram. Current Chem. Lett. 1, 69 (2012).
- [6] В.Д. Журавлев, Ю.А. Великодный. ЖНХ **54**, *10*, 1626 (2009).
- [7] А.В. Игнатов, Т.М. Савинкова, Е.Г. Дидоренко, А.Ю. Талыкова, Е.И. Гетьман, Л.В. Пасечник. Вестн. Донецкого нац. ун-та. Сер. А. 1, 152 (2014).
- [8] С.А. Иванов, В.Е. Заводник. Кристаллография **34**, *4*, 824 (1989).
- [9] Е.И. Гетьман, Н.В. Яблочкова, С.Н. Лобода, Л.В. Каракай. Вестн. Донецкого нац. ун-та. Сер. А. 1, 129 (2013).
- [10] Н.В. Яблочкова. ЖНХ 58, 7, 871 (2013).
- [11] E. Anachkova, M. Gospodinov, P. Svetarov, T. Milenov, A. Nikolov, V. Tasev, V. Markov, M. Limonov, G. Bruchman. J. Molec. Struct. 219, 31 (1990).

- [12] E. Anachkova, M. Gospodinov, A. Nikolov, P. Svestarov, N. Petkov, Yu. Markov, M. Limonov, G. Bruchman. Phys. Status Solidi A 161, 575 (1990).
- [13] Л.Т. Денисова, А.Д. Изотов, Ю.Ф. Каргин, В.М. Денисов, Н.А. Галиахметова. ДАН **477**, *3*, 313 (2017).
- [14] Л.Т. Денисова, Ю.Ф. Каргин, Н.В. Белоусова, Н.А. Галиахметова, В.М. Денисов. Неорган. материалы 54, 2, 178 (2018).
- [15] В.В. Богач, С.В. Добрыднев, В.С. Бесков. ЖНХ 46, 7, 1127 (2001).
- [16] В.К. Каржавин. Термодинамические величины химических элементов и соединений. Примеры их практического применения. Изд-во Кольского науч. центра РАН, Апатиты. (2011). 160 с.
- [17] L.A. Solovyov. Appl. Crystallogr. 37, 743 (2004).
- [18] В.М. Денисов, Л.Т. Денисова, Л.А. Иртюго, В.С. Биронт. ФТТ **52**, *7*, 1274 (2010).
- [19] Л.Т. Денисова, Л.А. Иртюго. Ю.Ф. Каргин, В.В. Белецкий, В.М. Денисов. Неорган. материалы **53**, *1*, 71 (2017).
- [20] E.I. Get'man, N.V. Yablochkova, S.N. Loboda, V.V. Ptisedsky, V.P. Abtonovich, N.A. Chivireva. J. Solid State Chem. 181, 2386 (2008).
- [21] R.D. Shannon. Acta Crystallogr. Sect. A. 32, 751 (1976).
- [22] Л.Т. Денисова, Ю.Ф. Каргин, Е.О. Голубева, Н.В. Белоусова, В.М. Денисов. Неорган. материалы 55, 2, (2019).

Редактор Т.Н. Василевская