Кристаллическая структура ди-(L-серин) фосфата моногидрата [C₃O₃NH₇]₂H₃PO₄H₂O

© Ю.И. Смолин, А.Е. Лапшин, Г.А. Панкова*

Институт химии силикатов им. И.В. Гребенщикова Российской академии наук, 199155 Санкт-Петербург, Россия E-mail: smolin@isc.nw.ru * Институт высокомолекулярных соединений Российской академии наук,

Санкт-Петербург, Россия

(Поступила в Редакцию 4 февраля 2003 г.)

Дифракционными методами на монокристалле определена кристаллическая структура ди-(L-серин) фосфата моногидрата. Измерения интенсивностей рентгеновских отражений проведены при температурах 295 и 203 К. Структура уточнена по двум наборам интенсивностей. Установлено, что симметрично-неэквивалентные молекулы L-серина реализуются в структуре в двух различных формах: монопротонированной положительно заряженной молекулы $CH_2(OH)CH(NH_3)^+COOH$ и цвиттер-иона $CH_2(OH)CH(NH_3)^+COO^-$, которые связаны с ионом $H_2PO_4^{1-}$ и между собой системой водородных связей, в которую включены также молекулы воды.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проект № 01-02-17163).

Кристаллы неорганических производных белковых аминокислот благодаря особенностям своего строения представляют большой интерес для поиска новых пирои пьезоэлектриков и понимания роли электрофизических характеристик белковых аминокислот в процессах, протекающих в живых организмах. Методика выращивания монокристаллов аминокислот и их неорганических производных, первоначальные рентгеноструктурые характеристики и температурные зависимости пьезоотклика кристаллов приведены в [1]. Структуры β -аланин, DL-аланин, саркозин и L-аланин фосфатов исследовались ранее [2,3]. Настоящая работа посвящена определению неисследованной, согласно базе структурных данных [4], кристаллической структуры ди-(L-серин) фосфата моногидрата.

1. Экспериментальная часть

Кристаллы $[C_3O_3NH_7]_2H_3PO_4H_2O$, моноклинные, $P2_1$, a = 4.704(5), b = 10.512(5), c = 13.573(3) Å, $\beta = 98.73(5)$, V = 663.4 Å³, Z = 2, $\rho_{calc} = 1.63$ g · cm⁻³, $\lambda(MoK_{\alpha}) = 0.71069$ Å, $\mu = 2.68$ cm⁻¹, F(000) = 344, M = 326.20. Кристаллы L-серин фосфата моногидрата получены при медленном охлаждении насыщенных водных растворов L-серина и фосфорной кислоты. Температура раствора понижалась от комнатной до 8°C со скоростью 1°C в сутки. Исследовался бесцветный кристалл размером $0.4 \times 0.35 \times 0.5$ mm.

Измерения интенсивностей рентгеновских отражений выполнялись на автоматическом монокристальном дифрактометре, работающем по схеме перпендикулярного пучка при послойной регистрации с использованием Мо*К*_α-излучения и монохроматора из пиролитического графита. Отражения измерялись в пределах: h(-7,7) k(0,15) l(0,14) при $2\Theta_{\text{max}} = 72^{\circ}$. Измерено 2037 ненулевых, неэквивалентных отражения с $I > 3\sigma(I)$. Оценка интегральных интенсивностей и учет фона выполнены с использованием алгоритма профильного анализа [5].

Стабильность кристалла контролировалась периодическим измерением интенсивности эталонного отражения. Координаты неводородных атомов были определены прямыми методами с использованием комплекса программ AREN [6]. Все атомы водорода локализованы из серии разностных синтезов, чередующихся с уточнением позиционных и температурных параметров атомов методом наименьших квадратов (МНК) по $F^{2}(hkl)$ с использованием программы Shelx197 [7].¹ Температурные факторы неводородных атомов уточнялись в анизотропном приближении, а атомов водорода — в изотропном. Окончательное значение R1-фактора, вычисленное по всем измеренным отражениям, 0.0332, wR2 = 0.1047. Общее число уточняемых параметров — 257, S = 0.97. Результаты уточнения, координаты и эквивалентные тепловые параметры атомов приведены в табл. 1.

Проекция структуры L-серин фосфата моногидрата приведена на рис. 1, полученном с помощью программы ОRTEP III [8]. Основные межатомные расстояния и валентные углы представлены в табл. 2. Уточнение структурных параметров было выполнено также по набору интенсивностей измеренных при 203 К (a = 4.688(5), b = 10.482(5), c = 13.524(5) Å, $\beta = 98.97(5)^{\circ}$). Поскольку установлено, что найденные параметры атомов мало отличаются от полученных для структуры, измеренной при комнатной температуре, в таблице приведены координаты атомов и эквивалентные температурные факторы только для этой структуры.

 $^{^{1}}$ Там же дано точное определение упоминаемых в работе параметров.

0.101(12)

0.062(8)

0.026(5)

0.021(4)

0.045(6)

0.048(7)

0.027(5)

0.041(6)

0.019(4)

0.006(3)

0.018(4)

0.043(6)

0.024(4)

0.041(6)

0.021(4)0.037(6)

0.039(6)

0.077(10)

Таблица 1. Относительные координаты и эквивалентные тепловые параметры атомов							
Атом	x/a	y/b	z/c	$V_{ m equiv}/U_{ m iso}({ m \AA}^2)$			
P1	0.05339(5)	0.65189(2)	0.24138(2)	0.01682(5)			
01	-0.00540(19)	0.51247(9)	0.22114(8)	0.0264(2)			
O2	-0.18764(17)	0.72715(9)	0.27598(8)	0.0247(2)			
O3	0.13069(18)	0.71983(9)	0.14711(8)	0.0244(2)			
O4	0.32675(17)	0.66183(13)	0.32538(8)	0.0306(2)			
O5	0.08244(19)	0.20332(11)	0.25228(8)	0.0280(2)			
O6	0.2747(3)	0.12542(12)	0.40126(10)	0.0395(3)			
C1	0.2688(2)	0.20107(12)	0.32377(10)	0.0226(3)			
C2	0.5315(2)	0.28586(12)	0.33227(10)	0.0215(3)			
C3	0.5730(3)	0.36569(16)	0.42652(12)	0.0306(3)			
O7	0.3217(3)	0.43459(12)	0.43828(9)	0.0338(3)			
N1	0.5079(2)	0.36553(10)	0.24097(9)	0.0215(2)			
08	0.4607(2)	0.73740(9)	-0.05717(8)	0.0308(2)			
09	0.4617(2)	0.59009(10)	0.06228(8)	0.0273(2)			
C4	0.5370(2)	0.63412(10)	-0.01567(10)	0.0185(2)			
C5	0.7309(2)	0.55024(10)	-0.06892(9)	0.0164(2)			
C6	0.5498(2)	0.49113(11)	-0.16007(10)	0.0202(2)			
O10	0.33541(19)	0.41453(10)	-0.12571(8)	0.0263(2)			
N2	0.8653(2)	0.44712(9)	-0.00126(8)	0.0190(2)			
Ow	0.1285(3)	0.45925(11)	0.61932(10)	0.0386(3)			
H1	0.246(5)	0.675(3)	0.1226(19)	0.054(7)			

0.663(5)

0.086(3)

0.236(2)

0.311(2)

0.424(3)

0.489(4)

0.316(3)

0.419(2)

0.419(3)

0.598(2)

0.560(2)

0.442(2)

0.366(2)

0.416(2)

0.380(3)

0.473(2)

0.450(2)

0.397(3)

0.311(3)

0.391(2)

0.334(2)

0.485(2)

0.424(2)

0.396(2)

0.181(2)

0.236(2)

0.242(2)

-0.089(2)

-0.204(2)

-0.197(2)

-0.168(2)

-0.021(2)

-0.000(2)

0.062(2)

0.577(2)

0.661(2)

Кристаллографические данные депонированы в Кембриджском центре кристаллографических данных под номером ССDС201068.

0.487(8)

0.127(7)

0.693(4)

0.628(4)

0.755(5)

0.315(7)

0.511(5)

0.345(4)

0.650(5)

0.897(4)

0.465(3)

0.666(3)

0.301(5)

1.014(4)

0.732(5)

0.920(4)

0.213(5)

0.134(4)

Результаты и их обсуждение 2.

Молекулы L-серина присутствуют в структуре форме монопротонированной молекулы в $CH_2(OH)CH(NH_3)^+COOH$ (L-серин-1) и цвиттер-иона $CH_2(OH)CH(NH_3)^+COO^-$ (L-серин-2). Аминогруппа NH₂ в молекуле L-аланин-1 дополнительно протонирована атомом Н иона фосфата, вследствие чего молекула становится положительно заряженной. В цвиттерионе дополнительное протонирование аминогруппы происходит за счет депротонирования соответствующей карбоксильной группы и молекула остается электронейтральной. Соответствующие длины связей С-С и С-N и валентные углы в обеих формах молекул L-серина близки между собой и лежат в ожидаемых пределах (C-C 1.514(2)-1.527(2), C-N 1.486(2)-1.497(2) Å) [9,10]. Однако вследствие депротонирования карбоксильной группы в цвиттер-ионе связи С-О близки между собой и имеют значения 1.250(2) и 1.254(2) Å, являясь средними относительно аналогичных связей в карбоксильной группе молекулы L-серин-1, 1.205(2)

H2

H3

H4

H5

H6

H7

H8

H9

H10

H11

H12

H13

H14

H15

H16

H17

H18

H19

Проекция структуры на плоскость *bc*. Неводородные атомы изображены эллипсоидами тепловых колебаний. Атомы водорода представлены сферами произвольного радиуса. Водородные связи даны штриховыми линиями.

$H_2PO_4^{1-}$	
P1 O1 1.5089(10)	O1 P1 O2 116.02(5)
P1 O2 1.5145(9)	O1 P1 O3 110.82(6)
P1 O3 1.5559(10)	O2 P1 O3 107.14(5)
P1 O4 1.5872(9)	O1 P1 O4 107.51(6)
	O2 P1 O4 107.81(6)
	O3 P1 O4 107.19(5)
L-Ser1	
O5 C1 1.205(2)	O5 C1 O6 125.5(2)
O6 C1 1.316(2)	O5 C1 C2 122.4(2)
C1 C2 1.514(2)	O6 C1 C2 112.2(2)
C2 N1 1.486(2)	N1 C2 C1 108.2(1)
C2 C3 1.518(2)	N1 C2 C3 112.0(2)
C3 O7 1.416(2)	C1 C2 C3 112.9(2)
	O7 C3 C2 112.0(2)
L-Ser2	
O8 C4 1.250(2)	O8 C4 O9 127.0(2)
O9 C4 1.254(2)	O8 C4 C5 116.1(1)
C4 C5 1.527(2)	O9 C4 C5 116.9(1)
C5 N2 1.497(2)	N2 C5 C6 109.6(1)
C5 C6 1.524(2)	N2 C5 C4 110.8(1)
C6 O10 1.423(2)	C6 C5 C4 108.6(1)
	O10 C6 C5 107.5(1)

Таблица 2. Основные длины связей (A) и валентные углы ($^{\circ}$)

A – $\mathrm{H} \dots D$	A - H(A)	$\mathbf{H} \dots D(\mathbf{A})$	$A \dots D(A)$	$AHD(^{\circ})$
O3-H1_O9	0.82(3)	1.66(3)	2.481(2)	174(3)
O7-H7_O4	0.81(4)	2.06(4)	2.840(2)	163(3)
N1–H8_O8iii	0.97(3)	1.90(3)	2.859(2)	172(2)
N1-H9_O1	0.94(2)	1.90(2)	2.845(2)	174(2)
N1-H10_O1i	0.87(3)	1.95(2)	2.808(2)	167(2)
O10-H14_O2iv	0.76(2)	2.08(2)	2.845(2)	176(3)
N2-H15_O10i	0.85(2)	2.23(2)	2.999(2)	151(2)
N2–H16_O8iii	0.95(3)	1.97(3)	2.865(2)	157(2)
N2-H17_O1i	0.90(2)	2.17(2)	3.065(2)	170(2)
Ow-H18_O7	0.75(3)	2.03(3)	2.758(2)	163(2)
Ow–H19_O2ii	0.87(3)	1.97(3)	2.816(2)	163(2)
С2–Н4	0.92(2)			. ,
С3–Н5	0.98(2)			
С3–Н6	1.05(3)			
С5-Н11	1.00(2)			
С6-Н13	0.95(2)			
С6-Н12	0.99(2)			

Таблица 3. Параметры водородных связей

Коды симметрии: i — (1 + x, y, z); ii — (x, y - 1/2, -z + 1); iii — (1 - x, y - 1/2, -z); iv — (x, y - 1/2, -z).

и 1.316(2) Å. Эти две формы молекул L-серина связаны водородоными связями. Из табл. 2 следует, что $H_2PO_4^{1-}$ ион представляет собой искаженный тетраэдр, поскольку P–OH расстояния значительно длиннее, 1.556(1) и 1.587(1), чем P–O связи, 1.509(1) и 1.514(1) Å. Ионы фосфата связаны системой водородных связей с окружающими молекулами L-серина (параметры водородных связей приведены в табл. 3). Молекула воды образует водородные связи с ионом фосфата и молекулой L-серина-1 и координирована атомом водорода карбоксильной группы другой молекулы L-серин-1. Таким образом, можно констатировать, что в структуре помимо электростатических взаимодействий реализована развитая система водородных связей.

Список литературы

- В.В. Леманов, С.Н. Попов, Г.А. Панкова. ФТТ 144, 10, 1929 (2002).
- [2] M.T. Averbuch-Pouchot, A. Durif, J.C. Guite. Acta Cryst. C44, 1968 (1988).
- [3] Ю.И. Смолин, А.Е. Лапшин, Г.А. Панкова. Кристаллография 49, 280 (2003).
- [4] F.H. Allen. Acta Cryst. B58, 380 (2002).
- [5] S. Oatley, S. French. Acta Cryst. A38, 537 (1982).
- [6] В.Н. Андрианов. Кристаллография 32, 1, 228 (1987).
- [7] G.M. Sheldric. Program for Refinement of Crystal Structures. University of Gottingen, Germany (1997).
- [8] M.N. Burnett, C.K. Johnson. ORTEP III: Report ORNL-6895. Oak Ridge National Laboratory, Tennessee (1996).
- [9] T.J. Kistenmacher, G.A. Rand, E. Marsh. Acta Cryst. B30, 11, 2573 (1974).
- [10] M.N. Frey, M.S. Lenmann, T.F. Koetzle, W.C. Hamilton. Acta Cryst. B29, 4, 877 (1973).