06,04

Исследование пьезоэлектрического резонанса в стехиометрических кристаллах LiNbO₃ в области высоких температур и проводимости

© М.Н. Палатников, В.А. Сандлер, Н.В. Сидоров, О.В. Макарова

Институт химии и технологии редких элементов и минерального сырья им. И.В. Тананаева КНЦ РАН, Апатиты, Россия

E-mail: palat_mn@chemy.kolasc.net.ru

Поступила в Редакцию 7 февраля 2019 г. В окончательной редакции 7 февраля 2019 г. Принята к публикации 12 марта 2019 г.

С целью установления условий использования пьезоэлектрических резонаторов на основе ниобата лития в области высоких температур и, соответственно, высокой проводимости в широком интервале температур (~ 300-850 K) исследованы пьезоэлектрические, диэлектрические свойства и ионная проводимость близких по составу к стехиометрическим кристаллов LiNbO_{3stoich}. Показано, что явление пьезорезонанса в кристаллах LiNbO_{3stoich} будет наблюдаться в определенном диапазоне температур ΔT (и, соответственно, величин времени релаксации статической проводимости $\Delta \tau_V$) и частот $\Delta \omega_R$ при соблюдении условия $\tau_V^{-1} \ll \omega_R$. Подобные закономерности будут, по-видимому, справедливы не только для кристаллов LiNbO_{3stoich}, но и для более широкого круга пьезоэлектрических материалов.

Ключевые слова: кристаллы, ниобат лития, импеданс-спектроскопия, пьезомодуль, статический пьезоэлектрический эффект, ионная проводимость, частота пьезорезонанса, время релаксации.

DOI: 10.21883/FTT.2019.07.47837.375

1. Введение

Кристаллы ниобата лития относятся к важнейшим пьезоэлектрическим, пироэлектрическим и сегнетоэлектрическим материалам и находят широкое практическое применение в различных областях науки и техники [1-4]. Несмотря на то, что использование материалов на основе кристаллов LiNbO₃ в нелинейной, поляризационной и интегральной оптике, лазерной технике, оптоэлектронике постоянно расширяется, наиболее массовым потребителем этих кристаллов являются производители акустоэлектронных и пьезоэлектрических устройств.

Кристаллы LiNbO3_{stoich}, близкие по составу к кристаллам стехиометрического состава ($R = \text{Li/Nb} \approx 1$) более привлекательны, чем конгруэнтные кристаллы LiNbO_{3_{сове} ($R \approx 0.946$), для создания материалов для} преобразования лазерного излучения, в том числе, на периодически поляризованных доменных структурах [4,5]. Для идеального стехиометрического кристалла LiNbO_{3_{stoich} (R = Li/Nb = 1) должны отсутствовать то-} чечные дефекты в виде рядом расположенных одноименных катионов, взаимозамещений катионов идеальной структуры, а также вакантных октаэдров [1-3]. Однако в реальных кристаллах LiNbO3_{stoich}, даже для составов вблизи стехиометрического (Li/Nb \approx 1), всегда, в определенном количестве, меньшем, чем в кристаллах конгруэнтного состава LiNbO3_{cong}, будут присутствовать точечные дефекты Nb_{Li}, V_{Li} и др. [6]. Близкие по составу к стехиометрическим кристаллы LiNbO3_{stoich}, как правило, выращивают методом Чохральского в воздушной атмосфере двумя способами: из расплава N2O5-Li2O с 58.6 mol.% Li₂O [4] и из конгруэнтного расплава с добавлением щелочного растворителя (флюса), содержащего оксиды щелочных металлов K2O, Rb2O, Cs₂O (Metog HTTSSG — High temperature top speed solution growth) [7]. Метод выращивания из расплава с $\sim 58.6 \text{ mol.}\%$ Li₂O ввиду высокой неоднородности состава и показателя преломления по объему кристалла LiNbO3_{stoich} в настоящее время практически не используется. В то же время, метод HTTSSG позволяет из конгруэнтного расплава получать кристаллы LiNbO3_{stoich} высокой степени композиционной однородности. При выращивании кристалла LiNbO3_{stoich} из расплавов с добавлением флюса K₂O, кристалл с Li/Nb \approx 1 может быть получен, если содержание К2О в расплаве составляет $\sim 6.0 \text{ wt}\%$ [7]. При меньшем содержании K₂O вырастает кристалл с 0.946 < R < 1, промежуточный по составу между конгруэнтным и стехиометрическим [7,8]. Чем ближе содержание К2О в расплаве к величине ~ 6.0 wt%, тем больше величина R = Li/Nb, определяющая количество точечных дефектов (Nb_{Li}, V_{Li} и др). Существенное уменьшение количества структурных дефектов приводит к заметному повышению акустической добротности кристаллов LiNbO3stoich по сравнению с кристаллами LiNbO_{3cong} конгруэнтного состава [6,9]. В работе [9] величина акустической добротности Q кристаллов LiNbO3 сопоставлялась интенсивности линии комбинационного рассеяния света (КРС) $\sim 120\,\mathrm{cm}^{-1}$ в геометрии рассеяния X(ZZ)Y, соответствующей связанному состоянию двух акустических фононов с суммарным волновым вектором равным нулю [10,11]. При этом величина Q тем больше, чем меньше интенсивность линии КРС $\sim 120 \,\mathrm{cm}^{-1}$. С другой стороны, чем меньше интенсивность линии ~ $120 \,\mathrm{cm}^{-1}$ в геометрии рассеяния X(ZZ)Y, в которой активны полносимметричные поперечные колебания A_1 -симметрии, тем ближе состав кристалла LiNbO₃ к стехиометрическому, то есть тем ближе отношение Li/Nb к 1 [10, 11]. Заметное увеличение акустической добротности Q положительно влияет на характеристики пьезоэлектрических резонаторов на основе кристаллов LiNbO_{3 stoich}, по сравнению с кристаллами LiNbO_{3 cong}.

В то же время, на практике часто возникает необходимость использования пьезоэлектрических резонаторов на основе кристаллов LiNbO₃ при высоких температурах. Основной задачей данной работы является установления условий использования пьезоэлектрических резонаторов на основе кристаллов LiNbO_{3 stoich} в области высоких температур (> 800 K) и, соответственно, высокой проводимости. Для этого в широком интервале температур (~ 300-850 K) исследованы пьезоэлектрические, диэлектрические свойства и ионная проводимость близких по составу к стехиометрическим кристаллов LiNbO_{3 stoich}, выращенных из расплава конгруэнтного состава ($R \approx 0.946$), содержащего ~ 5.5 wt% K₂O.

2. Методика эксперимента

Для выращивания кристаллов LiNbO3_{stoich} использовалась гранулированная шихта ниобата лития с высокой насыпной плотностью, технология которой разработана в ИХТРЭМС КНЦ РАН [12]. Кристаллы LiNbO3_{etoich} Z-ориентации выращивались методом HTTSSG в воздушной атмосфере на установке индукционного типа Кристалл-2, снабженной системой автоматического контроля диаметра кристалла, из расплава конгруэнтного состава с добавлением $\sim 5.5 \text{ wt\%}$ флюса K₂O. Выращивание кристаллов LiNbO3_{stoich} проводили при малой скорости роста (≤ 0.25 mm/h). Для кристаллов LiNbO3_{stoich}, выращенных в указанных условиях, отношение $R = \text{Li/Nb} \approx 0.993$ [7]. Монодоменизация кристаллов LiNbO3_{stoich} производилась методом высокотемпературного электродиффузионного отжига [13]. Контроль степени монодоменности осуществлялся методом анализа частотной зависимости электрического импеданса, а также путем определения величины статического пьезомодуля (d_{333st}) кристаллической були [13].

Образцы для исследований вырезали из монодоменизированных кристаллов LiNbO_{3_{stoich}} в форме плоскопараллельных пластинок размерами $\sim 10 \times 8 \times 1.0 \text{ mm}^3$, плоскость которых перпендикулярна кристаллофизической оси Y (Z — полярная ось кристалла). На очищенные поверхности пластинок методом магнетронного распыления Pt-мишени были нанесены Pt-электроды. То есть, образцы имеют геометрию плоского конденсатора с Pt-электродами, нормальными Y-направлению кристалла LiNbO_{3stoich}.

Контроль униполярности образцов кристаллов LiNbO_{3 stoich} выполнен путем измерения статического

пьезоэлектрического модуля d_{222st} комнатной при температуре по методике, подробно описанной [14]. Значения пьезоэлектрического модуля $d_{222_{st}}$ в получены прямыми измерениями поляризационного заряда, индуцированного статической механической нагрузкой образца указанной геометрии. Нагрузка на образец создавалась методом ступенчатого нагружения с помощью восьми одинаковых грузов весом $\sim 8.5\,\mathrm{N}$ каждый, действующих в направлении У.

Исследования диэлектрических свойств (действительной и мнимой части диэлектрической проницаемости: ε' и ε'') и проводимости выполнены в диапазоне температуры ~ 300–850 К на фиксированных частотах 10^2 , 10^3 , 10^4 , 10^5 Hz, а также методом спектроскопии комплексного импеданса в диапазоне частот 20 Hz-1 MHz. Для этого использован анализатор импеданса Solartron SI 1260. Из диаграмм импеданса, полученных при различных значениях температуры, рассчитаны температурная зависимость статической удельной объемной проводимости образцов (σ_{SV}) и времени релаксации проводимости (τ_V).

3. Результаты и обсуждение

Величина компоненты статического пьезоэлектрического модуля кристаллов LiNbO_{3stoich} по данным трех последовательных измерений в указанной геометрии составляет в среднем $d_{222_{st}} = 21.8 \cdot 10^{-12}$ С/N, что определенно указывает на весьма высокую униполярность образцов, близкую к монодоменному состоянию [15]. Температурная зависимость удельной проводимости $\sigma_{22}(T)$, полученная на фиксированных частотах, приведена на рис. 1 в координатах Аррениуса. Здесь, подобно результатам работ [14,16–19] в которых исследованы кристаллы LiNbO₃: ZnO, для кристалла LiNbO_{3stoich} наблюдаются следующие особенности:

— в окрестности температуры $T^* \approx 760 \,\mathrm{K}$ наблюдается скачкообразное увеличение ионной проводимости,

Рис. 1. Температурная зависимость удельной проводимости на фиксированных частотах близкого к стехиометрическому кристалла LiNbO_{3 stoich}, *Y*-срез. *1* — 100 kHz; *2* — 10 kHz, *3* — 1 kHz, *4* — 100 Hz.

что позволяет определенно выделить температурные области $T < T^*$ и $T > T^*$;

— наблюдается выраженная дисперсия проводимости, что указывает на релаксационный вклад в проводимость, особенно в диапазоне частот 10–100 kHz;

— наблюдается отклонение от закона Аррениуса при $T < 550 \, {\rm K}.$

С целью исключить влияние релаксационных эффектов на результаты измерений и корректного определения энтальпии активации, а также для определения транспортной (H_m) и френкелевской энтальпии (H_F) , была исследована дисперсия комплексного импеданса образцов. В использованном диапазоне частот дисперсия импеданса вполне удовлетворительно описывается релаксационной моделью Дебая [20]. Поэтому для каждой температуры T = const значение статического объемного импеданса Z_{sv} находится экстраполяцией $\text{Re}[Z^*(\omega)]$ к пределу $\omega = 0$. Поскольку дисперсия импеданса в кристалле LiNbO_{3stoich} характеризуется единственным релаксационным процессом, для расчета температурной зависимости времени релаксации τ_V может быть использована графоаналитическая процедура:

$$\frac{d}{d\omega}\left[\operatorname{Im} Z^*(\omega)\right] = 0. \tag{1}$$

Этому условию отвечает значение частоты ω_0 , для которой $\tau_V \cdot \omega_0 = 1$.

Как показано на рис. 2, *a*, *b* для температурных зависимостей статической (объемной) удельной проводимости $\sigma_{SV}(T)$ и времени релаксации $\tau_V(T)$ закон Аррениуса выполняется во всем исследованном температурном интервале и, подобно рис. 1, наблюдается скачкообразное изменение обеих величин при температуре T^* , с соответствующими изменениями энтальпии активации H_a и транспортной энтальпии H_m . Как известно [21], значения последних связаны с энтальпией образования дефектов по Френкелю H_F , значения которой показаны на рис. 2, *b*. При этом

$$H_a = H_m + \frac{1}{2}H_{\rm F}.$$
 (2)

Согласно результатам и выводам работ [14,16–19], в кристаллах LiNbO₃, как номинально чистых, так и легированных, скачкообразное увеличение проводимости при $T = T^*$ приводит к увеличению или, во всяком случае, не приводит к уменьшению степени униполярности кристалла. Однако при $T > T^*$ (область 2) наблюдение пьезоэлектрических резонансов в кристаллах LiNbO₃, как правило, представлялось проблематичным из-за высокой ионной проводимости образцов. Как показано на рис. 1 и 2, *a*, область 2 характеризуется значениями проводимости образцов LiNbO_{3,}

Вместе с тем, в высокотемпературной области 2 при температуре ~ 818 К обнаружен пьезоэлектрический резонанс — антирезонанс с отчетливо выраженными экстремальными точками резонанса f_R , свободных колебаний f_0 и антирезонанса f_A (рис. 3, *a*, *b*). Значения угловых частот $\omega_R = 2.4522 \cdot 10^6 \text{ s}^{-1}$, $\omega_0 = 2.4559 \cdot 10^6 \text{ s}^{-1}$,

Рис. 2. Температурные зависимости статической удельной проводимости (*a*) и времени релаксации (*b*) близкого к стехиометрическому кристалла LiNbO_{3stoich}, *Y*-срез. На рисунке указаны величины H_a и H_m , а также рассчитанные значения H_F . Индексы 1 и 2 относятся к областям $T < T^*$ и $T > T^*$ соответственно.

 $\omega_A = 2.4597 \cdot 10^6 \text{ s}^{-1}$, что дает значение коэффициента затухания $\lambda = 3.751 \cdot 10^3 \text{ s}^{-1}$ и добротность в полосе резонанса Q > 250. Численные значения частот и скорости ультразвука [15] позволяют предположить, что мы наблюдаем резонанс на колебаниях в плоскости кристаллического образца LiNbO_{3 stoich}.

Факт наблюдения пьезоэлектрического резонанса при столь высокой проводимости образца LiNbO3_{stoich} объясняется, по-видимому, большими значениями времени релаксации ионной проводимости по сравнению с периодом колебаний кристалла. Как следует из рис. 2, b, в высокотемпературной области 2 $au_V \sim (1-2) \cdot 10^{-5}$ s, что удовлетворяет условию $\tau_V^{-1} \ll \omega_R$. В этом случае подвижный заряд носителей как макроскопическая система ("облако" ионов Li⁺) "не успевает" следовать столь быстрым изменениям поля и деформации. Поэтому компенсация пьезоэлектрического заряда свободным зарядом проявляется слабо и, соответственно, механические колебания слабо демпфированы. Тем самым, конечная проводимость при больших значениях τ_V приводит лишь к незначительному увеличению коэффициента затухания (уменьшению добротности) пьезоэлектриче-

Рис. 3. Пьезоэлектрический резонанс–антирезонанс при $T > T^*$ близкого к стехиометрическому кристалла LiNbO_{3_{stoich}}, *Y*-срез: частотные зависимости действительной (a) и мни-мой (b) части диэлектрической проницаемости.

ского резонатора, что позволяет наблюдать устойчивый пьезорезонанс в образце кристалла LiNbO3_{stoich}, рис. 3. По мере увеличения температуры и соответственно закономерного уменьшения времени релаксации τ_V для образца LiNbO3_{stoich} конкретного размера и ориентации рано или поздно наступит момент, когда $\tau_V^{-1} \leq \omega_R$. В этом случае возможность наблюдения пьезоэлектрического резонанса станет проблематичной. Понятно, что при изменении размеров образца, сопровождающемся увеличением частоты резонанса ω_R , может вновь быть выполнено условие $\tau_V^{-1} \ll \omega_R$. При этом, рабочая температура пьезоэлектрического резонатора на основе кристалла LiNbO $_{3_{stoich}}$ будет ограничена температурой, при которой вновь τ_V^{-1} будет $\leq \omega_R$. Таким образом, использование пьезоэлектрических резонаторов на основе кристаллов LiNbO3 в области высоких температур и соответственно высокой проводимости возможно при соблюдении условия $\tau_V^{-1} \ll \omega_R$. То есть, пьезоэлектрические резонаторы на основе кристаллов LiNbO3 можно использовать в области высоких температур при вполне определенных кинетических параметрах процесса транспорта заряда в рабочем температурном диапазоне ΔT и соответствующих этим параметрам частотах пьезорезонанса ω_R . Можно предположить, что подобные закономерности будут справедливы не только для кристаллов LiNbO_{3stoich}, но и для гораздо более широкого круга пьезоэлектрических материалов.

4. Заключение

Исследованы условия использования пьезоэлектрических резонаторов на основе кристаллов LiNbO3 в области высоких температур и, соответственно, высокой проводимости. Для этого в близких по составу к стехиометрическим кристаллах LiNbO3stoich, выращенных из расплава конгрузнтного состава ($R \approx 0.946$), содержащего $\sim 5.5 \text{ wt}\% \text{ K}_2 \text{O}$, в широком интервале температур $(\sim 300-850\,{\rm K})$ изучены пьезоэлектрические, диэлектрические (действительная и мнимая части: ε' и ε'') свойства и ионная проводимость на фиксированных частотах 10^2 , 10^3 , 10^4 , 10^5 Hz и методом спектроскопии комплексного импеданса в диапазоне частот 20 Hz-1 MHz. Показано, что явление пьезорезонанса в этих кристаллах будет наблюдаться в определенном диапазоне температур ΔT (и соответственно величин $\Delta \tau_V$) и частот $\Delta \omega_R$ при соблюдении условия $\tau_V^{-1} \ll \omega_R$.

Таким образом, использование пьезоэлектрических резонаторов на основе кристаллов LiNbO_{3_{stoich}} в области высоких температур возможно при вполне определенных кинетических параметрах процесса транспорта заряда (τ_V) в планируемом рабочем температурном диапазоне (ΔT) и соответствующих этим параметрам частотах пьезорезонанса (ω_R).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- M.E. Lines, A.M. Glass. Principles and application of ferroelectrics and related materials. Clarendon Press, Oxford. (1977). 680 p.
- [2] Ю.С. Кузьминов Ниобат и танталат лития материалы для нелинейной оптики. Наука, М. (1975). 223 с.
- [3] A. Räuber. Chemistry and Physics of lithium niobate. In: Current Topics in Material Sciences / Ed. E. Kaldis. North-Holland Rublishing Company, Amsterdam. (1978). V. 1. P. 481.
- [4] Ю.С. Кузьминов. Электрооптический и нелинейнооптический кристалл ниобата лития. Наука, М. (1987). 264 с.
- [5] Н.В. Сидоров, Т.Р. Волк, Б.Н. Маврин, В.Т. Калинников. Ниобат лития: дефекты, фоторефракция, колебательный спектр, поляритоны. Наука, М. (2003). 255 с.
- [6] М.Н. Палатников, Н.В. Сидоров, С.Ю. Стефанович, В.Т. Калинников. Неорган. материалы 34, 8, 903 (1998).
- [7] K. Polgar, A. Peter, L. Kovacs, G. Corradi, Zs. Szaller. J. Cryst Growth. 177, 3–4, 211 (1997).

- [8] И.В. Бирюкова, В.Т. Габриелян, В.Т. Калинников, М.Н. Палатников. Тезисы докл. IX Нац. конф. по росту кристаллов. М. (2000). 443 с.
- [9] А.А. Аникьев, М.Ф. Умаров. Оптика и спектроскопия 125, *1*, 19 (2018).
- [10] Н.В. Сидоров, М.Н. Палатников, В.Т. Калинников. Оптика и спектроскопия 82, 1, 38 (1997).
- [11] Н.В. Сидоров, М.Н. Палатников, Ю.А. Серебряков, Е.Л. Лебедева, В.Т. Калинников. Неорган. материалы 33, 4, 496 (1997).
- [12] М.Н. Палатников, Н.В. Сидоров, И.В. Бирюкова, О.Б. Щербина, В.Т. Калинников. Перспективные материалы 2, 93 (2011).
- [13] М.Н. Палатников, Н.В. Сидоров, О.В. Макарова, И.В. Бирюкова. Фундаментальные аспекты технологии сильно легированных кристаллов ниобата лития. Изд-во ФИЦ КНЦ РАН, Апатиты. (2017). 241 с.
- [14] М.Н. Палатников, В.А. Сандлер, Н.В. Сидоров, О.В. Макарова. Изв. СПбГТИ (ТУ) **37**, 75 (2017).
- [15] Акустические кристаллы. Справочник / Под ред. М.П. Шаскольской. Наука, М. (1982). 632 с.
- [16] М.Н. Палатников, В.А. Сандлер, Н.В. Сидоров, О.В. Макарова, И.В. Бирюкова, И.Н. Ефремов, Д.В. Иваненко. ФТТ 57, 1515 (2015).
- [17] M.N. Palatnikov, V.A. Sandler, O.V. Makarova, N.V. Sidorov, D.V. Manukovskaya, I.N. Efremov, I.V. Biryukova, K. Bormanis. Integrated Ferroeclectrics **173**, *1*, 1 (2016).
- [18] М.Н. Палатников, В.А. Сандлер, Н.В. Сидоров, О.В. Макарова. Неорган. материалы **52**, *2*, 180 (2016).
- [19] М.Н. Палатников, В.А. Сандлер, Н.В. Сидоров, И.В. Бирюкова, О.В. Макарова. Неорган. материалы 52, 12, 1368 (2016).
- [20] М.Ф. Вукс. Электрические и оптические свойства молекул и конденсированных сред. Изд-во ЛГУ. Л. (1984). 349 с.
- [21] Дж. Хладик. Физика электролитов. Мир, М. (1978). 556 с.

Редактор Д.В. Жуманов