06

Особенности электрических свойств кристаллов ниобата лития, выращенных из распалава с флюсом K₂O

© А.В. Яценко¹, С.В. Евдокимов¹, М.Н. Палатников², Н.В. Сидоров²

¹ Крымский федеральный университет им. В.И. Вернадского,

Симферополь, Россия

² Институт химии и технологии редких элементов и минерального сырья им. И.В. Тананаева КНЦ РАН,

Апатиты, Россия

E-mail: yatsenkoav@cfuv.ru

Поступила в Редакцию 7 февраля 2019 г. В окончательной редакции 7 февраля 2019 г. Принята к публикации 12 февраля 2019 г.

> В диапазоне 292–450 К исследована температурная зависимость электрической проводимости и первичного пироэлектрического коэффициента кристаллов ниобата лития LiNbO₃, выращенных из расплава с флюсом K₂O. Показано, что эти кристаллы характеризуются сильной анизотропией электрической проводимости, а в исследованном диапазоне температур доминирующей является протонная проводимость.

Ключевые слова: ниобат лития, стехиометрия, электрическая проводимость, пироэлектрический эффект.

DOI: 10.21883/FTT.2019.07.47836.379

1. Введение

Хорошо известно, что стехиометрия номинально беспримесных кристаллов ниобата лития LiNbO₃ (HЛ) сильно влияет на очень многие физические свойства [1]. В последнее время особое внимание уделяется вырациванию кристаллов ниобата лития стехиометрического состава (SLN) или с составом, близким к стехиометрическому (NSLN). Это связано с тем, что значение коэрцитивного поля E_c в них более, чем в 5 раз меньше, чем у кристаллов НЛ конгруэнтного состава (CLN), а этот фактор принципиален при реализации нелинейноактивных лазерных сред с периодически поляризованными доменными структурами микронных и субмикронных размеров [2].

Известны и используются три способа получения кристаллов НЛ с составом, близким к стехиометрическому (NSLN). Первый способ — выращивание методом двойного тигля из расплава, сильно обогащенного Li₂O, с постоянной подпиткой расплава шихтой стехиометрического состава [3]. Второй метод — так называемое высокотемпературное уравновешивание (VTE), когда ранее синтезированный кристалл CLN проходит длительный высокотемпературный отжиг в литийсодержащих парах [4]. Третьим методом является выращивание НЛ из расплава с флюсом K_2O [5]. Комплекс физических свойств NSLN позволяет считать этот материал весьма перспективным для ряда практических применений [6].

Рассмотрим имеющуюся на данный момент информацию о пироэлектрических и электрических свойствах NSLN. Считается, что при $T \simeq 300$ К по мере приближения состава кристалла к стехиометрическому абсолютное значение первичного пироэлектрического коэффициента γ_1 уменьшается [7–10]. Однако исследование температурной зависимости $\gamma_1(T)$ кристаллов NSLN,

выращенных из расплава с флюсом K₂O в диапазоне температур (4.2–300) К [9] показало наличие аномалии γ_1 в окрестностях T = 300 К. Для T > 300 К данные отсутствуют.

Информация об электрических свойствах SLN и NSLN достаточно разрозненна и противоречива. Так, например, в [11] на основании экспериментального исследования кристаллов НЛ разной нестехиометрии показано, что удельная электрическая проводимость σ в исследованном диапазоне температур подчиняется закону Аррениуса и (при фиксированной температуре) растет с уменьшением отношения Li/Nb в образце. Такая же тенденция наблюдалась в [12] — при исследовании электрических свойств серии образцов НЛ, полученных при разной температуре проведения VTE обработки и в [13] — при сравнении параметров конгруэнтного и VTE образца. Известная на данный момент информация об электрической проводимости NSLN представлена в табл. 1.

Согласно [14] рост соотношения Li/Nb в кристалле сопровождается уменьшением энергии активации E_a электрической проводимости по постоянному току и такое же заключение делается в [11]. Качественно противоположные результаты получены в [12,13] — увеличение E_a при приближении состава кристалла к стехиометрическому. В то же время, согласно [15,16] значения E_a в исследованных диапазонах температур для CLN и NSLN совпадают в пределах погрешности.

Следует также отметить, что согласно [15,16,20] значение σ при фиксированной температуре в NSLN образцах больше, чем в конгруэнтном НЛ, что противоречит выводу, сделанному в [11–13].

Как видно из табл. 1, электрическая проводимость NSLN ранее исследовалась только в области доминирования ионной проводимости. Однако при температурах,

Образец	Метод получения	<i>T</i> ,K	$T, K \qquad E_a, eV$		Ref.
NSLN	VTE	523-578	1.34-1.49	dc	[12]
49.5 mol.% Li2O	VTE	781-1173	1.44 ± 0.05	isp	[13]
NSLN	керамика	571-781	0.78	dc	[14]
NSLN z-cut	VTE	727-1020	1.03	ac	[15]
NSLN	Флюс К2О		1.10 ± 0.02	rph	[16]
49.6 mol.% Li ₂ O	Флюс К2О	353-394	1.14 ± 0.02	rph	[17]
49.7 mol.% Li2O	VTE	757-1020	0.90	isp	[18,19]
49.0 mol.% Li ₂ O	?	689-1136	1.19	isp	[19]
NSLN, z-cut	Флюс К2О	362-476	1.0	dc	[20]

Таблица 1. Электрические свойства NSLN

Примечание.* dc — измерения по постоянному току, ac — измерения по переменному току, rph — релаксация фазовых голограмм, isp — импедансная спектроскопия.

Таблица 2.	Образцы,	использованные	в	эксперименте
------------	----------	----------------	---	--------------

№ К ₂ О в шихте, масс.%	К2О в шихте,	L_x , mm	L_y , mm	L_z ,mm	Li ₂ O mol.%		N,%	
	масс.%				[23]	[24]	[23]	[24]
1	5.0	6.97	2.28	7.96	49.55	49.66	0.298	0.216
2	5.5	8.33	6.26	1.79	49.70	49.77	0.199	0.153
3	5.5	8.33	2.33	10.41	49.70	49.77	0.199	0.153

близких к комнатной, где обычно проявляется электронный (поляронный или примесный прыжковый) вклад в проводимость [21], такие измерения ранее не проводились. Это не позволяет сопоставить соотношение объемной концентрации носителей разного типа и их подвижность в NSLN и номинально беспримесном CLN.

Основной целью данной работы было проведение экспериментального исследования пироэлектрических свойств и удельной электрической проводимости кристаллов НЛ, выращенных из расплава с флюсом К₂О в практически важном диапазоне температур 292–450 К.

2. Образцы и методика эксперимента

Кристаллы LiNbO₃, исследованные в настоящей работе, выращены модифицированным методом Чохральского из под флюса K_2O с добавкой в расплав, соответственно, 5.0 и 5.5 wt.% K_2O . Выращивание кристаллов проводили при малой скорости роста (≤ 0.25 mm/h), а послеростовой отжиг кристаллической були — при 1200°C в течении 20 h. Монодоменизирование выполнялось методом высокотемпературного электродиффузионного отжига при охлаждении образцов со скоростью 20 K/h в температурном интервале от ~ 1200–890°C в условиях приложения электрического напряжения [22].

Некоторые характеристики этих образцов приводятся в табл. 2. Для всех образцов направление z совпадает с полярной осью кристалла c, а направление y — с неполярной осью b (гексагональная установка). Образцы № 2 и 3 были вырезаны из одной були. В этой же таблице приведен расчет содержания Li₂O в соответствующих образцах и относительного количества антиструктурных

Физика твердого тела, 2019, том 61, вып. 7

ионов Nb_{Li} $N = n(Nb_{Li})/n(Nb_{Nb})$, проведенный согласно [23,24].

Для выполнения измерений использовалась установка, позволяющая проводить прецизионные измерения по постоянному току, реальная чувствительность которой (~ 30 fA) лимитируется токами пироэлектрической природы (из-за нестабильности температуры образца) и нестабильностью источника высокого напряжения, которое прикладывается к исследуемому образцу. Измерения электрической проводимости проводились двухэлектродным методом. В режиме выполнения измерений проводимости кратковременная нестабильность температуры образца не превышала ± 0.006 K/min. Методика выполнения пироэлектрических измерений будет описана ниже.

Измерительные электроды наносились на предварительно прошлифованные корундовым порошком соответствующие пары граней образца путем втирания индий-галлиевой эвтектики с последующим ее прижиганием при $T \cong 450$ К. Перед проведением измерений поверхность образца обезжиривалась и обезвоживалась во избежание проявления поверхностной проводимости [25], а в термостате присутствовал предварительно обезвоженный силикагель.

3. Экспериментальные результаты

Для прямого исследования пироэлектрических свойств сегнетоэлектриков обычно используется метод Байера–Раунди, основанный на регистрации изменения сторонних (экранирующих) зарядов, локализованных на полярных поверхностях образца при монотонном

Рис. 1. Температурная зависимость абсолютного значения некорректированного пироэлектрического коэффициента $|\gamma'|$ для: (1) образца № 1; (2) — СLN кристалла производства JCC.

Рис. 2. Температурная зависимость абсолютного значения некорректированного пироэлектрического коэффициента |*y*'| для: (*1*) — образца № 2; (*2*) — СLN кристалла производства СТІ.

изменении температуры со скоростью V [26]. Электроды, нанесенные на полярные поверхности образца, при этом подключаются к внешнему резистору сопротивлением R.

С учетом коррекции на тепловое расширение кристалла выражение, связывающее первичный пироэлектрический коэффициент γ_1 с током *I* через нагрузочный резистор будет иметь следующий вид [27]:

$$\gamma_1 = -\frac{dP(T)}{dT} = -\frac{I}{SV} + 2P(\alpha_a + \alpha_b)$$
$$= \gamma' + 2P(\alpha_a + \alpha_b), \tag{1}$$

где P(T) — спонтанная поляризация кристалла, S — площадь полярных граней, T — температура, α_a и α_b — коэффициенты линейного температурного расширения по неполярным осям a и b, γ' — некорректированный первичный пироэлектрический коэффициент.

При использовании этого метода принципиальным является то, что во избежание проявления вторичного пироэлектрического эффекта исследуемый образец должен иметь форму тонкой пластинки, а значение V — по возможности минимальным [28].

Результаты исследования температурной зависимости абсолютного значения $|\gamma'|$ для образцов № 1 и 2 представлены на рис. 1 и 2. Измерения выполнялись при $V \cong (0.12-0.15)$ К/тіп. На этих же рисунках приведены аналогичные зависимости $|\gamma'|$, полученные нами для коммерчески доступных образцов CLN оптического качества (Japan Ceramic Co и Crystal Technology Inc.).

Видно, что у образцов № 1 и 2 абсолютное значение γ' при $T = 300 \, \text{K}$ действительно меньше, чем

Рис. 3. Температурные зависимости удельной электрической проводимости образца № 1 (1) — вдоль полярного направления z; (2) — вдоль неполярных направлений. Треугольниками представлены данные для направления x.

Рис. 4. Зависимости удельной электрической проводимости: (1) — вдоль полярного направления образца № 2; (2) вдоль *х* направления (звездочки) и у направления (квадраты) образца № 2; (3) зависимость $\sigma_z(T)$ для CLN; (4) — $\sigma_z(T)$ для NSLN согласно [20].

у СLN образцов, при этом температурная зависимость γ' хорошо описывается полиномом первого порядка: $\gamma'(T) = a_1 + a_2(T - 300)$, а аномалии пироэлектрического коэффициента, присущие некоторым образцам НЛ [9,10,28], не наблюдаются. Это свидетельствует о высокой степени монодоменизации исследованных образцов. Отметим что у образца № 1, а также образцов СLN значения коэффициента a_2 очень близки и в среднем равны $0.133\mu C(m^2K^2)^{-1}$, а для образца № 2 составляет величину $(0.105 \pm 0.007)\mu C(m^2K^2)^{-1}$.

Известно, что электрическая проводимость кристаллов НЛ анизотропна [29], поэтому температурная зависимость удельной электрической проводимости NSLN образцов исследовалась как при приложении внешнего постоянного электрического поля вдоль полярного, так и вдоль неполярных направлений. Экспериментальные результаты приведены на рис. 3 и 4. Отметим, что в рамках погрешности измерений результаты, полученные для образцов № 2 и 3 совпадают.

На этих же рисунках дополнительно показаны еще две зависимости $\sigma(T)$ вдоль полярной оси $z - \sigma_z(T)$: полученная нами ранее для номинально беспримесного CLN образца [29] и известные данные для NSLN, выращенного из расплава с флюсом K₂O [20]. Примечательно, что результаты, полученные в [20] достаточно близки к зависимости $\sigma_z(T)$ образца \mathbb{N} 2.

Полученные результаты показывают, что в исследованных образцах проводимость имеет смешанный ионноэлектронный характер, причем в исследованном температурном диапазоне наблюдается только один тип подвижных ионов — H⁺. Выражение для удельной электрической проводимости при наличии ионного и электронного вкладов будет иметь следующий вид:

 $\sigma = \sigma_H + \sigma_e$

$$= \left[\mu_H N_H \exp\left(-\frac{E_H}{k_0 T}\right) + \mu_e N_{\text{eff}} \exp\left(-\frac{E_e}{k_0 T}\right)\right] \cdot |e|, \quad (2)$$

где |e| — модуль заряда электрона, μ_H и μ_e — подвижность протонов и электронов соответственно, N_H — объемная концентрация ионов H⁺, N_{eff} — эффективная объемная концентрация электронных ловушек. При этом $N_{eff} = (c_{D-}^{-1} + c_{D+}^{-1})^{-1}$, где c_{D-} и c_D — соответственно объемная концентрация заполненных и пустых электронных ловушек, а $\mu_H = eD_H^0/k_0T$, где E_H^0 — коэффициент диффузии протонов.

Аппроксимация экспериментальных результатов выражением (2) дает одинаковое значение $E_H = (1.05 \pm 0.01) \text{ eV}$ для полярного и неполярного направлений образцов № 1, 2 и 3. Отчетливое наличие электронного вклада в проводимость также демонстрируют зависимости $\sigma_y(T)$ и $\sigma_z(T)$ для образца № 1, где $E_e = (0.28 \pm 0.05) \text{ eV}$. Однако "следы" этого вклада видны и в результатах, полученных для образца № 2. Отметим сильную анизотропию электрической проводимости NSLN образцов, причем при любой фиксированной температуре $\sigma_z > \sigma_y \cong \sigma_x$, в то время как для CLN $\sigma_y \cong \sigma_x > \sigma_z$ [29].

Таблица 3. Известные данные о удельной электрической проводимости и энергии активации кристаллов LiNbO₃ для полярного направления z при T = 300 K

Образец	σ , (Ohm cm) ⁻¹	E_a, eV	Метод	Ref.
CLN	$\cong 1 \cdot 10^{-15}$	0.39 ± 0.02	dc	[21]
CLN	$\cong 3 \cdot 10^{-16}$	pprox 0.25	dc	[30]
CLN	$2\cdot 10^{-16}$	0.36 ± 0.02	dc	[25]
CLN	$7.4 \cdot 10^{-17}$	0.33 ± 0.04	dc	[29]
LN: Fe (0.07 wt.%)	$5.5\cdot10^{-16}$	0.33 ± 0.03	dc	[31]
LN: Fe (0.138 wt.%)	$7.5\cdot10^{-15}$	0.28	rph	[32]
LN: Fe (0.5 wt.%)	$5 \cdot 10^{-12}$	0.35	dc	[33]

4. Анализ и обсуждение результатов

Из-за ряда отмеченных выше трудностей экспериментального характера измерение удельной электрической проводимости кристаллов НЛ и ТЛ при комнатной температуре проводится достаточно редко. Известные экспериментальные результаты, описывающие электрическую проводимость НЛ при температуре $T = 300 \, {\rm K}$ представлены в табл. 3. В кристаллах НЛ с примесью Fe основным является электронный прыжковый механизм проводимости по парам ($Fe^{2+} \leftrightarrow Fe^{3+}$), а в номинально беспримесных — скорее всего поляронный, характеризующийся наличием в структуре короткоживущих поляронов малого радиуса (ПМР) Nb⁴⁺_{Li} [34]. При сравнении полученных нами результатов и данных, представленных в табл. 3 видно, что проводимость NSLN образцов при $T = 300 \, \text{K}$ существенно меньше, чем у исследовавшихся ранее.

Для дальнейшего анализа введем в рассмотрение температуру T', при которой ионный и электронный вклады в проводимость одинаковы: $\sigma_H = \sigma_e$. Очевидно,

Рис. 5. Результаты моделирования зависимости $\sigma(T)$, полученные при: (1) A = 0.8, $B = 16 \cdot 10^{-13}$; (2) A = 0.8, $B = 8 \cdot 10^{-13}$; (3) A = 0.8, $B = 4 \cdot 10^{-13}$; (4) A = 0.2, $B = 1 \cdot 10^{-13}$; (5) A = 0.1, $B = 1 \cdot 10^{-13}$; (6) A = 0.05, $B = 1 \cdot 10^{-13}$. A и B — в ед. (V · cm · s)⁻¹.

Образец	$\sigma _{400\mathrm{K}}, \\ (\Omega\mathrm{cm})^{-1}$	$\frac{(\mu_H)_z}{(\mu_H)_{x,y}}$	A'	$\frac{1000/T'}{K^{-1}}$,	F	B'		$(\mu_e)_z$	(4')	/ <i>R</i> ′\
						Расчет по F	Оптим.*	$(\mu_e)_{x,y}$	* • /	12 /
CLN z-axis	$7.04\cdot10^{-14}$	0.73	0.73	2.98 ± 0.01	1	0.73		≅ 0.73	0.91	0.91
CLN y-axis	$9.69\cdot 10^{-14}$		1	2.98 ± 0.01	1	1				
№ 1, z-axis	$1.74\cdot 10^{-13}$	3.9	1.79	≅ 3.26	~ 13	~ 0.135	0.117	~ 2.12	9.90	~ 0.07
№ 1, y-axis	$4.47\cdot 10^{-14}$		0.46	≅ 3.22	~ 9.5	~ 0.05	0.055			
№ 2, z-axis	$5.62\cdot 10^{-13}$	3.2	5.79	~ 3.4	~ 50	~ 0.11	0.072	. 2.18	3 1 /	a 0.042
№ 2, y-axis	$1.77\cdot 10^{-13}$		1.82	~ 3.4	~ 50	~ 0.03	0.033	\sim 2.16	5.14	~ 0.042

Таблица 4. Оценка анизотропии подвижности и относительной концентрации носителей в исследованных образцах

* из оптимального апроксимирования.

что при этом справедливо следующее соотношение:

$$F = \frac{A}{B} = \frac{\mu_H \cdot N_H}{\mu_e \cdot N_{eff}} = \exp\left(\frac{E_H - E_e}{k_0 T'}\right).$$
 (3)

Это выражение позволяет оценивать соотношение ионного и электронного вклада в проводимость F в разных образцах при известных значениях E_H и E_e .

На рис. 5 приводятся результаты моделирования температурной зависимости $\sigma(T)$ при фиксированных значениях энергий активации ($E_H = 1.05 \text{ eV}$, $E_e = 0.28 \text{ eV}$), но при разных значениях A, B и F. Для одной из зависимостей указана характерная точка T'. Так как у всех исследованных образцов значение E_H одинаково, из сопоставления результатов измерения электрической проводимости в области доминирования ионной проводимости можно сделать достаточно точную оценку соотношения значений A в исследуемых образцах по сравнению с CLN образцом.

Анализ зависимостей $\sigma_x(T)$ и $\sigma_z(T)$ для CLN образца [29] показывает, что значение 1000/T' для них в

Рис. 6. Зависимость нормированного параметра F' от характерной температуры T' для некоторых значений E_e : от 0.22 eV (1) до 0.32 eV (6) с шагом 0.02 eV.

пределах погрешности одинаково и составляет величину $\sim 2.98 \,\mathrm{K}^{-1}$ ($T_0' \cong 336 \,\mathrm{K}$). Введем нормированное соотношение: $F'(T') = \frac{F(T')}{F(T_0')}$. Расчетные зависимости F'(T'), полученные при разных значениях энергии активации E_e приводятся на рис. 6.

Для удобства введем также нормированные значения $A' = A/A_0$ и $B' = B/B_0$, где A_0 и B_0 — значения коэффициентов, отвечающие зависимости $\sigma_x(T)$ для образца CLN. Таким образом, зная температуру T' можно оценить значение В'. Эти результаты приводятся в табл. 4. Полагая, что энергии активации проводимости данных образцов одинаковы и пользуясь установленными значениями А' и В' при помощи выражения (2) можно промоделировать полученные экспериментальные данные и, минимизируя взвешенное среднеквадратичное отклонение, определить оптимальные значения В'. Исходные и оптимизированные значения В' также приведены в табл. 4. Результаты аппроксимации приводятся на рис. 7 и 8. Наглядно видно, что для неполярного направления наблюдается достаточно хорошее совпадение моделированных зависимостей и экспериментальных данных для всех трех образцов.

Рассмотрим усредненное значение нормированного коэффициента B' для каждого образца: $\langle B' \rangle = (B'_x + B'_y + B'_z)/3$. Соответствующие данные также приведены в табл. 4. При сравнении результатов расчета $\langle B' \rangle > c$ данными табл. 2 видно, что проводимость NSLN в низкотемпературной области уменьшается быстрее, чем объемная концентрация антиструктурных ионов Li_{Nb}. Это связано с тем, что одновременно с уменьшением N увеличивается среднее расстояние между ближайшими Nb_{Li}, что приводит к дополнительному уменьшению N_{eff} [35]. Таким образом, полученные выше экспериментальные данные в области температур, близких к комнатной, целиком согласуются с предположением о поляронном характере проводимости номинально беспримесных кристаллов НЛ [34].

Наглядно видно, что рассчитанное аналогичным образом значение $\langle A' \rangle$ у образца № 2 существенно больше,

Рис. 7. Температурная зависимость удельной электрической проводимости вдоль неполярного направления $\sigma_y(T)$ для: (1) образца № 1; (2) образца № 2; (3) кристалла конгруэнтного состава. Сплошные линии — результаты моделирования с оптимальными значениями A' и B', представленных в табл. 4.

Рис. 8. Температурная зависимость удельной электрической проводимости вдоль полярного направления $\sigma_z(T)$ для: (1) образца № 1; (2) образца № 2; (3) — кристалла конгруэнтного состава. Сплошные линии — результаты моделирования с оптимальными значениями коэффициентов A' и B', представленных в табл. 4.

чем у образца CLN. Это свидетельствует либо о увеличении объемной концентрации ионов H⁺, либо об увеличении их подвижности. Известно, что интенсивность обратной диффузии лития из кристаллов НЛ при высокой температуре увеличивается по мере приближения состава кристалла к стехиометрическому [36]. Поэтому увеличение концентрации водорода в NSLN кристаллах может являться следствием частичной зарядовой компенсации за счет диффузии в кристалл ионов H⁺ из атмосферы в процессе послеростового охлаждения кристаллической були.

5. Заключение

Из вышеизложенного следует, что при приближении состава кристаллов НЛ, выращенных из расплава с флюсом К₂О, к стехиометрическому резко уменьшается электронный (поляронный или примесный прыжковый) вклад в электрическую проводимость по сравнению с номинально беспримесными образцами CLN. Показано, что NSLN образцы имеют сильную анизотропию электрической проводимости, что свидетельствует о изменении характера подвижности носителей по сравнению с кристаллами НЛ конгруэнтного состава.

Установлено, что при приближении состава НЛ к стехиометрическому наблюдается значительное увеличение протонного вклада в электрическую проводимость. Реальная причина этого может заключаться либо в существенном увеличении объемной концентрации ОН⁻ групп в NSLN кристаллах, либо в прогрессирующем увеличении подвижности ионов H⁺. Рассмотрению этого вопроса будет посвящена отдельная статья.

Не исключено, что наблюдаемые эффекты свойственны только кристаллам, выращенным из расплава с флюсом K₂O, поэтому актуальным является проведение аналогичных сравнительных исследований для образцов NSLN, полученных другими способами.

Благодарности

Авторы выражают признательность С.М. Кострицкому (ООО "Оптолинк", Зеленоград, Россия) за предоставление для исследования коммерчески доступных образцов CLN оптического качества.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- T.R. Volk, M. Wohlecke. Lithium Niobate. Defects, photorefraction and ferroelectric switching. Springer-Verlag, Berlin. (2008). 250 p.
- [2] V.Ya. Shur, A.R. Akhmatkhanov, I.S. Baturin. Appl. Phys. Rev. 2, 040604 (2015).
- [3] K. Kitamura, Y. Furukawa, N. Iyi. Ferroelectrics **202**, 21 (1997).
- [4] Y.S. Luh, M.M. Fejer, R.L. Byer, R.S. Feigelson. J. Cryst. Growth 85, 264 (1987).
- [5] Р.Н. Баласанян, Э.С. Вартанян, В.Т. Габриелян, Л.М. Казарян. Способ выращивания кристаллов ниобата лития. Авт. св-во № 845506 СССР. Заявл. 29.03.1979. Опубл. 27.02.2000.
- [6] K. Lengyel, A. Peter, L. Kovacs, G. Corradi, L. Palfalvi, J. Hebling, M. Unferdorben, G. Dravecz, I. Haidara, Zs. Shaller, K. Polgar. Appl. Phys. Rev. 2, 040601 (2015).
- [7] T. Bartolomaus, K. Buse, C. Deuper, E. Kratzig. Phys. Status Solidi A 142, K55 (1994).

- [8] B.C. Grabmaier, W. Wersing, W. Koestler. J. Cryst. Growth. 110, 339 (1991).
- [9] Yu.V. Shaldin, S. Matyjasik, M.Kh. Rabadanov, V.T. Gabrielyan, O.S. Grunskii. Dokl. Phys. 52, 579 (2007).
- [10] J. Parravicini, J. Safioui, V. Degiorgio, P. Minzioni, M. Chauvet. J. Appl. Phys. **109**, 033106 (2011).
- [11] K. Singh. Ferroelectrics 306, 79 (2004).
- [12] S. Kar, K.S. Bartwal. Cryst. Res. Technol. 43, 679 (2008).
- [13] A. Weidenfelder, J. Shi, P. Fielitz, G. Borchardt, K.D. Becker, H. Fritze. Solid State Ionics 225, 26 (2012).
- [14] A. El-Bachiri, F. Bennani, M. Bousselamti. Spectroscopy Lett. 47, 374 (2014).
- [15] R. Bhatt, S. Ganesamoorthy, I. Bhaumik, A.K. Karnal, P.K. Gupta. J. Phys. Chem. Solids 73, 257 (2012).
- [16] G. Mandula, K. Lengyel, L. Kovacs, M. Ellaban, R.A. Rupp, M. Fally. SPIE Proc. 4412, 226 (2001).
- [17] K. Lengyel, L. Kovacs, G. Mandula, R. Rupp. Ferroelectrics 257, 255 (2001).
- [18] G. Ohlendorf, D. Richter, J. Sauerwald, H. Fritze. Diffusion Fundamentals 8, 6 (2008).
- [19] C.H. Swanson, M. Schulz, H. Fritze, J. Shi, K.-D. Becker, P. Fielitz, G. Borchardt. Diffusion Fundamentals 12, 48 (2010).
- [20] A.A. Esin, A.R. Akhmatkhanov, V.Ya. Shur. Ferroelectrics 496, 102 (2016).
- [21] И.Ш. Ахмадуллин, В.А. Голенищев-Кутузов, С.А. Мигачев, С.П. Миронов. ФТТ 40, 1307 (1998).
- [22] М.Н. Палатников, Н.В. Сидоров, О.В. Макарова, И.В. Бирюкова. Фундаментальные аспекты технологии сильно легированных кристаллов ниобата лития. Изд-во КНЦ РАН, Апатиты. (2017). 241 с.
- [23] M.D. Serrano, V. Bermudez, L. Arizmendi, E. Dieguez. J. Cryst. Growth 210, 670 (2000).
- [24] K. Polgar, A. Peter, I. Foldvari. Opt. Mater. 19, 7 (2002).
- [25] А.С. Притуленко, А.В. Яценко, С.В. Евдокимов. Кристаллография 60, 293 (2015).
- [26] R.L. Byer, C.B. Roundy. Ferroelectrics 3, 333 (1972).
- [27] A. Glass, M. Lines. Phys. Rev. **B13**, 180 (1976).
- [28] С.В. Евдокимов, Р.И. Шостак, А.В. Яценко. ФТТ **49**, 1866 (2007).
- [29] А.В. Яценко, М.Н. Палатников, Н.В. Сидоров, А.С. Притуленко, С.В. Евдокимов. ФТТ 57, 932 (2015).
- [30] W. Bollmann, M. Gernand. Phys. Status Solidi A9, 301 (1972).
- [31] С.В. Евдокимов, А.В. Яценко. ФТТ 48, 317 (2006).
- [32] Y. Yang, I. Nee, K. Buse, D. Psaltis. Appl. Phys. Lett. 78, 4076 (2001).
- [33] K. Brands, M. Falk, D. Haertle, T. Woike, K. Buse. Appl. Phys. B91, 279 (2008).
- [34] O.F. Shirmer, M. Imlau, C. Merschjann, B. Schoke. J. Phys.: Condens. Matter 21, 123201 (2009).
- [35] I. Nee, M. Muller, K. Buse, E. Kratzig. J. Appl. Phys. 77, 4282 (2000).
- [36] Van E. Wood, N.F. Hartman, A.E. Austin, C.M. Verber. J. Appl. Phys. 52, 1118 (1981).

Редактор Т.Н. Василевская