01,05,11

Влияние гидрирования на структуру, магнитные и магнитокалорические свойства сплавов Tb–Dy–Co со структурой фаз Лавеса

© И.С. Терёшина¹, Т.П. Каминская¹, В.Б. Чжан¹, Ю.А. Овченкова¹, А.С. Трушева¹, А.А. Вирюс²

 ¹ Московский государственный университет им. М.В. Ломоносова, Москва, Россия
² Институт экспериментальной минералогии РАН, Черноголовка, Россия
E-mail: irina_tereshina@mail.ru

Поступила в Редакцию 13 марта 2019 г. В окончательной редакции 13 марта 2019 г. Принята к публикации 19 марта 2019 г.

Выполнено комплексное исследование структуры, фазового состава, особенностей топологии поверхности, магнитных и магнитокалорических свойств соединений TbCo₂, Tb_{0.3}Dy_{0.7}Co₂ и гидрида с невысоким содержанием водорода Tb_{0.3}Dy_{0.7}Co₂H_{0.5}. Установлены особенности структуры на микро- и наноуровне, а также изменение фундаментальных и функциональных свойств при гидрировании. Показано, что введение небольшого количества водорода в кристаллическую решетку соединения Tb_{0.3}Dy_{0.7}Co₂ приводит к увеличению, как температуры Кюри, так и магнитного момента на атомах кобальта. Тип магнитного фазового перехода из парамагнитного в магнитоупорядоченное состояние меняется с первого (в соединении Tb_{0.3}Dy_{0.7}Co₂) на второй (в TbCo₂, Tb_{0.3}Dy_{0.7}Co₂H_{0.5}), что приводит к значительному снижению величины магнитокалорического эффекта.

Ключевые слова: интерметаллид, гидрид, структура, магнитокалорический эффект.

DOI: 10.21883/FTT.2019.07.47829.417

1. Введение

Соединения типа RCo2 со структурой фаз Лавеса интересны как с фундаментальной, так и практической точек зрения [1]. Относительно простая магнитная и кристаллическая структура делает их удобными модельными объектами для теоретических исследований и позволяет прогнозировать новые составы с набором уникальных свойств, которые наиболее ярко выражены в области магнитных фазовых переходов [2]. Материалы на основе RCo2 могут демонстрировать мультифункциональные свойства (такие как магнитострикционный, магнитокалорический и др. эффекты) и могут использоваться в различных областях науки и техники [3-7]. Нередко данные материалы эксплуатируются в водородсодержащих средах. Например, магнитный экохолодильник работает с использованием воды вместо фреона [8-10]. Известно [11-16], что водород, как и другие атомы легких элементов (N, C, O), проникая в кристаллическую решетку соединений, может значительным образом менять их магнитные свойств (тип магнитокристаллической анизотропии (МКА), температуру Кюри и др.). Соединения RCo2 способны поглощать до 4 атомов водорода на формульную единицу [11]. Изменение свойств соединений RCo2 зависит от количества поглощенного водорода [15]. Так, температура Кюри возрастает при малых концентрациях водорода и, наоборот, при больших концентрациях водорода наблюдается ее резкое падение. Водород может занимать два типа тетраэдрических междоузлий в структуре фазы Лавеса C15: позиции AB₃ (32e) и A₂B₂ (96g) [17]. Согласно нейтронографическим данным для RFe₂H_x (R = Er [18]), при малых концентрациях водорода идет преимущественное заполнение междоузлий A₂B₂, а при высоких — частично заполняются междоузлия обоих типов, что, по-видимому, и оказывает влияние на свойства соединений типа RT₂ (T = Fe и Co).

Ранее мы исследовали магнитные свойства исходных составов типа Tb–Dy–Co [19,20], а также свойства гидридов с высоким содержанием водорода [21]. Было установлено, что внедрение трех атомов водорода в кристаллическую решетку соединения $Tb_{0.3}Dy_{0.7}Co_2$ приводит к уменьшению температуры Кюри почти на 100 К и практически полному исчезновению магнитострикционного эффекта в невысоких (до 12 kOe) магнитных полях. Последнее характерно и для Fe-содержащих редкоземельных соединений, подвергнутых процедуре гидрирования [22].

Целью данной работы является сравнительное исследование микроструктуры, топологии поверхности и магнитных свойств трех соединений со структурой фаз Лавеса: TbCo₂, Tb_{0.3}Dy_{0.7}Co₂ и гидрида с невысоким содержанием водорода Tb_{0.3}Dy_{0.7}Co₂H_{0.5}.

2. Получение образцов и методика эксперимента

Получение исходных образцов TbCo₂ и Tb_{0.3}Dy_{0.7}Co₂ достаточно подробно описано нами в работах [19–21].

1230	

N₂	Образац	Весовые %			Атомные %			
	112	Образец	Со	Tb	Dy	Сумма	Со	Tb
1	Tb-Co	43.5 ± 1.8	56.5 ± 2.6	_	100.0	67.5	32.5	_
2	Tb-Dy-Co	41.4 ± 1.8	18.4 ± 2.2	40.2 ± 2.6	100.0	65.9	10.9	23.2

Составы сплавов $TbCo_2$ и $Tb_{0.3}Dy_{0.7}Co_2$ в весовых и атомных процентах

Гидрирование изучаемых материалов было проведено прямой реакцией исходных образцов с газом H₂ высокой чистоты с содержанием примесей $10^{-3} - 10^{-4}$ масс.%, полученным при разложении дигидрида титана TiH₂. Перед процедурой гидрирования поверхность образцов активировали нагреванием в вакууме до температуры 350°С в течение одного часа. В процессе гидрирования использовалось невысокое давление и подача водорода порциями, чтобы избежать декомпозиции образца. Затем температуру в системе повышали для получения гидридов. Температура нагрева, длительность нагрева и длительность процесса охлаждения до комнатной температуры были подобраны опытным путем для получения однофазных образцов. Количество абсорбированного водорода определялось разницей давления газа до и после реакции. Точность такого метода определения концентрации водорода составляла ±0.02 атома на формульную единицу. Нами был получен однофазный образец с невысоким содержанием водорода, а именно Tb_{0.3}Dy_{0.7}Co₂H_{0.5}. Подбор оптимальных параметров гидрирования позволил избежать разрушения образца и получить его в крупнокристаллическом состоянии (а не в порошковом), что важно для выполнения сравнительных исследований с исходным образцом. Фазовый состав синтезированного соединения контролировался методом рентгеноструктурного анализа на дифрактометре ДРОН-ЗМ.

В данной работе для исследования микроструктуры и топологии поверхности вышеприведенных соединений были использованы методы сканирующей электронной микроскопии (СЭМ) и атомно-силовой микроскопии (АСМ). На сканирующем электронном микроскопе VegaII Tescan XMU (Чехия), оснащенном детекторами отраженных и вторичных электронов и энергодисперсионным рентгеновским детектором INCA-sight (Oxford Instrement, UK), были получены снимки микроструктуры поверхности свежеприготовленных сколов образцов. Фотографии поверхности сколов образца были получены как в отраженных, так и во вторичных электронах, при ускоряющем напряжении 20 kV, токе поглощенных электронов на Со 0.1 nA. Размер зонда составил 100 nm. Поскольку снимки, сделанные в отраженных электронах, являются наиболее информативными (дают сведения о наличии/отсутствии посторонних фаз, позволяют исследовать зерна и границы зерен [23]), ниже будут приведены именно эти фотографии.

Состав сплавов анализировался с помощью специального программного обеспечения при проведении рент-

геноспектрального анализа INCA. Анализ выполняли в точке при ускоряющем напряжении 20 kV, токе поглощающих электронов на Co 0.2 nA, рабочем расстоянии 25 nm. Размер зонда составлял 206 nm, время набора спектра в одной точке — 70 s. Анализ проводился по характеристическим линиям рентгеновского спектра для Co — CoKa_{1,2}, Tb — TbLa_{1,2}, Dy — DyLa_{1,2}. В качестве стандартов использовали Co металлический, синтетические фосфаты тербия и диспрозия (TbPO₄ и DyPO₄).

АСМ-снимки были получены на сканирующем зондовом микроскопе (C3M) SMENA-A, платформа "Solver" компании NT-MDT (г. Зеленоград). Сканирование проводилось стандартными кремниевыми кантилеверами HA_NC ETALON с резонансными частотами F = 137-235 kHz в полуконтактном режиме при комнатной температуре [24].

С помощью стандартного оборудования СКВИДмагнетометра получены температурные и полевые зависимости намагниченности TbCo₂, Tb_{0.3}Dy_{0.7}Co₂ и гидрида Tb_{0.3}Dy_{0.7}Co₂H_{0.5}. Магнитокалорический эффект исследовался прямым методом в широком интервале температур (80-350 K) в полях до 12 kOe. В настоящей работе с использованием импульсных магнитных полей (до 600 kOe) были изучены магнитные свойства гидрида Tb_{0.3}Dy_{0.7}Co₂H_{0.5}.

3. Результаты и обсуждение

Рентгенофазовый анализ (РФА) показал, что все полученные соединения являются практически однофазными и имеют кубическую структуру типа MgCu₂. Параметры решетки для исходных образцов TbCo₂ и Tb_{0.3}Dy_{0.7}Co₂ хорошо согласуются с данными работ [5,7,19]. Для гидрированного образца Tb_{0.3}Dy_{0.7}Co₂H_{0.5} также был рассчитан параметр решетки a = 7.203 Å и объем элементарной ячейки V = 373.72 Å³. Установлено, что изменение объема элементарной ячейки $\Delta V/V$ составляет 0.4%, в то время как в гидриде с высокой концентрацией водорода Tb_{0.3}Dy_{0.7}Co₂H₃ $\Delta V/V = 23.5\%$ [21].

В таблице приведены составы сплавов $TbCo_2$ и $Tb_{0.3}Dy_{0.7}Co_2$ в весовых и атомных процентах по данным рентгеноспектрального анализа INCA. Из таблицы видно, что стехиометрия заявленных составов подтверждается результатами проведенного анализа.

На рис. 1, *а*, *b* приведены фотографии в отраженных электронах поверхности образцов TbCo₂ и Tb_{0.3}Dy_{0.7}Co₂H_{0.5}. На сколе поверхности образца TbCo₂

Рис. 1. Фотографии поверхности образцов TbCo₂ (*a*) и Tb_{0.3}Dy_{0.7}Co₂H_{0.5} (*b*) в отраженных электронах.

Рис. 2. АСМ-снимок поверхности гидрида Тb_{0.3}Dy_{0.7}Co₂H_{0.5}.

видна только гладкая складчатая структура скола. Похожая структура наблюдалась и для образца $Tb_{0.3}Dy_{0.7}Co_2$. Следует однако отметить, что на поверхности скола $Tb_{0.3}Dy_{0.7}Co_2$ были обнаружены достаточно регулярные выделения размером в несколько десятков нанометров, имеющие близкую к сферической форму, состав которых не удалось определить из-за их малых размеров. Выделения занимали не более 2-3% поверхности скола. Также было обнаружено (см. рис. 1, *b*), что поверхность скола гидрированного образца $Tb_{0.3}Dy_{0.7}Co_2H_{0.5}$ очень сильно разрушена при воздействии водорода. При гидрировании происходит охрупчивание образца. На рис. 2 показан АСМ-снимок поверхности гидрида. С помо-

Рис. 3. АСМ-снимок поверхности образца Tb_{0.3}Dy_{0.7}Co₂.

щью применения данного метода становится видно, что исследуемая поверхность имеет чешуйчатую структуру. Средний размер чешуек составляет приблизительно $250\,\mu$ m. Чешуйки, в основном, имеют округлую форму с неровными краями.

АСМ-исследование было проведено и для исходных образцов $TbCo_2$ и $Tb_{0.3}Dy_{0.7}Co_2$, вырезанных из центральной области слитков. Исследование топологии поверхности обоих образцов выявило сходную структуру. На рис. 3 показан АСМ-снимок образца $Tb_{0.3}Dy_{0.7}Co_2$. Бинарное соединение $TbCo_2$ (изображение не приведено) имеет большое количество структурных элементов округлой формы (с размерами от 50 до 150 nm), которые

Рис. 4. Температурная зависимость намагниченности в магнитном поле H = 1 kOe соединений TbCo₂, Tb_{0.3}Dy_{0.7}Co₂ и гидрида Tb_{0.3}Dy_{0.7}Co₂H_{0.5}.

выстраиваются в виде отдельных направленных нитей. В соединении $Tb_{0.3}Dy_{0.7}Co_2$ структура сплава становится более сложной. Нити диаметром порядка 100 nm переплетены (см. рис. 3), структура напоминает "нейронную сеть", чем и отличается от той, что наблюдалась в бинарном соединении $TbCo_2$.

Исследовав особенности структурного состояния трех образцов $TbCo_2$, $Tb_{0.3}Dy_{0.7}Co_2$ и гидрида $Tb_{0.3}Dy_{0.7}Co_2H_{0.5}$ на микро- и наноуровне можно заключить, что именно гидрирование вызывает наиболее значимые изменения, вследствие чего можно ожидать и значительное изменение физических и функциональных свойств материалов, подвергнутых процедуре наводораживания.

На рис. 4 представлены результаты термомагнитного анализа, проведенного в магнитном поле $H = 1 \, \text{kOe}$, для трех образцов: TbCo₂, Tb_{0.3}Dy_{0.7}Co₂ и гидрида Тb_{0.3}Dy_{0.7}Co₂H_{0.5}. Видно, что характер кривых отличается. В исходных соединениях TbCo2 и Tb0.3Dy0.7Co2 наблюдается достаточно резкое падение намагниченности в области перехода из магнитоупорядоченного в парамагнитное состояние. Следует отметить, что в ТbCo₂ данный переход является переходом второго рода, в то время, как в частично замещенном соединении Тb_{0.3}Dy_{0.7}Co₂ переход меняет тип с первого на второй. Самая высокая температура Кюри, определенная по производной dM/dT, наблюдается для TbCo₂ и составляет 231 К. В соединении Tb_{0.3}Dy_{0.7}Co₂ температура Кюри уменьшается до значения 165 К. Гидрирование последнего приводит к тому, что изменение намагниченности в районе Т_С становится плавным. Область перехода из магнитоупорядоченного в парамагнитное состояние в гидриде Tb_{0.3}Dy_{0.7}Co₂H_{0.5} становится достаточно широкой, что свидетельствует о том, что переход вновь меняет тип с первого на второй. В отличие от соединения TbCo₂, в гидриде Tb_{0.3}Dy_{0.7}Co₂H_{0.5} точное определение температуры Кюри затруднено. По нашим оценкам значение температуры Кюри может находиться в интервале температур 168-170 К, т.е. наблюдается

небольшое увеличение T_C , что согласуется с данными работы [15].

Введение водорода с точки зрения расширения решетки равносильно приложению отрицательного гидростатического давления. Ожидаемое уменьшение температуры Кюри в исследованных нами гидридах с разным содержанием водорода $Tb_{0.3}Dy_{0.7}Co_2H_{0.5}$ и $Tb_{0.3}Dy_{0.7}Co_2H_3$ [21] вследствие возрастания объема элементарной ячейки определенное на основе литературных данных по влиянию давления на температуру Кюри $(dT_C/dP = -9 \text{ K/GPa}$ для $TbCo_2$) [25] и сжимаемость $\kappa \approx 10^{-2} \text{ GPa}^{-1}$ [26], показаны на рис. 5 штриховой линией. Скорость уменьшения T_C с возрастанием объема элементарной ячейки вычисляется по формуле

$$d\ln T_C/dp = -(\kappa/T_C)dT_C/d\ln V,$$

здесь $\kappa = -(dV/V)/p$. Отсюда $dT_C/d \ln V = dT_C/(dV/V)$ = 9 К на 1% изменения объема элементарной ячейки. Из рис. 5 видно, что экспериментально определенное уменьшение T_C для двух систем Tb_{0.3}Dy_{0.7}Co₂H_x и DyCo₂H_x [15] меньше, чем ожидаемое в результате увеличения объема элементарной ячейки. Поэтому можно сделать заключение, что наряду с эффектом объемного расширения, действуют и другие факторы, важнейшим из которых является изменение электронной структуры соединения в результате внедрения атомов водорода в кристаллическую решетку [27,28].

Следующим шагом было исследование гидрида с малым содержанием водорода $Tb_{0.3}Dy_{0.7}Co_2H_{0.5}$ в области низких температур в сильных магнитных полях до 600 kOe с целью выяснения поведения магнитных моментов отдельных подрешеток (кобальта и редкоземельной подрешетки). Как видно из кривой намагничивания M(H) (см. рис. 6), она демонстрирует некоторую

Рис. 5. Зависимость температуры Кюри для систем $Tb_{0.3}Dy_{0.7}Co_2H_x$ и $DyCo_2H_x$ [15] от относительного увеличения объема элементарной ячейки $\Delta V/V$ (сплошные линии) и ожидаемое изменение T_C (пунктирная линия), определенное на основе литературных данных по влиянию гидростатического давления на температуру Кюри [25,26].

Рис. 6. Кривые намагничивания в сильных магнитных полях при 5 К гидрида Tb_{0.3}Dy_{0.7}Co₂H_{0.5}.

тенденцию к насыщению, причем только в очень сильных магнитных полях. Предполагается, что в данных системах может возникать неколлинеарная структура в редкоземельной подрешетке, как результат локальных флуктуаций кристаллических полей [15,29,30]. Наблюдаемый непрерывный рост намагниченности M(H), возможно, обусловлен именно этим фактом. Разворот одной подрешетки относительно другой (подрешетки кобальта относительно редкоземельной подрешетки), не проявляется даже в полях 600 kOe, что свидетельствует о достаточно большой величине межподрешеточного обменного взаимодействия. Намагниченность в гидриде Tb_{0.3}Dy_{0.7}Co₂H_{0.5} меньше чем в исходном соединении, что может свидетельствовать о возрастании магнитного момента на атомах Со в результате гидрирования при невысоком содержании водорода. Этот вывод полностью согласуется с данными работы [15]. Таким образом, в гидриде $Tb_{0.3}Dy_{0.7}Co_2H_x$ с x = 0.5 at.H/f.u. происходит увеличение как температуры Кюри, так и магнитного момента на атомах кобальта.

На рис. 6 можно наблюдать гистерезисное поведение намагниченности образца Tb_{0.3}Dy_{0.7}Co₂H_{0.5}. Действительно, в нулевом поле имеется остаточная намагниченность. Ранее [19] нами были измерены петли магнитного гистерезиса для исходного состава Tb_{0.3}Dy_{0.7}Co₂ в широкой области температур. Мы наблюдали слабый магнитный гистерезис, в том числе и при T = 4.2 K. Отсутствие заметного по величине гистерезиса можно объяснить тем, что полная константа магнитокристаллической анизотропии К1 невелика из-за частичной компенсации анизотропии в редкоземельной подрешетке (известно [3], что входящие в соединение Tb_{0.3}Dy_{0.7}Co₂ редкоземельные ионы тербия и диспрозия имеют различные знаки одноионных констант МКА). Вопрос об упорядочении атомов водорода в системах RCo2-H при малых концентрациях водорода и его влияние на МКА требует дополнительных исследований, поскольку в системах R-H такое упорядочение атомов водорода наблюдалось экспериментально [31,32].

Как уже отмечалось выше, основными функциональными свойствами соединений RCo2 являются гигантская магнитострикция и магнитокалорический эффект, которые проявляются в области температуры Кюри [5-7,33,34]. Для исходных соединений Tb_{0.3}Dy_{0.7}Co₂ и ТbCo2, демонстрирующих переход первого и второго рода, соответственно, эти функциональные свойства подробно исследованы в работе [5]. Магнитокалорический эффект в Tb_{0.3}Dy_{0.7}Co₂ в два раза больше, чем в TbCo2. Напомним, что температуры Кюри равны 165 и 231 К для Tb_{0.3}Dy_{0.7}Co₂ и TbCo₂ соответственно. Было также установлено [5], что в области *T_C* между двумя эффектами (магнитокалорическим и магнитострикционным) наблюдается полная корреляция, поскольку оба эффекта одинаково зависят от величины намагниченности [3,35,36]. В данной работе мы приводим исследование магнитокалорического эффекта для гидрида Tb_{0.3}Dy_{0.7}Co₂H_{0.5}, поскольку исследование магнитострикции затруднено из-за повышенной хрупкости образцов.

На рис. 7 показана температурная зависимость магнитокалорического эффекта соединения Tb_{0 3}Dy_{0 7}Co₂ и его гидрида, измеренная прямым методом. Видно, что величина МКЭ уменьшается приблизительно в восемь раз в результате гидрирования. Основной причиной уменьшения МКЭ при гидрировании может быть тот факт, что тип магнитного фазового перехода изменился с первого на второй. В работах [37,38] на примере большого количества замещенных составов типа (RR')(Co,T)2 было показано, что основными факторами, влияющими на величину МКЭ являются величина температуры Кюри и тип перехода. Выявлены два обязательных условия: величина МКЭ может быть значительной только в области низких температур, если $T_C < 200 \, {\rm K}$ и если переход из парамагнитного в магнитоупорядоченное состояние является переходом первого рода. Соединение

Рис. 7. Температурная зависимость магнитокалорического эффекта для соединения Tb_{0.3}Dy_{0.7}Co₂ и его гидрида.

 $Tb_{0.3}Dy_{0.7}Co_2$ удовлетворяет обоим условиям. Если в результате различных замещений как в подрешетке редкоземельного металла, так и в подрешетке кобальта (на атомы кремния, алюминия и др.), одно из условий нарушилось, например, произошла смена типа перехода с первого на второй, а температура Кюри, по-прежнему, не превышает 200 К, то в таком многокомпонентном соединении типа $(RR')(Co,T)_2$ величина МКЭ уменьшится значительно.

Данное исследование показывает, что не только атомы замещения, но и атомы внедрения в соединениях RCo₂ способны изменить (в нашем случае, повысить) температуру перехода из парамагнитного в магнитоупорядоченное состояние (T_C , однако, остается меньше 200 К для Tb_{0.3}Dy_{0.7}Co₂H_{0.5}), изменить тип перехода (с первого на второй), сохранив при этом обнаруженную ранее для замещенных составов (RR')(Co,T)₂ тенденцию значительного снижения величины МКЭ.

4. Заключение

Проведено комплексное исследование структурных особенностей и функциональных свойств соединений типа Tb-Dy-Co-H со структурой фаз Лавеса. Для исследования микроструктуры соединений TbCo₂, Тb_{0.3}Dy_{0.7}Co₂ и гидрида с невысоким содержанием водорода Tb_{0.3}Dy_{0.7}Co₂H_{0.5} были использованы два метода: метод сканирующей электронной микроскопии и атомно-силой микроскопии. Использование метода АСМ позволило увидеть тонкую наноструктуру образцов. Введение водорода в кристаллическую решетку Tb-Dy-Co вызвало охрупчивание образцов. Установлено, что гидрирование образцов до невысокой концентрации водорода x = 0.5 at. H/f. u. приводит к увеличению температуры Кюри и увеличению магнитного момента на атомах Со. Однако, магнитокалорический эффект уменьшается значительно, в результате того, что тип фазового перехода в соединении Tb_{0.3}Dy_{0.7}Co₂ меняется с первого на второй. Учет полученных выше результатов важен при конструировании рабочих тел магнитных рефрижераторов, а также сенсоров и датчиков различного назначения из материалов на основе соединений типа RCo₂.

Благодарности

Авторы выражают благодарность Г. Друлису за получение гидрированного образца и Д. Горбунову за оказанную помощь при проведении измерений в сильных магнитных полях.

Финансирование

Исследование выполнено за счет гранта Российского научного фонда (проект № 18-13-00135).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- N.H. Duc, T. Goto. Itinerant electron metamagnetism of Co sublattice in the lanthanide-cobalt intermetallics. in Handbook on Physics and Chemistry of Rare Earths / Ed. K.A. Gschneidner, Jr. LeRoy Eyring. Elsevier Science, Amsterdam. (1999). V. 26. 177 p.
- [2] E. Gratz, A.S. Markosyan. J. Phys. Condens. Matter 13, R385 (2001).
- [3] К.П. Белов. Магнитострикционные явления и их технические приложения. Наука, М. (1987). 160 с.
- [4] A.M. Tishin, Y.I. Spichkin. The Magnetocaloric Effect and Its Applications. Institute of Physics, Bristol (2003). 475 p.
- [5] I.S. Tereshina, J. Ćwik, E.A. Tereshina, G. Politova, G. Burkhanov, V. Chzhan, A.S. Ilyushin, M. Miller, A. Zaleski, K. Nenkov, L. Schultz. IEEE Trans. Mag. 50, 2504604 (2014).
- [6] V.B. Chzhan, I.S. Tereshina, A.Yu. Karpenkov, E.A. Tereshina-Chitrova. Acta Mater. 154, 303 (2018).
- [7] I. Tereshina, G. Politova, E. Tereshina, G. Burkhanov, O. Chistyakov, S. Nikitin. J. Phys.: Conf. Ser. 266, 012077 (2011).
- [8] E. Bruck. J. Physics D 38, R381 (2005).
- [9] V. Franco, J.S. Blazquez, J.J. Ipus, J.Y. Law, L.M. Moreno-Ramirez, A. Conde. Prog. Mater. Sci. 93, 112 (2018).
- [10] A. Kitanovski, J. Turek, U. Tome, U. Plaznik, M. Ožbolt, A. Poredoš. Magnetocaloric Energy Conversion From Theory to Applications. Springer International Publishing Switzerland, Cham (2015). 456 p.
- [11] G. Wiesenger, G. Hilscher. Magnetism of hydrides. in Handbook of Magnetic Materials / Ed. K.H.J. Buschow. Elsevier, Amsterdam (2008). V. 17. 293 p.
- [12] S. Nikitin, I. Tereshina, E. Tereshina, W. Suski, H. Drulis. J. Alloys Comp. 451, 477 (2008).
- [13] H. Fujii, H. Sun. Interstitially modified intermetallics of rareearth-elements. in Handbook of Magnetic Materials / Ed. K.H.J. Buschow. Elsevier, Amsterdam (1995). V. 9, 304 p.
- [14] E.A. Tereshina, H. Drulis, Y. Skourski, I. Tereshina. Phys. Rev. B 87, 214425 (2013).
- [15] Н.В. Мушников, В.С. Гавико, Т. Гото. ФММ 100, 24 (2005).
- [16] S.A. Nikitin, I.S. Tereshina, N.Yu. Pankratov, Yu.V. Skourski. Phys. Rev. B 63, 134420 (2001).
- [17] D.P. Shoemaker, C.B. Shoemaker. J. Less-Common Met. 68, 43 (1979).
- [18] T. De Saxce, Y. Berthier, D. Fruchart. J. Less-Common Met. 107, 35 (1985).
- [19] Г.А. Политова, И.С. Терёшина, Г.С. Бурханов, О.Д. Чистяков, В.Б. Чжан, Т.П. Каминская, В.В. Попов, А. Залески, В.И. Нижанковский. ФТТ 53, 1925 (2011).
- [20] Г.С. Бурханов, И.С. Терёшина, Г.А. Политова, О.Д. Чистяков, Г. Друлис, А. Залески. Докл. РАН **440**, 611 (2011).
- [21] Г.А. Политова, И.С. Терешина, С.А. Никитин, Ю.Б. Патрикеев, Т.Г. Соченкова, В.Н. Вербецкий, А.А. Саламова, М.В. Макарова. ФТТ 47, 1834 (2005).
- [22] S.A. Nikitin, I.S. Tereshina, V.N. Verbetsky, A.A. Salamova, K.P. Skokov, N.Yu. Pankratov, Yu.V. Skourski, N.V. Tristan, V.V. Zubenko, I.V. Telegina. J. Alloys Comp. **322**, 42 (2001).

- [23] Растровая электронная микроскопия для нанотехнологий. Методы и применение / Под ред. У. Жу, Ж.Л. Уанга. Пер. с англ. под ред. Т.П. Каминской. БИНОМ. Лаборатория знаний, М. (2013). 582 с.
- [24] И.В. Яминский. Основы атомно-силовой микроскопии / Под ред. И.В. Яминский, Д.В. Багров. НОУДПО Институт информационных технологий "АйТи", М. (2011). 128 с.
- [25] E. Burzo, P. Vlaic, D.P. Kozlenko, S.E. Kichanov, N.T. Dang, E.V. Lukin, B.N. Savenko. J. Alloys Comp. 551, 702 (2013).
- [26] M. Brouha, K.H.J. Buschow. J. Phys. F 3, 2218 (1973).
- [27] E.A. Tereshina, S. Khmelevskyi, G. Politova, T. Kaminskaya, H. Drulis, I.S. Tereshina. Sci. Rep. 6, 22553 (2016).
- [28] E.A. Tereshina, H. Yoshida, A.V. Andreev, I.S. Tereshina, K. Koyama, T. Kanomata. J. Phys. Soc. Jpn 76, Suppl. A, 82 (2007).
- [29] А.С. Маркосян. ФТТ 23, 1656 (1981).
- [30] N.V. Mushnikov, N.K. Zajkov, M.I. Bartashevich, T. Goto, H. Aruga-Katori, M. Yamaguchi, I. Yamamoto. J. Magn. Magn. Mater. 167, 229 (1997).
- [31] P. Vajda. In: Handbook on the Physics and Chemistry of Rare Earths / Ed. K.A. Gschneidner, Jr., LeRoy Eyring. North-Holland, Amsterdam (1995). V. 20, 207 p.
- [32] G.S. Burkhanov, N.B. Kolchugina, E.A. Tereshina, I.S. Tereshina, G.A. Politova, V.B. Chzhan, D. Badurski, O.D. Chistyakov, M. Paukov, H. Drulis, L. Havela. Appl. Phys. Lett. 104, 242402 (2014).
- [33] I. Tereshina, G. Politova, E. Tereshina, S. Nikitin, G. Burkhanov, O. Chistyakov, A. Karpenkov. J. Phys.: Conf. Ser. 200, 092012 (2010).
- [34] I. Tereshina, G. Politova, E. Tereshina, J. Cwik, S. Nikitin, O. Chistyakov, A. Karpenkov, D. Karpenkov, T. Palewski. J. Phys.: Conf. Ser. 303, 012024 (2011).
- [35] Л.Д. Ландау, Е.М. Лифшиц. Статистическая физика. Наука, М. (1976). 584 с.
- [36] A. del Moral. Handbook of Magnetostriction and Magnetostrictive Materials. Del Moral Publ., University of Zaragoza, Spain. (2008). 148 p.
- [37] N.H. Duc, D.T. Kim Anh, P.E. Brommer. Physica B 319, 1 (2002).
- [38] J. Prokleska, J. Vejpravova, D. Vasylyev, S. Danis, V. Sechovsky. J. Magn. Magn. Mater. 290–291, 676 (2005).

Редактор Т.Н. Василевская