Плотность состояний в примесной *d*-зоне и неупругое рассеяние электронов на системе ионов железа со смешанной валентностью в кристаллах HgSe: Fe

© И.Г. Кулеев, И.И. Кулеев, И.Ю. Арапова, Л.Д. Сабирзянова

Институт физики металлов Уральского отделения Российской академии наук, 620219 Екатеринбург, Россия

E-mail: kuleev@imp.uran.ru

(Поступила в Редакцию 19 февраля 2003 г.)

Проведены экспериментальные исследования удельного сопротивления и коэффициента Холла на кристаллах HgSe: Fe с различным содержанием железа в области температур $1.3 \le T \le 300$ K и в магнитных полях до 60 kOe. Определены температурные зависимости концентрации и подвижности электронов проводимости в исследованных кристаллах. Рассмотрено влияние пространственного упорядочения зарядов в системе ионов железа со смешанной валентностью на примесные состояния в кристаллах HgSe: Fe. Проведен теоретический анализ плотности состояний в примесной *d*-зоне, а также неупругого рассеяния электронов, связанного с перезарядкой двух- и трехвалентных ионов железа в акте рассеяния. Показано, что экспериментально обнаруженные особенности поведения концентрации электронов и их подвижности при изменении содержания примесей железа и температуры могут быть объяснены влиянием кулоновских корреляций в системе ионов железа со смешанной валентностью на структуру примесной *d*-зоны.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (гранты № 00-02-16299, 02-02-06156), а также Фонда "Династия" и МЦФФМ.

В последние годы большое внимание уделялось исследованию физических свойств систем со смешанной валентностью (ССВ), т.е. таких систем, в которых легирующие примеси либо ионы матрицы могут находиться по крайней мере в двух зарядовых состояниях [1-5]. Кулоновское отталкивание между ионами, находящимися в одинаковых зарядовых состояниях, приводит к пространственным корреляциям в их расположении. Примерами ССВ могут служить манганиты лантана $(La_{1-x}Sr_{x}MnO_{3})$, селенид ртути, легированный примесями переходных 3*d*-элементов (железом, хромом, кобальтом), а также дельта-легированный кремнием или оловом арсенид галлия и 2D-структуры на его основе. Кристаллы на основе селенида ртути, легированные переходными элементами, являются удобной модельной системой для изучения эффектов, связанных с пространственным упорядочением зарядов в системах примесей со смешанной валентностью. Наиболее ярко особенности кинетических эффектов, связанные с пространственным упорядочением зарядов в ССВ, проявляются в кристаллах HgSe: Fe при низких температурах [5–10]. Одной из наиболее впечатляющих "аномалий" является существенное увеличение подвижности электронов в области гелиевых температур при возрастании концентрации железа [6].

Примеси железа в кристаллах HgSe: Fe образуют резонансный *d*-уровень, расположенный при энергии $\varepsilon_d \cong 210 \text{ meV}$ относительно дна зоны проводимости, т.е. эти состояния вырождены с континуумом энергетического спектра идеального кристалла. При рассмотрении резонансных *d*-состояний следует учитывать два конкурирующих процесса [5]: 1) делокализацию

электронов вследствие гибридизации локализованных примесных состояний как с зонными, так и с другими примесными состояниями; 2) локализацию электронов (*d*-дырок — положительных зарядов на ионах железа), вызванную их кулоновским отталкиванием, стремящимся сохранить локальный характер примесных *d*-состояний. В предельном случае сильной межпримесной или *s*-*d*-гибридизации, превосходящей кулоновское взаимодействие, в системе примесей может возникать состояние с переменной валентностью: в этом случае все узлы решетки примесей обладают одинаковым дробным зарядом и пространственное распределение примесных зарядов является однородным. Поскольку в кристаллах HgSe: Fe ширина d-уровня, обусловленная *s*-*d*-гибридизацией, согласно анализу данных ЭПР на ионах Fe^{3+} [11–13], составляет менее 0.1 meV, а энергия кулоновских корреляций *d*-дырок на два порядка больше, локальный характер *d*-состояний при низких температурах сохраняется. Таким образом, условия, необходимые для возникновения пространственных корреляций в ССВ ионов железа в соединениях HgSe: Fe, выполняются. Поэтому при анализе кинетических эффектов в кристаллах HgSe: Fe при низких температурах будем пользоваться моделью короткодействующих корреляций [7,8,14-16], которая базируется на предположении, что энергия межпримесных кулоновских корреляций в ССВ ионов железа значительно превосходит *s*-*d*-гибридизационное уширение примесного уровня [5,11–13]. Следует отметить, что, хотя *s*-*d*-гибридизационное взаимодействие мало, оно может играть важную роль в процессах неупругого рассеяния электронов проводимости, приводящих к перезарядке ионов железа [10].

Состояние со смешанной валентностью из ионов Fe³⁺-Fe²⁺ в этих кристаллах образуется при концентрациях $N_{\rm Fe} > N^* \cong 4.5 \cdot 10^{18} \, {\rm cm}^{-3}$, когда уровень Ферми достигает *d*-уровня железа ($\varepsilon_d \cong 210 \,\mathrm{meV}$) и фиксируется на нем [5]. При дальнейшем увеличении содержания примесей железа концентрация доноров Fe³⁺ не меняется $(N_+ = N^*)$, а растет только концентрация нейтральных в решетке ионов Fe^{2+} ($N_0 = N_{Fe} - N_+$). В системе ионов Fe²⁺ и Fe³⁺, обладающих одной и той же энергией, положительные заряды на ионах железа (*d*-дырки) могут перераспределяться по узлам кристаллической решетки, занятым ионами железа. Поэтому кулоновское отталкивание *d*-дырок в ССВ приводит к пространственным корреляциям в их расположении: чем больше концентрация примесей железа N_{Fe}, тем больше свободных мест для перераспределения *d*-дырок и тем выше степень упорядочения коррелированной системы ионов (КСИ) Fe³⁺. Экспериментальные исследования кристаллов HgSe: Fe (см. обзоры [5,7]) показали, что аномальный характер зависимостей кинетических эффектов от концентрации примесей железа и температуры Т определяется своеобразием рассеяния электронов на пространственно коррелированной системе ионов железа со смешанной валентностью.

Настоящая работа посвящена исследованию влияния пространственного упорядочения зарядов в ССВ на структуру примесной *d*-зоны и процессы электронного переноса в кристаллах HgSe: Fe. Обычный подход, основанный на модели Андерсона [1,17] с учетом электрон-электронных корреляций на одной примеси, не позволяет решить эту проблему, так как кулоновское взаимодействие между примесями, находящимися в одинаковых зарядовых состояниях, оказывается неучтенным. В настоящей работе предлагается простой метод, который позволяет рассмотреть влияние кулоновских межпримесных корреляций на структуру примесной *d*-зоны и кинетические эффекты в кристаллах HgSe: Fe при низких температурах. Следует отметить, что в бесщелевых компенсированных полупроводниках типа HgCdTe взаимодействие противоположно заряженных доноров и акцепторов приводит к образованию кулоновской псевдощели на уровне Ферми — минимума плотности примесных состояний с $g_i(\varepsilon_F) > g_e(\varepsilon_F)$ [18,19]. Анализ данных ЭПР на ионах Fe³⁺ в кристаллах HgSe: Fe [10,20], проведенный в модели слабых кулоновских корреляций, показал наличие минимума плотности *d*-состояний на уровне Ферми, однако не позволил авторам определить, образуется на уровне Ферми щель или псевдощель.

В разделе 1 приведены результаты измерений удельного сопротивления и коэффициента Холла на кристаллах HgSe: Fe с различным содержанием железа. В разделе 2 проанализирован корреляционный потенциал и найдены параметры, определяющие структуру примесной *d*зоны. Показано, что в области сильных кулоновских корреляций упорядочение КСИ в HgSe: Fe приводит к возникновению корреляционной щели в плотности примесных *d*-состояний, т.е. к образованию конечного энергетического зазора между заполненными (Fe²⁺) и пустыми (Fe³⁺) состояниями, где $g_d(\varepsilon) = 0$, и полному подавлению резонансного рассеяния электронов. В разделе 3 рассчитана плотность примесных *d*-состояний. В разделе 4 дан теоретический анализ неупругого рассеяния *d*-дырок в ССВ ионов железа, приводящего к перезарядке ионов Fe²⁺ и Fe³⁺ в акте рассеяния.

1. Экспериментальные результаты

На кристаллах HgSe: Fe с различным содержанием железа $(2 \cdot 10^{18} \le N_{\rm Fe} \le 2 \cdot 10^{21} \,{\rm cm}^{-3})$ были измерены удельное сопротивление ρ и коэффициент Холла R в области температур $1.3 \le T \le 300 \,{\rm K}$ в магнитных полях до 60 kOe. Были изучены температурные зависимости концентраций n_e и подвижностей μ зонных электронов исследованных кристаллов.

На рис. 1 приведена зависимость концентрации электронов n_e от содержания примесей железа N_{Fe}. Из этого рисунка видно, что при концентрации железа $N_{\rm Fe} \geq 5 \cdot 10^{18} \, {\rm cm}^{-3}$ концентрация электронов стабилизируется на уровне $n_e \approx (4.7 - 4.8) \cdot 10^{18} \, {\rm cm}^{-3}$, что согласуется с известными литературными данными [5,6]. Такое поведение $n_e(N_{\rm Fe})$ свидетельствует о фиксации уровня Ферми на донорном уровне железа. Некоторый разброс значений п_е связан с наличием собственных дефектов, концентрация которых обычно составляет $\sim (1-2) \cdot 10^{18} \, \mathrm{cm}^{-3}$ [5,21]. Согласно имеющимся в настоящее время данным [6,7], энергия невозмущенного донорного уровня железа $E_{d0} \cong 210 \,\mathrm{meV}$, что соответствует $n_e = N^* \cong 4.5 \cdot 10^{18} \,\mathrm{cm}^{-3}$. Далее мы покажем, что превышение электронной концентрацией величины N* может быть связано с образованием примесной *d*-зоны

Рис. 1. Зависимость концентрации электронов n_e от содержания примесей железа N_{Fe} в кристаллах HgSe: Fe при T = 4.2 K. I -экспериментальные данные [6], 2 - [11], 3 - [12], 4 - наши данные. Сплошная линия — результат расчета в соответствии с формулами (20), (21).

Рис. 2. Температурные зависимости концентрации электронов n_e для кристаллов HgSe: Fe с различным содержанием примесей железа. $N_{\rm Fe}$, 10^{18} cm⁻³: 1 - 5, 2 - 10, 3 - 50, 4 - 100. Сплошные линии — результаты расчета в соответствии с формулами (16)–(22).

Рис. 3. Зависимости обратной величины подвижности μ^{-1} от температуры для кристаллов HgSe: Fe. N_{Fe} , 10^{18} cm⁻³: 1 - 5, 2 - 20, 3 - 40, 4 - 50, 5 - 100. Штриховые и сплошные линии — зависимости $\mu^{-1}(T)$, рассчитанные согласно формулам (23)–(25) и (25)–(28) соответственно.

и корреляционным повышением уровня Ферми вследствие пространственного упорядочения зарядов в системе ионов железа со смешанной валентностью.

На рис. 2 показаны температурные зависимости концентрации электронов n_e для кристаллов HgSe: Fe с различным содержанием железа. Как видно из рисунка, для всех образцов концентрация электронов слабо зависит от температуры. Следует отметить, для образцов с концентрациями $N_{\rm Fe} > 3N^*$ наблюдается рост n_e , а для образцов с $N^* < N_{\rm Fe} < 2N^*$ — уменьшение n_e с увеличением температуры. Аналогичное поведение зависимостей $n_e(T)$ для кристаллов HgSe: Fe было обнаружено авторами работы [6], которые сопоставили экспериментальные и рассчитанные значения n_e . При расчете $n_e(T)$ использовалась плотность состояний в зоне проводимости для непараболической модели Кейна. Анализ, проведенный в [6], показал, что согласования рассчитанных и измеренных значений $n_e(T)$ можно достичь, если считать, что ε_{Fe} меняется с температурой. Мы покажем, что эти особенности могут быть объяснены влиянием пространственных корреляций в ССВ ионов железа на структуру примесной *d*-зоны.

На рис. 3 представлены зависимости обратной подвижности электронов μ^{-1} от температуры для кристаллов HgSe: Fe с содержанием железа $N_{\rm Fe} \ge 5 \cdot 10^{18}$ cm⁻³ в интервале температур $1.3 \le T \le 50$ К. Для всех образцов в области самых низких температур (при $T \le 10$ К) на зависимостях $\mu(T)$ обнаружены температурные интервалы, в которых подвижность электронов не зависит от температуры, причем с ростом $N_{\rm Fe}$ величина этих интервалов увеличивается. В интервале температур 10 < T < 35 К экспериментальные данные следуют зависимости $\mu^{-1}(T) \sim T^{\nu}$, причем $\nu < 1$. Далее показано, что величина показателя ν близка к значению 0.5. При T > 35 К наблюдается более сильный рост μ^{-1} с температурой ($\mu^{-1}(T) \sim T$), что, как следует из работ [7,15], связано с вкладом электрон-фононного рассеяния.

Далее представлен теоретический анализ структуры примесной *d*-зоны ССВ ионов железа и неупругого рассеяния *d*-дырок, приводящего к перезарядке ионов железа.

2. Корреляционный потенциал и структура примесной *d*-зоны

Рассмотрим влияние пространственного упорядочения зарядов в ССВ ионов железа на структуру примесной *d*-зоны в кристаллах HgSe:Fe. В отсутствие эффектов упорядочения случайные поля ионов Fe³⁺ приводят к разбросу энергий *d*-состояний и формированию примесной зоны шириной порядка 10 meV. Уровень Ферми отделяет пустые *d*-состояния (Fe³⁺) от заполненных (Fe²⁺). При упорядочении каждый ион Fe³⁺ в точке R_i находится в поле корреляционного потенциала $U_s(R_i)$, определяемого самосогласованным действием потенциалов других ионов Fe³⁺, окружающих данный [16], а также в поле однородного газа электронов проводимости $U_e(R_i)$

$$U(R_i) = U_s(R_i) + U_e(R_i),$$

$$U_s(R_i) = \sum_{j \neq i} V(R_{ij})(g_{++}(R_{ij}) - 1),$$

$$U_e(R_i) = -4\pi\varepsilon_k (r_s/R_+)^2.$$
 (1)

Здесь $V(R_{ij})$ — потенциал, создаваемый *j*-м ионом Fe³⁺ в точке R_i ; r_s — радиус экранирования Томаса–Ферми; $\varepsilon_k = e^2 / \chi R_+$ — кулоновская энергия взаимодействия на среднем расстоянии между ионами $R_+ = N_+^{-1/3}$ (N_+ — концентрация ионов Fe³⁺, χ — диэлектрическая проницаемость); $g_{\alpha\beta}(r)$ — парциальные парные корреляционные функции, характеризующие пространственное распределение ССВ ионов железа Fe²⁺–Fe³⁺ [22,23].

Для экранированного кулоновского взаимодействия примесных ионов имеем

$$U_s(r) = \frac{2e^2}{\chi\pi} \int_0^\infty \frac{q^2 dq}{q^2 + r_s^{-2}} \left(S_{++}(q) - 1\right) \frac{\sin(qr)}{qr}, \quad (2)$$

где $S_{++}(q)$ — структурный фактор ионов Fe³⁺. Далее мы используем структурные факторы $S_{\alpha\beta}(q)$ для модели проникающих твердых сфер, которые определены в [16]. Потенциал $U_s(r)$ способствует перераспределению *d*-дырок в системе ионов Fe²⁺–Fe³⁺ таким образом, чтобы обеспечивался минимум потенциальной энергии в местах расположения доноров Fe³⁺.

Рассмотрим изменение кулоновской энергии взаимодействия при упорядочении КСИ Fe³⁺. Выигрыш энергии $\Delta E_c(N_{\rm Fe})$, приходящийся на один ион Fe³⁺ для упорядоченного распределения по сравнению с хаотическим, может быть выражен через величину $U_s(0)$ [14,24]

$$\Delta E_c = \frac{\Delta E_k}{N_+} = -\frac{1}{2} U_s(0),$$
$$U_s(0) = \frac{2e^2}{\chi \pi} \int_0^\infty \frac{q^2 dq}{q^2 + r_s^{-2}} (S_{++}(q) - 1).$$
(3)

Для кулоновского взаимодействия ионов Fe^{3+} величина ΔE_c выражается непосредственно через параметр упаковки η [25]

$$U_{s}(0) = -4\pi\varepsilon_{k}\left(\frac{d}{R_{+}}\right)\left\{\frac{0.5 - 0.1\eta + 0.05\eta^{2}}{1 + 2\eta}\right\}.$$
 (4)

Здесь $\eta = \frac{\pi}{6} n_+ d^3$, $d = r_c$ — диаметр твердой сферы. Для экранированного кулоновского взаимодействия величина $U_s(0)$ может быть выражена аналитически через параметры η и $\lambda = d/r_s$ [14,26]

$$U_{s}(0) = -4\pi\varepsilon_{k}\left(\frac{d}{R_{+}}\right)\left\{G(\lambda) - \lambda^{-2}\right\},$$

$$G(\lambda) = \frac{\lambda L(\lambda)}{12\eta \left[L(\lambda) + S(\lambda) \exp(\lambda)\right]},$$

$$L(\lambda) = 12\eta\left[(1+0.5\eta)\lambda + 1 + 2\eta\right],$$

$$S(\lambda) = (1-\eta)^{2}\lambda^{3} + 6\eta(1-\eta)\lambda^{2}$$

$$+ 18\eta^{2}\lambda - 12\eta(1+2\eta).$$
(5)

Из сопоставления экспериментально измеренных и рассчитанных значений подвижности в работе [8] определена эмпирическая зависимость $\eta(N_{\rm Fe})$

$$\eta = \eta_{\infty} \left[1 - \exp\left(-\frac{\eta}{\eta_{\infty}} \frac{N_{\rm Fe}}{N_{+}}\right) \right]. \tag{6}$$

Физика твердого тела, 2003, том 45, вып. 10

При больших концентрациях примесей железа функция $\eta(N_{\rm Fe})$ стремится к насыщению: $\eta(N_{\rm Fe} \to \infty) = \eta_{\infty}$. С другой стороны, в работе [16] из уравнения баланса d-дырок и нейтральных центров (с концентрацией N_0) в кластере ближнего порядка для иона Fe³⁺ при $N_0 < N_+$ выведена зависимость $\eta(N_{\rm Fe}) \approx 0.74 N_0/N_{\rm Fe}$. Эта зависимость является асимптотически точной в пределе $N_0 \to 0$. Из эмпирического уравнения (6) следует, что в пределе $N_0 \ll N_+$ величина $\eta(N_{\rm Fe}) \approx 2\eta_{\infty}N_0/N_{\rm Fe}$, что соответствует значению $\eta_{\infty} \approx 0.37$ в уравнении (6). Поэтому далее будем использовать это значение η_{∞} .

При малых значениях $r(r < r_c)$ корреляционный потенциал $U_s(r)$ может быть разложен по степеням r. Ограничиваясь квадратичными членами в этом разложении, из формулы (2) получим

$$U_s(r) = U_s(0) + \Delta U_s(r),$$

$$\Delta U_s(r) \cong \alpha(N_{\rm Fe})r^2 = \alpha^*(N_{\rm Fe})y^2,$$

$$\alpha^*(N_{\rm Fe}) = \alpha(N_{\rm Fe})d^2, y = r/d.$$
(7)

Воспользуемся преобразованием Лапласа аналогично [26] и для экранированного кулоновского взаимодействия выразим коэффициент $\alpha(N_{\rm Fe})$ через параметр упаковки η и радиус экранирования r_s

$$\alpha(N_{\rm Fe}) = \frac{e^2}{3\pi\chi} \int_0^\infty \frac{q^4 dq}{q^2 + r_s^{-2}} (1 - S_{++}(q))$$
$$= \frac{4\pi\varepsilon_k}{3R_+^2} + \frac{1}{6r_s^2} U_s(0). \tag{8}$$

Как видно из рис. 4, использование формул (7) и (8) обеспечивает хорошее приближение для расчета корреляционного потенциала $\Delta U_s(y)$ во всей корреляционной сфере ($y \leq 1$).

Формулы (4)-(6) позволяют проанализировать изменение кулоновской энергии ΔE_c при упорядочении КСИ Fe³⁺ в зависимости от концентрации примесей железа и величины радиуса экранирования. Такой анализ проведен в работах [14,15]. Следует заметить, что резкий рост величины ΔE_c в области $N^* < N_{
m Fe} < 1 \cdot 10^{19} \, {
m cm}^{-3}$ (см. [14], рис. 5) обусловлен тем, что при зарядовом упорядочении в ССВ ионов железа прежде всего удаляются друг от друга наиболее близко расположенные *d*-дырки. Это дает максимальный выигрыш кулоновской энергии и приводит к формированию корреляционных сфер вокруг каждого иона Fe³⁺, внутри которых нет других положительных зарядов [14]. Это обстоятельство позволяет для статистического описания корреляционных свойств системы ионов Fe³⁺ воспользоваться модельной аппроксимацией твердых сфер. В этой модели ионы Fe³⁺ не могут располагаться на расстояниях, меньших, чем радиус корреляционной сферы $r_c = d$ (d — диаметр твердой сферы). Степень упорядочения в такой системе характеризуется параметром упаковки η, который равен отношению объема, занятого твердыми сферами, к полному объему системы.

Рис. 4. Вид потенциала $U_s(y)$ и энергетическая схема неупругих переходов в одномерном кластере ближнего порядка ионов Fe³⁺ и Fe²⁺ для различных концентраций примесей железа. N_{Fe} , 10^{18} cm⁻³: 1 - 5, 2 - 50 ($\chi = 20$). Штриховые линии — приближенные зависимости $U_s(y)$, полученные по формулам (7), (8) для соответствующих концентраций примесей железа. ΔE_{ji} — энергия неупругого перехода *d*-дырки из точки R_i в точку R_j , равная разности энергий двух конфигураций (I и II) кластера ближнего порядка.

Потенциал $U_s(R_j)$ препятствует перескокам *d*-дырок с ионов Fe³⁺ на Fe²⁺, способствуя их локализации на заряженных центрах (рис. 4). Ввиду хаотичности распределения ионов Fe²⁺ по узлам кристаллической решетки и соответственно в кластерах ближнего порядка вероятность многочастичных переходов *d*-дырок мала, и при низких температурах этим вкладом можно пренебречь. Здесь мы ограничимся рассмотрением одночастичных переходов. Будем считать, что переход *d*-дырки в кластере ближнего порядка с иона Fe³⁺ в точке R_i на ион Fe²⁺ в точке R_j происходит в статическом поле остальных ионов Fe³⁺. Величина энергии неупругости такого перехода ΔF_{jk} равна разности энергий двух конфигураций (рис. 4)

$$\Delta E_{ik} = E_i - E_k = U(R_i) - U(R_k). \tag{9}$$

Поэтому энергетические уровни нейтральных в решетке ионов Fe²⁺ (E_{dk}) оказываются распределенными по d_0 -зоне примесных состояний. Ширина этой зоны определяется энергией, необходимой для перевода d-дырки из центра ($R_i = 0$) на границу корреляционной зоны ($R_k = r_c$),

$$W = U_s(r_c) - U_s(0).$$
(10)

Для определения положения невозмущенного d-уровня E_{d0} (или положения краев зоны относительно энергии

невозмущенного уровня) необходимо включить в рассмотрение потенциал центрального иона Fe^{3+} и определить точку r_0 , в которой производная суммарного потенциала по радиусу-вектору обратится в нуль. Этот потенциал $V_1(r) = U_s(r) + V(r)$ для различных концентраций примесей железа представлен на рис. 5.

Как видно из этого рисунка, поведение потенциала $V_1(r)$ с ростом степени пространственного упорядочения в ССВ ионов железа качественно меняется: в области слабых корреляций ($\eta(N_{\rm Fe}) \leq 0.125$ или $N_{\rm Fe} \leq 5.2 \cdot 10^{18} \, {\rm cm}^{-3}$) $V_1(r)$ монотонно убывает с расстоянием, оставаясь положительным во всей области изменения r. C ростом концентрации примесей железа при $N_{
m Fe} > 5.2 \cdot 10^{18} \, {
m cm}^{-3}$ ($\eta(N_{
m Fe}) > 0.125$) на зависимости $V_1(r)$ появляется минимум, глубина которого возрастает с увеличением содержания железа. При переходе в область сильных пространственных корреляций $(\eta(N_{\rm Fe}) > 0.185, N_{\rm Fe} > 5.8 \cdot 10^{18} \,{\rm cm}^{-3})$ величина $V_1(r_0)$ становится отрицательной. При дальнейшем увеличении концентрации железа глубина минимума V₁(r₀) возрастает и при $N_{\rm Fe} > 10^{19} \, {\rm cm}^{-3}$ стремится к насыщению, характерному для сильно коррелированной кулоновской жидкости. Величина уо при этом составляет приблизительно 0.65. Очевидно, что в точке r₀ сила, действующая на единичный пробный заряд, равна нулю $(dV_1(r)/dr = 0)$, поэтому энергия d_0 -уровня останется невозмущенной. Тогда верхняя (E_1) и нижняя (E_2) граничные энергии примесной d_0 -зоны будут определяться выражениями

$$E_1 = E_{d0} + \Delta U_s(r_0),$$

$$E_2 = E_1 - W.$$
 (11)

На рис. 6 приведены зависимости $|U_s(0)|$, W и α^* от концентрации примесей железа. Как видно из рисун-

Рис. 5. Потенциал $V_1(y)$ для различных концентраций примесей железа. $N_{\rm Fe}$, 10^{18} cm⁻³: I — 5; 2 — 5.2, 3 — 5.3, 4 — 6, 5 — 10, 6 — 50. Штриховые линии — зависимости $V_1(y)$, полученные при аппроксимации формулами (7), (8) для $N_{\rm Fe} = 50 \cdot 10^{18}$ cm⁻³.

Физика твердого тела, 2003, том 45, вып. 10

Рис. 6. Зависимости параметров $|U_s(0)|$ (1), W(2, 2a), α^* (3) от концентрации примесей железа. I-3 — расчет для параметров $\eta_{\infty} = 0.37$ и $\chi = 20$, 2a — для $\chi = 27$.

ка, ширина примесной d₀-зоны стремится к нулю при $N_{\rm Fe} \rightarrow N^* \ (N_0 \rightarrow 0)$, а при большом содержании примесей железа ($N_{\rm Fe} \gg N^*$) она стремится к насыщению, превышая значения 14.6 meV для $\chi = 27$ и 18.6 meV для $\chi = 20$. Коэффициент $\alpha^*(N_{\rm Fe})$ стремится к нулю при $N_{\rm Fe} \rightarrow N^*$, а при $N_{\rm Fe} \gg N^*$ достигает насыщения при значении 12.2 meV для $\chi = 27$ и 15.5 meV для $\chi = 20$. Аналогичным образом ведет себя и величина $|U_s(0)|$: она насыщается при значениях, бо́льших 15.9 meV для $\chi = 27$ и 20 meV для $\chi = 20$. Заметим, что корреляционный потенциал $U_s(r)$ создает потенциальную яму для *d*-дырок и потенциальный барьер для электронов. Поэтому электрону проводимости необходимо преодолеть потенциальный барьер, определяемый величиной $|U_s(0)|$, для того, чтобы быть захваченным донорным центром Fe³⁺. Как видно из рис. 4 и 6, резонансный захват электрона проводимости на *d*-уровень иона Fe^{3+} при $N_{\mathrm{Fe}} \gg N^*$ требует большой энергии активации $U_s(0) \sim 20 \,\mathrm{meV}$ в отличие от процессов рассеяния с перезарядкой *d*-центров [10]. Таким образом, кулоновские межпримесные корреляции в ССВ ионов железа подавляют резонансное рассеяние электронов. Вопрос о роли резонансного рассеяния электронов проводимости на d-состояниях в соединениях HgSe: Fe при низких температурах интенсивно обсуждался в литературе [5,13,20]. Учет его приводил к катастрофически низким значениям подвижности электронов в HgSe: Fe [5].

Поскольку ионы железа замещают ионы Hg^{2+} в узлах кристаллической решетки, имеется минимальная длина перескока *d*-дырки $\Delta R_{ik} > \Delta R_{\min}$ ($R_{\min} \sim a_0$, a_0 — постоянная решетки). Если учесть кулоновские межпримесные корреляции при температуре приготовления образцов ($T \sim 10^3$ K), то $R_{\min} \sim 2a_0$. Поэтому величины $\Delta E_{ki} > \Delta E_{\min} = \Delta$. Из выражений (7) и (8) следует

$$\Delta \approx \alpha (N_{\rm Fe}) (\Delta R_{\rm min})^2. \tag{12}$$

Величина Δ стремится к нулю при $N_{\rm Fe} \to N^*$ и выходит на насыщение при $N_{\rm Fe} > 3\cdot 10^{19}\,{\rm cm}^{-3}.$ В этой области концентраций величина $\Delta \sim 9.3 \,\mathrm{K}$ при $\Delta R_{\mathrm{min}} \sim 10^{-7} \,\mathrm{cm}$, $\chi = 20$ и $\Delta \sim 7.3$ К для $\chi = 27$. Такая же по порядку величны оценка Δ была получена в [27] в модели линейной цепочки ионов Fe³⁺. Наличие минимальной энергии для перескоков *d*-дырок означает, что зона заполненных d_0 -состояний (Fe²⁺) отделена от зоны пустых d_+ -состояний (Fe³⁺) конечной энергией Δ . Итак, пространственное упорядочение зарядов в ССВ ионов железа приводит к снятию вырождения между d₀- и d₊-состояниями. В этой системе при конечных температурах становится возможным новый механизм неупругого рассеяния электронов, связанный с перезарядкой двух- и трехвалентных ионов железа в акте рассеяния [10]. Поскольку ширина зоны d_+ -состояний при $N_{\rm Fe} \gg N^*$ гораздо меньше ширины d_0 -зоны, мы аппроксимируем ее резким d-уровнем с энергией Е_{d+}

$$E_{d+} = E_1 + \Delta. \tag{13}$$

Таким образом, упорядочение КСИ Fe³⁺ в ССВ приводит к формированию корреляционной щели между заполненными и пустыми *d*-состояниями, а не кулоновской псевдощели Эфроса-Шкловского [18], как предполагалось в работах [13,20]. Основываясь на проведенном выше анализе, можно утверждать, что межпримесные кулоновские корреляции полностью подавляют резонансное рассеяние: плотность d-состояний на уровне Ферми $g_d(\varepsilon_F) = 0$ и величина $\Delta \gg \Gamma_d$ (Γ_d ширина *d*-уровня, обусловленная *s*-*d*-гибридизацией; согласно [11–13], $\Gamma_d < 0.1 \text{ meV}$). Становится понятным и поведение подвижности в HgSe:Fe при $N_{\rm Fe} \gg N^*$ и $T \rightarrow 0$ (рис. 3). При температурах $T < \Delta$ перескоки *d*-дырок вымораживаются, а подвижность электронов, как и наблюдается в эксперименте (см. рис. 3, а также [6,27]), выходит на насыщение. Ближний порядок в КСИ Fe³⁺ "замерзает", и в определенном смысле можно говорить о переходе системы ионов Fe³⁺ в состояние металлического стекла [28] (подразумевая под этим термином "замороженную" систему с ближним порядком — сильно коррелированную кулоновскую жидкость ионов Fe^{3+}).

3. Пространственные корреляции и плотность состояний в примесной *d*-зоне

Расчет плотности состояний в примесной *d*-зоне проведем в два этапа. Сначала для известного распределения зарядов в кластере ближнего порядка данного иона Fe³⁺ определим плотность состояний в *d*₀-зоне в координатном представлении $G_0(r)$. Затем воспользуемся формулами (7)–(11) и, определив распределение *d*₀-состояний в корреляционной сфере согласно выше проведенному анализу корреляционного потенциала

$$E_1 - E_{dj} = \alpha(N_{\rm Fe})r^2, \tag{14}$$

найдем плотность состояний в *d*₀-зоне в энергетическом представлении в соответствии с выражением

 $G_0(r)dr = G_0(E_{d\,i})dE_{d\,i}.$

$$G_0(E_{dj}) = G_0(r)dr/dE_{dj},$$

$$r = ((E_1 - E_{dj})/\alpha(N_{\rm Fe}))^{1/2}.$$
 (15)

Для нахождения $G_0(r)$ вокруг каждого иона Fe³⁺ проведем корреляционную сферу радиуса r_c, усредним по ансамблю корреляционных сфер и перейдем к описанию ССВ ионов железа в модели сплошной среды. Для анализа распределения заряженных и нейтральных частиц в кластере ближнего порядка удобно воспользоваться парциальными функциями радиального распределения $N_{\alpha\beta}(r) = 4\pi r^2 N_{\beta} g_{\alpha\beta}(r)$ (см. рис. 2 в работе [16]). Величина $N_{\alpha\beta}(r)dr$ дает число частиц типа $\beta(0, +)$ в шаровом слое от r до r + dr, если в начале координат помещена частица типа $\alpha(0, +)$. При хаотическом распределении частиц $g_{\alpha\beta}(r) = 1$, и число частиц в объеме Ω_r равно произведению концентрации на объем. Поскольку *d*-дырки и нейтральные центры могут только обмениваться местами, места *d*-дырок в корреляционной сфере займут нейтральные центры. Поэтому при $N_0 \leq N_{1+}$ локальная концентрация *d*-дырок в корреляционной сфере равна нулю, а концентрация нейтральных центров определяется полной концентрацией примесей железа (см. рис. 2 в работе [16]). В области пика, соответствующего первой координационной сфере, ситуация обратная: концентрация нейтральных центров равна нулю, а концентрация *d*-дырок определяется полной концентрацией примесей железа. Это обусловливает существенное отклонение как функции $g_{++}(r)$, описывающей корреляции в системе заряженных центров (++), так и функции $g_{+0}(r)$, учитывающей корреляции в системе (+0), от единицы, соответствующей хаотическому распределению частиц в кластере ближнего порядка. Таким образом, кулоновское отталкивание *d*-дырок в системе примесей железа со смешанной валентностью приводит не только к пространственному упорядочению заряженных центров (ионов Fe³⁺), но и к возникновению корреляций в системе (+0).

Для нахождения функции $G_0(r)$ построим ячейку Вигнера–Зейтца в корреляционной сфере; она представляет собой сферу радиуса r = d/2. Все состояния нейтральных центров, лежащие внутри этой сферы, относятся к центральному иону Fe³⁺, поэтому функция $G_0(r)$ просто равна функции радиального распределения $N_{+0}(r)$. При r > d/2 состояния нейтральных центров принадлежат уже не только центральному иону, но и ионам железа, находящимся в сферическом слое $d < r < r_1^*$. В этом случае функция $G_0(r)$ будет уменьшаться, обращаясь в нуль при r = d. Для иллюстрации этого рассмотрим случай простой кубической решетки (ПКР) ионов Fe³⁺, внутри которой однородно распределены нейтральные центры с концентрацией N_0 . Нетрудно убедиться, что при $r < R_+/2$ функция $G_0(r)$ равна функции радиального распределения $N_{+0}(r)$, при $R_+/2 < r < R_+/\sqrt{2}$ она убывает пропорционально $r(3R_+/4-r)$, а в интервале $R_+/\sqrt{2} < r < R_+\sqrt{3}/2$ она убывает квадратично с расстоянием, обращаясь в нуль при $r = R_+\sqrt{3}/2$.

Итак, в нашем случае сферически-симметричного распределения зарядов в усредненном кластере ближнего порядка в области 0 < y < 1/2 имеем

$$G_0(r) = 4\pi N_{\rm Fe} d^2 y^2.$$
(16)

Тогда воспользуемся выражением (15) и в энергетическом представлении получим

$$G_{0}(E_{dj}) = 2\pi d^{3}N_{\text{Fe}} \frac{\sqrt{E_{1} - E_{dj}}}{(\alpha^{*}(N_{\text{Fe}}))^{3/2}},$$
$$E_{dj} \leq E_{d}^{(1)} = E_{1} - 0.25\alpha^{*}.$$
(16a)

В области 0.5 < y < 1, основываясь на результатах для ПКР, можно положить, что все d_0 -состояния, расположенные при r < R/2 (где R — расстояние до заряженного центра в сферическом слое), принадлежат центральному иону Fe³⁺, а d_0 -состояния при r > R/2 — иону, находящемуся в сферическом слое d < r < 2d. Усреднение по распределению заряженных центров в сферическом слое d < r < 2d тогда может быть проведено следующим образом:

$$G_0(r) = \langle G_0(r, R) \rangle = \frac{1}{\langle g_{++} \rangle} \int_d^{2d} G_0(r, R) g_{++}(R) 4\pi R^2 dR,$$

$$\langle g_{++} \rangle = \int_d^{2d} 4\pi R^2 g_{++}(R) dr \qquad (17)$$

$$\sqrt{g_{++}} = \int_{d}^{d} 4\pi N_{\text{Fe}} d^2 y^2, \quad y < R/2d,$$
 (17)

$$G_0(r, R) = \begin{cases} 4\pi N_{\rm Fe} d^2 y^2, & y < R/2d, \\ 0, & y > R/2d. \end{cases}$$
(18)

Для упрощения дальнейших расчетов ограничимся первым приближением по степеням плотности системы и возьмем $g_{++}(R)$ в виде ступенчатой функции $g_{++}(R) = 0$ при R < d и $g_{++}(R) = 1$ при R > d. Тогда формула (17) сведется к виду

$$G_0(r) = \frac{1}{\Delta V_c} \int_{d}^{2d} G_0(r, R) 4\pi R^2 dR, \quad \Delta V_c = 7 \frac{4\pi}{d} d^3.$$
(19)

Здесь ΔV_c — объем сферического слоя d < r < 2d. Выражения (14)–(19) позволяют найти вид плотности состояний в d_0 -зоне для различных концентраций примесей железа в энергетическом представлении (рис. 7). Обращает на себя внимание тот факт, что плотность состояний имеет корневую зависимость от энергии (см. (16а)) в интервале энергий $0 < E_1 - E_{dj} \le 4$ meV. Из формул (14) и (15) видно, что такое поведение

Рис. 7. Вид плотности состояний в d_0 -зоне для различных концентраций примесей железа в энергетическом представлении. $N_{\rm Fe}$, 10^{18} cm⁻³: 1 - 50, 2 - 20, 3 - 10, 4 - 6. $\eta_{\infty} = 0.37$, $\chi = 27$. Штриховые линии — зависимости, определяемые формулой (16а).

 $G_0(E_{dj})$ связано с квадратичной зависимостью ΔU_s от радиус-вектора r в пределах корреляционной сферы. Функция $G(E_{dj})$ достигает максимума при энергии $E_{dj} \approx E_{d0}$. Это является косвенным подтверждением того, то мы физически корректно смоделировали функцию $G_0(r, R)$.

Полученные выше результаты позволяют проанализировать данные измерений эффекта Холла. При T = 0 К уровень Ферми разделяет заполненные и пустые состояния ионов железа. Он расположен в корреляционной щели

$$\varepsilon_{F0} = E_1 - \frac{\Delta}{2} \approx E_{d0} + \Delta U_s(r_0). \tag{20}$$

В рамках двухзонной модели Кейна для концентрации электронов имеем

$$n_e(N_{\rm Fe}) = N^* \frac{\varepsilon_{F0}(1 + \varepsilon_{F0}/\varepsilon_g)}{\varepsilon_{d0}(1 + \varepsilon_{d0}/\varepsilon_g)}.$$
 (21)

Очевидно, что уровень Ферми не фиксируется на уровне ε_{d0} , а рост степени пространственного упорядочения приводит к снятию вырождения между состояниями d_0 и d_+ в примесной зоне и корреляционному повышению уровня Ферми. При этом концентрация электронов увеличивается от N^* до значений $n_e \cong 4.8 \cdot 10^{18}$ cm⁻³. Результаты расчета $n_e(N_{\rm Fe})$ показаны на рис. 1 сплошными линиями. Как видно из рисунка, они неплохо согласуются с экспериментальными данными. Некоторый разброс значений n_e обусловлен наличием собственных дефектов, концентрация которых составляет обычно $\sim 10^{18}$ cm⁻³ [5,21]. Зависимость концентрации электронов от температуры при фиксированном содержании примесей железа определяется из уравнения

Физика твердого тела, 2003, том 45, вып. 10

электронейтральности (см., например, [29])

$$n_{e}(T) = N_{+}F_{+}(\varepsilon_{d_{+}}) + \int_{E_{2}}^{E_{1}} d\varepsilon_{d}g_{d0}(\varepsilon_{d})(1 - F_{0}(\varepsilon)),$$

$$g_{d0}(\varepsilon_{d}) = N_{\text{Fe}}G_{0}(\varepsilon_{d}) \left(\int_{E_{2}}^{E_{1}} d\varepsilon_{d}G_{0}(\varepsilon_{d})\right)^{-1},$$

$$F_{+}(\varepsilon_{d+}) = \left(1 + 2\exp\left(\frac{\varepsilon_{F} - \varepsilon_{d+}}{k_{B}T}\right)\right)^{-1},$$

$$F_{0}(\varepsilon_{d}) = \left(1 + \frac{1}{2}\exp\left(\frac{\varepsilon_{d} - \varepsilon_{F}}{k_{B}T}\right)\right)^{-1}.$$
(22)

Здесь функции F_+ и $1 - F_0$ учитывают заполнение *d*-дырками d_+ - и d_0 -состояний при конечных температурах; $g_{d0}(\varepsilon_d)$ — плотность состояний в d_0 -зоне, определялась из экспериментальных данных по эффекту Холла при T = 1.3 К и заданной концентрации примесей железа. Отметим, что при расчете зависимости $n_e(T)$ мы не учитывали температурную поправку к энергии Ферми электронов, поскольку учет этой поправки, величина которой составляет порядка $(k_B T / \varepsilon_F)^2$, вносит вклад менее 0.1%. Поэтому для n_e мы пользовались выражением (21), справедливым в нулевом порядке по вырождению электронного газа. Результаты расчета, представленные на рис. 2 сплошными линиями, хорошо согласуются с экспериментальными данными.

Таким образом, проведенный нами анализ структуры примесной зоны и приближенный расчет плотности состояний в d_0 -зоне позволили корректно интерпретировать результаты измерений эффекта Холла на кристаллах HgSe: Fe в широком температурном интервале. Показано, что отмеченные выше особенности поведения концентрации электронов, наблюдаемые при изменении содержания примесей железа и температуры, могут быть объяснены влиянием кулоновских корреляций в ССВ ионов железа на плотность состояний в примесной d-зоне.

4. Неупругое рассеяние *d*-дырок и температурная зависимость подвижности

При конечных температурах взаимодействие *d*-дырок с фононами или электронами проводимости приводит к миграции *d*-дырок между ионами Fe^{2+} и Fe^{3+} . Это обусловливает возникновение двух эффектов. Во-первых, электрон проводимости или фонон при столкновении с ионом Fe^{3+} может передать ему энергию, необходимую для перехода на соседний нейтральный центр, энергия которого выше (рис. 4). Для электронов проводимости это и есть неупругий механизм

рассеяния, связанный с перезарядкой *d*-центров, и он должен быть включен в рассмотрение. Во-вторых, с увеличением температуры неупругие перескоки *d*-дырок приводят к хаотизации системы ионов Fe^{3+} , при этом степень пространственного упорядочения и диаметр твердой сферы уменьшаются. В этом случае *d*-дырка уже с конечной вероятностью может находиться на ближайших к донору нейтральных центрах. Учесть это изменение можно в приближении так называемых "мягких сфер" [30,31]:

$$d(T) = d_0 (1 - \Delta r(T)/d_0).$$
(23)

Здесь d_0 — диаметр твердой сферы при T = 0, а величина $\Delta r(T)$ описывает изменение радиуса корреляционной сферы с температурой. Оценить зависимость $\Delta r(T)$ можно очень просто, если при конечных температурах считать, что все состояния d_+ - и d_0 -зоны, удовлетворяющие условию $\Delta U_s(\Delta r_{ij}) \leq 3/2k_BT$, равновероятно заполнены. Поэтому из выражения (7) сразу получим $\Delta r(T) \sim \left(\frac{3}{2} \frac{k_BT}{a^*}\right)^{1/2}$. Поскольку между d_+ - и d_0 -зонами имеется конечный энергетический зазор Δ , при $T < \Delta$ перескоки d-дырок вымораживаются. С учетом этого зависимость $\Delta r(T)$ может быть представлена в виде

$$\Delta r(T) = AT^{1/2} \exp(-\Delta/k_B T), \qquad (24)$$

где коэффициент A является подгоночным параметром теории. Тогда в соответствии с (23) температурная зависимость подвижности электронов может быть определена из выражения $\mu_0(d_0)$ при T = 0 [32]

$$\frac{1}{\mu(T)} = \frac{1}{\mu(d(T))} \cong \frac{1}{\mu_0} + \frac{1}{\mu^2} \frac{\partial \mu}{\partial d} \Delta r(T), \qquad (25)$$

где $\mu(d(T))$ определяется формулами (14)–(18) работы [32] с заменой параметра d_0 на d(T), а величина $\mu_0 = \mu(d_0)$. Заметим, что в [32] проанализирована зависимость подвижности электронов в кристаллах HgSe от концентрации доноров, а также зависимость $\mu(N_{\rm Fe})$ для кристаллов HgSe: Fe. Эти зависимости удалось количественно описать одним набором параметров при учете *s*-*p*-гибридизации и блоховских амплитуд волновых функций. Здесь эти параметры используются при анализе температурной зависимости подвижности электронов. Результаты расчетов зависимости $\mu^{-1}(T)$, согласно (23)-(25), показаны на рис. З штриховыми линиями. Как видно из рисунка, рассчитанные кривые хорошо согласуются с данными эксперимента в интервале температур 1.3-35 К, а в интервале температур 10 < T < 35 К экспериментальные данные следуют зависимости $\mu^{-1}(T) \sim T^{1/2}$. Из формул (7), (14) и (15) очевидно, что это связано с квадратичной зависимостью корреляционного потенциала ΔU_s от радиус-вектора rв пределах корреляционной сферы. При T > 35 K рассчитанные кривые лежат ниже экспериментальных, что связано с вкладом электрон-фононного рассеяния [15], который нами не учитывался.

Более строго зависимость $\Delta r(T)$ может быть определена методом, предложенным в работах [18,33,34]. В отличие от [33,34] мы будем рассматривать не туннельные переходы *d*-дырок с заряженных на нейтральные центры, а термоактивированные перескоки, обусловленные взаимодействием *d*-дырок либо с электронами проводимости, либо с фононами, поскольку в нашем случае энергия теплового хаотического движения $k_BT \leq \Delta E_{ij}$. В отличие от работы [30] при рассмотрении перескоков *d*-дырок с заряженных на нейтральные центры учтем заполнение d_+ - и d_0 -состояний согласно [33]. В этом случае для величины $\Delta r(T)$ можно получить выражение

$$\Delta r(T) = \sum_{i,j} \Delta R_{ij} \Gamma_{ij}, \ \Gamma_{ij} = F_i (1 - F_j) W_{ij} - F_j (1 - F_i) W_{ji},$$
$$W_{ij} = Z_0 w_0 \exp\left(-\frac{\Delta E_{ij}}{k_B T}\right)$$
$$= Z_0 w_0 \exp\left(-\frac{\Delta}{k_B T}\right) \exp\left(-\frac{\Delta U_s(r_{ij})}{k_B T}\right),$$
$$Z_0^{-1} = \int^d d\mathbf{r}_{ij} \exp\left(-\frac{\Delta U_s(r_{ij})}{k_B T}\right).$$
(26)

Формула (26) дает фактически среднее значение Δr при усреднении по распределению Больцмана, которое определяется корреляционным потенциалом с учетом вероятности заполнения локализованных состояний. При этом мы должны учесть не только переходы *d*-дырок с *d*₊-уровня на вышележащие состояния *d*₀-зоны (21), но и обратные процессы, а также переходы *d*-дырок между состояниями *d*₀-зоны. Принцип детального равновесия позволяет несколько упростить выражение для вероятности Γ_{ij} .

$$\Gamma_{ij} = F_i (1 - F_j) W_{ij} \left[1 - \exp\left(- \left(\Delta E_{ij} / k_B T \right) \right) \right].$$
(27)

Результаты расчетов зависимости $\mu^{-1}(T)$ в соответствии с формулами (25)–(27) приведены на рис. 3 сплошными линиями. Параметр w_0 в (26), как и коэффициент A в выражении (24), является подгоночным параметром теории. Как видно из рисунка, рассчитанные кривые хорошо согласуются с данными эксперимента. Проведенный анализ показал, что при низких температурах доминирующий вклад в $\Delta r(T)$ вносят переходы *d*-дырок с *d*₊-уровня на состояния *d*₀-зоны, а при *T* > 15 К переходы *d*-дырок между состояниями *d*₀-зоны. Итак, учет термоактивированных перескоков *d*-дырок, приводящих к уменьшению степени пространственного упорядочения в ССВ ионов железа, позволяет объяснить температурную зависимость подвижности электронов.

Рассмотрим вклад неупругого рассеяния электронов проводимости, связанного с перезарядкой *d*-центров, в электросопротивление. Выражение для обратной подвижности электронов с учетом этого вклада может

быть представлено в виде

$$\frac{1}{\mu(T)} = \frac{1}{\mu(d(T))} + \frac{1}{\Delta\mu_{ne}},$$
(28)

где $1/\Delta\mu_{ne} = m_F/e\tau_d$, а величина τ_d^{-1} определена в [10]. Как показано в [10], обратное время релаксации для перехода электрона из состояния **k** в состояние **k**', а *d*-дырки из точки **r**_i в точку **r**_j пропорционально усредненному по поверхности Ферми квадрату интеграла перекрытия. Поскольку волновые функции *d*-состояний локализованы на расстояниях $\sigma < a_0$, этот вклад для перескоков $\Delta r_{ij} > \Delta R_{\min} > 2a_0$ оказывается экспоненциально малым (см. также [33]): $1/\Delta\mu_{ne} \sim \exp(-2|\Delta r_{ij}|/\sigma)$. Так, например, воспользуемся оценкой $\Delta r(T)$ из формулы (24) и при T = 20 К найдем, что показатель экспоненты оказывается меньше минус семи. Поэтому данный механизм вносит малый вклад в релаксацию импульса электронов в низкотемпературной области, и мы его здесь не учитываем.

Таким образом, рассмотренный нами механизм неупругих перескоков *d*-дырок между ионами Fe²⁺ и Fe³⁺ приводит к уменьшению степени пространственного упорядочения системы ионов Fe³⁺ и к зависимости $\mu^{-1}(T) \sim T^{1/2}$ в интервале температур 10 < T < 35 K. Этот механизм позволяет количественно описать температурную зависимость подвижности электронов в кристаллах HgSe:Fe.

Итак, в настоящей работе рассчитан корреляционный потенциал системы ионов железа со смешанной валентностью и найдены величины параметров, определяющих структуру примесной *d*-зоны. Показано, что в области сильных кулоновских корреляций пространственное упорядочение ионов железа в HgSe: Fe приводит к возникновению корреляционной щели в плотности примесных *d*-состояний, т.е. к образованию конечного энергетического зазора между заполненными (Fe²⁺) и пустыми (Fe³⁺) *d*-состояниями, и полному подавлению резонансного рассеяния электронов. Проведен теоретический анализ плотности состояний в примесной *d*-зоне, а также неупругих переходов *d*-дырок между ионами Fe²⁺ и Fe³⁺, приводящих к перезарядке двух- и трехвалентных ионов железа в акте рассеяния. Показано, что экспериментально обнаруженные особенности поведения концентрации электронов и их подвижности при изменении содержания примесей железа и температуры могут быть объяснены влиянием кулоновских корреляций в системе ионов железа со смешанной валентностью на структуру примесной *d*-зоны.

Список литературы

- [1] Д.И. Хомский. УФН 129, 4, 443 (1979).
- [2] М.Ю. Каган, К.И. Кугуль. УФН 171, 6, 577 (2001).
- [3] J.M.D. Coey, M. Viret, S. Molnar. Adv. Phys. 48, 2, 167 (1999).

- [4] S.K. Park, T. Ishikawa, Y. Tokura. Phys. Rev. B 58, 7, 40 (1998).
- [5] И.М. Цидильковский. УФН 162, 2, 63 (1992).
- [6] F. Pool, J. Kossut, U. Debska, R. Reifenberger. Phys. Rev. B 35, 5, 3900 (1987).
- [7] I.M. Tsidilkovskii, I.G. Kuleyev. Semicond. Sci. Technol. 11, 625 (1996).
- [8] И.Г. Кулеев, И.И. Ляпилин, И.М. Цидильковский. ЖЭТФ 102, 5(11), 1652 (1992).
- [9] И.Г. Кулеев, И.И. Ляпилин, А.Т. Лончаков, И.М. Цидильковский. ФТП 28, 6, 937 (1994).
- [10] И.Г. Кулеев, И.И. Ляпилин, А.Т. Лончаков, И.М. Цидильковский. ЖЭТФ **106**, *4*(*10*), 1205 (1994).
- [11] Z. Wilamowski, A. Mycielski, W. Janstsch, G. Hendorfer. Phys. Rev. B 38, 5, 3621 (1988).
- [12] Z. Wilamowski, W. Jantsch, G. Hendorfer. Semicond. Sci. Technol. 5, 3, S266 (1990).
- [13] Z. Wilamowski. Acta Phys. Pol. A 77, 133 (1990).
- [14] И.Г. Кулеев. ФТТ **39**, *2*, 250 (1997).
- [15] И.Г. Кулеев. ФТТ 40, 3, 425 (1998).
- [16] И.Г. Кулеев, И.Ю. Арапова. ФТТ 43, 3, 403 (2001).
- [17] P.W. Anderson. Phys. Rev. 124, 1, 41 (1961).
- [18] Б.И. Шкловский, А.Л. Эфрос. Электронные свойства легированных полупроводников. Наука, М. (1979). 350 с.
- [19] В.Л. Нгуен, М.Э. Райх, А.Л. Эфрос. ФТТ 28, 1307 (1986).
- [20] Z. Wilamowski, K. Swiatek, T. Dietl, J. Kossut. Solid State Commun. 74, 8, 833 (1990).
- [21] I.G. Kuleyev, N.K. Lerinman, L.D. Sabirzyanova, G.L. Shtrapenin, S.Yu. Paranchich. Semicond. Sci. Technol. 12, 840 (1997).
- [22] Дж. Займан. Модели беспорядка. Мир, М. (1982). 591 с.
- [23] Р. Балеску. Равновесная и неравновесная статистическая механика. Мир, М. (1978). Т. 1. 405 с.
- [24] Е.И. Харьков, В.И. Лысов, В.Е. Федоров. Физика жидких металлов. Вища шк., Киев (1979). 289 с.
- [25] H.D. Jones. J. Chem. Phys. 55, 6, 2640 (1971).
- [26] B. Firey, N.W. Ashcroft. Phys. Rev. A 15, 5, 2072 (1977).
- [27] И.Г. Кулеев, Н.К. Леринман, И.И. Ляпилин, Л.Д. Сабирзянова, И.М. Цидильковский. ФТП **27**, *3*, 519 (1993).
- [28] Amorphous Solids and the Liquid State / Ed. Norman H. March, Robert A. Street, Mario Tosi. Plenum Press, N.Y. — London (1985).
- [29] В.М. Аскеров. Электронные явления переноса в полупроводниках. Наука, М. (1985). 318 с.
- [30] И.Г. Кулеев, И.И. Ляпилин, И.М. Цидильковский. ФТТ 37, 8, 2360 (1995).
- [31] P. Protapatas, N. Parlee. High Temp. Sci. 6, 1, 1 (1974).
- [32] И.Г. Кулеев, И.И. Кулеев. ФТТ 45, 2, 205 (2003).
- [33] О. Маделунг. Физика твердого тела. Локализованные состояния. Наука, М. (1985). 183 с.
- [34] A. Miller, E. Abrahams. Phys. Rev. 120, 3, 745 (1960).