¹³ Глубина выхода вторичных и фотоэлектронов из пленок CdTe с пленкой Ba

© Б.Е. Умирзаков, Д.А. Ташмухамедова, М.А. Турсунов, Ё.С. Эргашов, Г.Х. Аллаярова

Ташкентский государственный технический университет, 100095 Ташкент, Узбекистан e-mail: ftmet@mail.ru

Поступило в Редакцию 10 января 2019 г. В окончательной редакции10 января 2019 г. Принято к публикации 20 февраля 2019 г.

Впервые оценены зоны выхода λ' истинно-вторичных электронов и фотоэлектронов чистого CdTe и CdTe с пленкой Ва толщиной $\theta \leq 1$ монослоя. Показано, что с уменьшением работы выхода поверхности на 2 eV значение λ' увеличивается в 1.2–1.3 раза.

DOI: 10.21883/JTF.2019.07.47809.4-19

В настоящее время хорошо изучены влияния ионной имплантации на состав, электронную и кристаллическую структуры, эмиссионные и электрофизические свойства кристаллов Si, CdTe, GaAs, SiO₂ и CaF₂ [1–3]. Однако изменения глубины выхода истинно-вторичных электронов (ИВЭ) и фотоэлектронов этих образцов при ионной бомбардировке являются мало изученными. Что касается глубины выхода ИВЭ образцов с субмонослойным покрытием различных элементов, то они практически не исследованы.

Под действием первичных электронов или фотонов в различных глубинах твердого тела возбуждаются электроны и часть из них эмиттируется в вакуум. При вторичной электронной эмиссии ИВЭ могут образоваться прямым потоком первичных электронов и неупругоотраженными электронами (НОЭ), а в случае фотоэмиссии фотоэлектроны образуются как прямым взаимодействием фотонов с электронами, так и взаимодействием этих же электронов с другими фотоэлектронами, с электронами твердого тела. Плотность возбужденных электронов и их глубина образования для различных материалов зависит от энергии первичных электронов (фотонов) и эффективности центров возбуждения приповерхностного слоя. Глубина выхода λ этих электронов в вакуум в области энергии первичных электронов $E_p = 100-500 \,\mathrm{eV}$ с ростом энергии увеличивается, а затем, начиная с $E = 600-700 \,\mathrm{eV}$, не меняется. Последний называется зоной выхода λ' ИВЭ (фотоэлектронов) [4]. Для экспериментальной оценки глубины выхода электронов используются в основном методы эквивалентной подложки или диаграммы $\delta - \eta$ [4]. Наши исследования показали, что когда η-подложки и пленки резко отличаются, то исследование зависимости $\delta(d)$ дает ценную информацию о глубине выхода истинно-вторичных и неупругоотраженных электронов в вакуум, где δ — коэффициент ИВЭ, η — коэффициент НОЭ, *d* — толщина пленки. Тонкие пленки CdTe имеют особый интерес при создании оптических, электронных, фоточувствительных приборов, в частности солнечных

элементов. Поэтому эмиссионные и оптические свойства, кристаллическая и электронная структуры CdTe и трехкомпонентные соединения на их основе в настоящее время хорошо изучены [4–7].

В настоящей работе впервые изучена глубина λ и зона выхода λ' истинно-вторичных и фотоэлектронов CdTe и их изменения при адсорбции атомов Ba до одного монослоя. При одинаковых энергиях E_p и hv глубина выхода ИВЭ и фотоэлектронов существенно не отличается друг от друга. Поэтому здесь основные результаты приводились для вторичной электронной эмиссии.

Методика эксперимента

Поликристаллические пленки CdTe с толщиной 5.0–50.0 nm получены на поверхности Mo (111) методом газофазной эпитаксии. После технологических обработок (полировка ионами Ar⁺ в сочетании с прогревом до $T \leq 900$ K) в сверхвысоком вакууме поверхность CdTe становится существенно гладкой, стехиометрический состав приближается к таковым для совершенных пленок CdTe [6]. После многократного распыления и прогрева поверхности подложки получены сплошные поликристаллические пленки CdTe, начиная с толщины 5.0–6.0 nm.

Исследования проводились при вакууме не хуже 10^{-6} Ра с использованием методов оже-электронной спектроскопии (ОЭС), ультрафиолетовой фотоэлектронной спектроскопии (УФЭС), спектроскопии характеристических потерь энергии электронов (СХПЭЭ) и измерением энергетических зависимостей коэффициентов вторичной электронной эмиссии (ВЭЭ). Для оценки величин λ и λ' в основном применялся метод снятия зависимости изучали с помощью методов растровой электронной микроскопии (РЭМ) и атомно-силовой микроскопии (АСМ). Напыление Ва осуществлялось

при вакууме не хуже, чем 10^{-5} Ра. За один монослой принималась толщина пленки Ва, при которой значение работы выхода уменьшается до минимума (δ увеличивается до максимума).

Результаты экспериментальных исследований и их обсуждение

Для исследования подготовлены в одинаковых условиях пленки CdTe/Mo с разной толщиной d = 5.0-10.0, 15.0, 20.0 и 50.0 nm. Перед каждым исследованием поверхности пленок очищались прогревом при T = 900 K в течение 30-40 min в вакууме $P = 10^{-6}$ Pa. На рис. 1 приведены зависимости $\sigma(E_p)$ и $\eta(E_p)$ в области $E_p = 100-1200$ eV чистого Mo (111) и Mo с пленкой CdTe толщиной 50.0 nm (где σ — полный коэффициент ВЭЭ: $\sigma = \delta + \eta + r$, r — коэффициент упру-

Рис. 1. Зависимости σ (кривые *1*, *2*) и η (*1'*, *2'*) от E_p для Мо (*1*, *2*) и для пленки CdTe/Mo с d = 50.0 nm (*1'*, *2'*).

Рис. 2. Зависимости $\delta(d)$ для пленки CdTe до (1) и после (2) напыления атомов Ва с толщиной ~ 1 монослой.

Рис. 3. Зависимость глубины зоны выхода ИВЭ от уменьшения работы выхода CdTe/Mo (111).

Рис. 4. Зависимость интенсивности фототока I_F от толщины пленок CdTe/Mo (111) до (1) и после (2) напыления атомов Ва с толщиной ~ 1 монослой.

го отраженных электронов). Видно, что значение σ пленки проходит через максимум при $E_p = 600-700$ eV ($\sigma_m = 1.8$), т.е. начиная с этой энергии глубина выхода ИВЭ λ не меняется и равняется зоне выхода λ' [6]. Значения η для Мо и СdТе существенно отличаются друг от друга и практически остаются постоянными при $E_p \geq 700-800$ eV. Поэтому для определения значения зоны выхода ИВЭ зависимость $\delta(d)$ снималась при $E_p = 1000$ eV (рис. 2). Из рис. 2 (кривая 1) видно, что до d = 10.0-12.0 nm значение δ увеличивается линейно, затем скорость роста резко уменьшается и, начиная с d = 25.0 nm, практически не меняется. Исходя из этого, можно полагать, что глубина зоны выхода ИВЭ λ' в случае CdTe составляет ~ 10.0–12.0 nm. Исследова-

Зависимости зоны выхода ИВЭ от значений χ для CdTe

Образец	$ heta_{ ext{Ba}},$ монослой	χ, eV	$\Delta \chi^*, eV$	E_g, eV	λ' , nm	$\lambda_{\text{NERE}}, \text{nm}$
CdTe	0	4.2	0	1.45	12.0	25.0
	0.5	3	1.2	1.45	-	25.0
	1.0	2.2	2.0	1.45	15.0	25.0

Примечание: * — изменение величины χ относительно уровня вакуума.

ния зависимости $\delta - \eta$, снятые при $E_p = 1000 \, \mathrm{eV}$ также показали, что для CdTe $\lambda' = 10.0 - 12.0$ nm. Некоторое увеличение δ в интервале d = 12.0 - 25.0 nm может быть связано с выходом НОЭ с энергией меньше, чем 50 eV. С учетом этого можно полагать, что глубина выхода НОЭ при $E_p = 1000 \text{ eV}$ составляет 20.0–25.0 nm. Напыление на поверхность пленок CdTe (d = 10.0-50.0 nm), пленок Ва с толщиной $\theta \leq 1$ монослоя приводило к увеличению коэффициента δ во всей исследуемой области d (рис. 2, кривая 2). Наибольшее увеличение происходило при $\theta = 1$ монослой. При этом значение $e\phi$ уменьшается на 2 eV, из этой кривой видно, что резкий рост δ наблюдается в интервале $d = 0 - 15.0 \,\mathrm{nm}$, в интервале $d = 15.0 - 25.0 \,\mathrm{nm} \,\delta$ увеличивается всего лишь на 0.1-0.2, а при $d \ge 25.0\,\mathrm{nm}$ практически не меняется. Из этого следует, что уменьшение еф на $\sim 2\,\mathrm{eV}$ приводит к увеличению зоны выхода ИВЭ λ' на 4.0-5.0 nm, а глубина выхода НОЭ существенно не изменяется. Необходимо отметить, что при напылении изменение $e\phi$ равно изменению сродства к электрону χ (ширина зоны проводимости).

В таблице приведены зонно-энергетические параметры и глубина зоны выхода ИВЭ пленки CdTe/Mo (111) с субмонослойной пленкой Ва разной толщины. Толщина CdTe ~ 50.0 nm. Из таблицы видно, что при $heta_{\mathrm{Ba}} \sim 1$ монослой значение χ уменьшается на $\sim 2\,\mathrm{eV},$ а значения Eg и глубина выхода неупругоотраженных электронов практически не меняется. При этом не меняются также глубина и эффективность образования вторичных электронов. Поэтому можно полагать, что увеличение коэффициента ВЭЭ и фотоэлектронов при уменьшении χ в основном обусловлено увеличением зоны выхода электронов. Из полученных результатов следует, что с уменьшением χ зона выхода λ' монотонно увеличивается. Если эта зависимость линейная, то можно оценить значение λ' при $\chi = 0$ ($\Delta \chi = -4.2 \, \text{eV}$), которое составляет ~ 17.0-18.0 nm (рис. 3). При этом ИВЭ выходят на уровень дна зоны проводимости.

Известно [8], что для твердых тел зависимость глубины выхода электронов от энергии электронов (фотонов) при $\lambda = 5.0-10.0$ nm проходит через минимум, т.е. при энергиях, меньших, чем 50–100 eV с уменьшением энергии E_p и hv, глубина выхода ИВЭ и фотоэлектронов вновь увеличивается. В качестве примера на рис. 4 приведена зависимость интенсивности фототока I_F от d, измеренная при hv = 10.8 eV для чистого CdTe и СdTe с пленкой Ва толщиной ~ 1 монослой. Видно, что значение I_F для чистого CdTe начиная с d = 6.0 nm практически не меняется, т. е. глубина выхода фотоэлектронов $\lambda = 6.0$ nm. После уменьшени χ на 2 eV значение λ увеличивается до 8.0-9.0 nm. Если учесть, что фотоэлектронная работа $e\phi$ выхода CdTe ~ 5.65 eV, то при данной hv из чистого CdTe в вакуум выходят только фотоэлектроны, а "вторичные" электроны твердого тела, образующиеся под действием фотоэлектронов, не смогут выходить в вакуум. При уменьшении $e\phi$ на 2 eV наиболее быстрые вторичные электроны могут выходить в вакуум, что приводит к увеличению λ и I_F .

Заключение

На основе экспериментальных исследований оценены глубина выхода λ и зона выхода λ' ИВЭ и фотоэлектронов из пленок CdTe с субмонослойным покрытием Ва. Показано, что λ' для "чистого" CdTe составляет ~ 12.0 nm. Уменьшение χ на ~ 2 eV приводит к увеличению λ' на 4.0-5.0 nm. При этом значении E_g , глубина выхода НОЭ и глубины образования ИВЭ практически не изменяются. Поэтому можно полагать, что увеличение эмиссии истинно-вторичных и фотоэлектронов при уменьшении χ в основном обусловливается увеличение λ' .

Список литературы

- Мурадкабилов Д.М., Таимухамедова Д.А., Умирзаков Б.Е. // Поверхность рентгеновские, синхротронные и нейтронные исследования. 2013. № 10. С. 58– 62. [Muradkabilov D.M., Tashmukhamedova D.A., Umirzakov B.E. // Journ. Surf. Investigation. X-ray, Synchrotron and Neutron Techniques. 2013. Vol. 7. N 5. P. 967–971.]
- [2] Умирзаков Б.Е., Таимухамедова Д.А., Рузибаева М.К., Ташатов А.К., Донаев С.Б., Мавлянов Б.Б. // ЖТФ.
 2013. Т. 83. Вып. 9. С. 146–149. [Umirzakov B.E., Tashmukhamedova D.A., Ruzibaeva M.K., Tashatov A.K., Donaev S.B., Mavlyanov B.B. // Techn. Phys. 2013. Vol. 58.
 N 9. P. 1383–1386. DOI: 10.1134/S1063784213090260]
- [3] Эргашов Ё.С., Ташмухамедова Д.А., Джурабекова Ф.Г., Умирзаков Б.Е. // Известия РАН. Сер. физическая. 2016.
 Т. 80. № 2. С. 157–159. DOI: 10.7868/S0367676516020071
 [Ergashov Y.S., Tashmukhamedova D.A., Djurabekova F.G., Umirzakov B.E. // Bulletin of the Russian Academy of Sciences. Physics. 2016. Vol. 80. N 2. P. 138–140.
 DOI: 10.3103/S1062873816020064]
- [4] Бронштейн И.М., Фрайман Б.С. Вторичная электронная эмиссия. М.: Наука, 1969. 305 с.
- [5] Ткачук П.Н. // ФТТ. 2000. Т. 42. Вып. 11. С. 1961–1963.
- [6] Krylyuk S.G., Korbutyak D.V., Kryuchenko Yu.V., Kupchak I.M., Vakhnyak N.D. // J. Alloys. Comp. 2004. Vol. 371. P. 142–145.
- [7] Li Q, Jie W., Gu Z., Yang G., Wang T., Zhang J. // J. Cryst. Growth. 2004. Vol. 265. P. 159–164.
- [8] Somorjai G. Chemistry in two dimensions: surfaces. NY.: Cornell University Press. Ithaca, 1981. 552 p.