12

Изменение состава ионного тока в процессе полевого испарения вольфрама при высоких температурах

© О.Л. Голубев, Н.М. Блашенков

Физико-технический институт им. А.Ф. Иоффе РАН, 194021 Санкт-Петербург, Россия e-mail: O.Golubev@mail.ioffe.ru

Поступило в Редакцию 3 октября 2018 г. В окончательной редакции 7 ноября 2018 г. Принято к публикации 5 декабря 2018 г.

С помощью магнитного секторного масс-спектрометра с полевым источником ионов и полевого эмиссионного микроскопа изучалось полевое испарение вольфрама при высоких температурах $T \sim 2000$ К. В процессе испарения при высоких T наблюдались только низкозарядные ионы W^{+2} и W^+ для всех изотопов W. При этом распределение величин ионных токов изотопов по массам примерно соответствовало стандартному изотопному отношению для природного вольфрама. Однако наблюдались и отклонения от стандартного изотопного отношения вследствие флюктуаций и нестабильного характера процесса испарения.

DOI: 10.21883/JTF.2019.07.47807.353-18

Введение

Явление полевого испарения состоит в том, что поверхностные атомы эмиттера испаряются в виде положительных ионов только под воздействием сильного испаряющего электрического поля напряженностью Fev порядка нескольких десятков вольт на нанометр (обычно $F_{ev} \sim 10-60 \, {\rm V/nm}$), известно это явление относительно давно [1]. Используется подобное явление обычно как метод получения идеальной атомарно-гладкой поверхности эмиттера в полевой ионной микроскопии, а также и как метод элементного анализа состава поверхности полевого эмиттера в атомных зондах [2]. Делаются в последнее время и попытки применения этого явления для создания точечных ионных источников [3]. Для создания сильного испаряющего электрического поля обычно используются эмиттеры-катоды из проводящего материала в виде острий с радиусом закругления в конце острия $r \sim 50-150\,\mathrm{nm}$, к аноду же прикладывается высокое постоянное напряжение $U \sim 10-15$ kV, а в случае использования времяпролетных приборов наряду с постоянным напряжением прикладывается также и импульсное напряжение $U \sim 0.2 - 0.3 \, \text{kV}$. Было проведено достаточно много экспериментов по полевому испарению различных металлов, сплавов и сложных соединений, при этом было показано, что в случае испарения под воздействием электрических полей разных напряженностей возможно появление ионов разного заряда и состава, атомарных, молекулярных, комплексных. Однако никто и никогда не наблюдал какой-либо зависимости процесса полевого испарения от массы испаряемого изотопа, и это представляется естественным, поскольку, как хорошо известно, электростатическое поле дисперсией по массе не обладает. В качестве типичного примера можно отметить приведенный в работе [4] масс-спектр полевого испарения вольфрама, полученный

с помощью времяпролетного атомного зонда высокой разрешающей способности по массам при криогенной температуре эмиттера. Спектр показан для трехзарядных ионов W⁺³ и для всех основных четырех изотопов вольфрама, при этом если стандартное изотопное отношение для вольфрама — 182 W : 183 W : 184 W : 186 W = 26.5 : 14.3 : 30.6 : 28.4, то экспериментальные результаты работы [4] по полевому испарению W показали изотопное отношение испаряемых ионов 182 W: 183 W: 184 W: 186 W = 26.3 : 12.9 : 31.1 : 29.7, т.е. практически совпадающее с природным изотопным отношением для W.

Таким образом, определенным выводом из всех предыдущих работ было утверждение, что действительно процесс полевого испарения связан прежде всего с величиной напряженности испаряющего Fev и с температурой эмиттера Т, но никак не связан с величиной массы испаряемого изотопа. Однако все проведенные эксперименты относились к полевому испарению при криогенных температурах $T \leq 77$ K, при которых могут использоваться только очень сильные электрические испаряющие поля $F_{ev} = 40 - 60 \, \text{V/nm}$, когда внешнее электрическое поле снимает потенциальный барьер для испарения ионов практически до нуля, при этом самые тугоплавкие металлы могут испаряться с огромными скоростями даже при гелиевых температурах, и в процессе испарения наблюдаются только ионы наиболее высоких зарядов. Например, вольфрам при этом испаряется главным образом в виде ионов W⁺³, меньше испаряется ионов W^{+2} и W^{+4} , наблюдались даже ионы W^{+5} и W^{+6} , но никогда не наблюдались однозарядные ионы W⁺ [1,2].

Если же использовать полевое испарение при достаточно высоких температурах T эмиттера, то ситуация становится принципиально иной. Нами был выполнен ряд работ по изучению полевого испарения некоторых металлов, сплавов и соединений при высоких $T \ge 1000 \text{ K}$ [5–7]. Основными особенностями полевого испарения при высоких T было резкое понижение заряда испаряемого иона с ростом T вследствие заметного снижения величин испаряющих полей, а также появление заметной величины энергии активации процесса испарения вместо нулевых практически значений в случае испарения при криогенных T. Интересным явлением, которое наблюдалось при испарении при высоких T, был тот факт, что в ряде случаев изотопный состав ионного тока не соответствовал стандартному изотопному отношению для природного вольфрама. Для изучения изменений зарядов и масс изотопов испаряемых ионов нами и были проведены подробные эксперименты по полевому испарению вольфрама с контролем изотопного состава ионного тока.

Техника и методика эксперимента

Эксперименты с полевыми эмиттерами в виде острий из вольфрама W проводились на двух различных приборах — комбинированном полевом эмиссионном микроскопе и на 60° статическом магнитном секторном масс-спектрометре с полевым источником ионов. Установка полевого эмиссионного микроскопа позволяла совмещать режимы полевого электронного микроскопа с пространственным разрешением порядка 3-5 nm, полевого ионного микроскопа с атомарным разрешением и полевого десорбционного (точнее — испарительного) микроскопа, разрешение которого составляет примерно 1-2 nm, но который позволяет наблюдать поверхность эмиттера непосредственно при высоких Т и в лучах испаряющихся собственных ионов эмиттера. Вакуум в установке микроскопов был на уровне $p \sim 10^{-10}$ Torr. Величины напряженности электрического поля Fev и работы выхода φ могли определяться классическим методом Фаулера-Нордгейма [8], и при определении величины Fev величина ϕ для W полагалась равной 4.5 eV. Вольфрамовые эмиттеры в виде острий малого радиуса кривизны изготавливались хорошо известными методами электролитического травления в растворе едкого натрия [1,2]. Что касается масс- спектрометрической установки с полевым источником ионов, то в нашем распоряжении имелся 60° магнитный секторный статический масс-спектрометр, который обладал разрешающей способностью по массам $(m/\Delta m) = 200$. Такая величина (*m*/ Δm) позволяла уверенно разрешать основные четыре изотопа вольфрама — 182 W, 183 W, 184 W и ¹⁸⁶W (имеется еще один изотоп ¹⁸⁰W, но его содержание мало, около 0.126%). Полевой источник ионов этого прибора имел острие-эмиттер и соответствующую систему линз и щелей, характеристики данного источника подробно описаны в[9], и ионы образовывались за счет полевого испарения атомов поверхности эмиттера в виде ионов. Ионно-оптическая система источника позволяла изменять приложенное напряжение U (и соответственно электрическое поле у вершины острия F) в пределах двух порядков при сохранении фокусировки ионов с постоянной энергией на выходной щели источника. Это обеспечивало постоянную чувствительность и точность измерения ионного тока в широком диапазоне изменения испаряющих полей. Температуры эмиттера Т определялись с помощью американского оптического пирометра с исчезающей нитью PYRO с точностью измерения $\pm 5^{\circ}$ и сами приведенные величины Т представляют собой средние величины из нескольких измерений. Вакуум в этом приборе был не слишком высоким $p \sim 10^{-8}$ Torr, однако это не имело принципиального значения при проведении экспериментов при высоких T ~ 2000 К. Сочетание микроскопических и масс-спектрометрических методов оказалось эффективным, поскольку микроскопические методики позволяли изучать состояние поверхности посредством ее наблюдения с высоким пространственным разрешением, а масс-спектрометрические — определять ее состав посредством проведения масс- анализов испаряемых ионов.

Экспериментальные результаты и их обсуждение

Как уже отмечалось, в случае полевого испарения при криогенных температурах наблюдаются ионы высоких зарядов, вольфрам испаряется в основном в виде ионов W^{+3} , меньше наблюдается ионов W^{+2} и совсем мало ионов W⁺⁴. Однако если проводить процесс полевого испарения при достаточно высоких Т эмиттера, то ситуация становится принципиально иной. Нами, как уже отмечалось, были проведены исследования полевого испарения некоторых металлов и сплавов при высоких Т и основной характерной особенностью процесса испарения было резкое понижение заряда испаряемого иона с ростом Т эмиттера. Проведенные нами эксперименты по полевому испарению при различных высоких T и F_{ev} показали, что и в нашем случае при испарении W при комнатной T наблюдались также в основном ионы W^{+3} , а при T > 1000 К наблюдались только низкозарядные ионы W⁺ и W⁺², причем если до температуры эмиттера $T\sim 2200\,\mathrm{K}$ преобладали двухзарядные ионы W⁺², то при более высоких Т в ионном токе превалировали уже в основном однозарядные ионы W⁺.

На рис. 1 приведены гистограммы амплитуд ионного тока полевого испарения отдельных изотопов W при T = 2267 K и $F_{ev} \sim 38$ V/nm для двухзарядных ионов W⁺², а на рис. 2 приведены такие же гистограммы при тех же T и F_{ev} для однозарядных ионов W⁺. Получены эти гистограммы следующим образом. Прибор осуществлял примерно 200 сканов от массы 182 до массы 186, и детектор считал общее количество импульсов тока в секунду для всех 4 изотопов W. При этом величины импульсов были разными от нескольких ионов до нескольких сотен ионов, так как процесс испарения носит принципиально нестационарный характер.

Рис. 1. Гистограммы амплитуд ионного тока полевого испарения отдельных изотопов вольфрама для двухзарядных ионов W^{+2} при температуре эмиттера T = 2267 К и напряженности испаряющего поля $F_{ev} \sim 38$ V/nm. Широкие столбики без штриховки — экспериментально наблюдаемые ионы данной массы, узкие столбики с косой чертой — природное распределение изотопов по массам.

Рис. 2. Гистограммы амплитуд ионного тока полевого испарения отдельных изотопов вольфрама для однозарядных ионов W^{+2} при температуре эмиттера T = 2267 К и напряженности испаряющего поля $F_{ev} \sim 38$ V/nm. Широкие столбики без штриховки — экспериментально наблюдаемые ионы данной массы, узкие столбики с косой чертой — природное распределение изотопов по массам.

Затем количество ионов каждого заряда для каждого изотопа усреднялось и определялось среднеквадратичное отклонение, которое и есть погрешность каждого такого измерения и, как правило, чем больше величина тока, тем больше и его флуктуации, величина этого отклонения и показана на гистограммах в виде "усовgrqq. Гистограммы на рис. 1 показывают, что и при такой высокой T наблюдается испарение всех четырех изотопов W и наблюдаемое распределение всех изотопов по массам для двузарядных ионов примерно соответствует стандартному изотопному отношению для природного W, т.е. доля ионов соответствующего изотопа в общем ионном токе примерно соответствует доле этого изотопа в стандартном изотопном отношении. Однако, как показали многочисленные эксперименты, вследствие флуктуационного характера процесса испарения количество зарегистрированных ионов того или иного изотопа может не всегда совпадать с природным изотопным составом W, если статистика ионов набрана недостаточная. Подобную картину показывает представленная на рис. 2 гистограмма амплитуд ионного тока полевого испарения однозарядных ионов W⁺. Полученная при той же $T = 2267 \, {\rm K}$ она также демонстрирует испарение ионов всех 4 изотопов, но при этом вследствие характера процесса количество наблюдаемых в данном эксперименте ионов изотопа средней массы ¹⁸³W⁺ значительно меньше количества, соответствующего стандартному изотопному распределению, а для ионов самого тяжелого изотопа ¹⁸⁶W⁺ наблюдается обратная картина количество регистрируемых ионов ¹⁸⁶W⁺ в несколько раз больше количества, соответствующего стандартному изотопному отношению. Значительный разброс данных, показанный в виде "усов" на рис. 1 и 2 объясняется, как уже отмечалось, флуктуационным, нестабильным характером самого процесса высокотемпературного полевого испарения, когда при испарении наблюдается так называемый "эффект схлопывания колец" — процесс периодического образования и испарения в виде ионов заметных кристаллических наростов на плотноупакованных гранях поверхности эмиттера, образующихся и испаряющихся вследствие процессов полевой диффузии, полевого кристаллического роста и полевого испарения [10]. Данные кристаллические наросты покрыты так называемыми термополевыми наноразмерными выступами конической формы и весьма малого радиуса кривизны $r \sim 1-2$ nm, с вершин которых, где величина Fev максимальна, и происходит процесс испарения ионов. Полевые электронные изображения поверхности W, покрытой различным количеством таких нановыступов, и показаны на рис. 3. На рис. 3, а представлено изображение, соответствующее поверхности чистого W, а рис. 3, *b*-*d* — изображения поверхности W-эмиттера после одновременного воздействия одной и той же $T = 2300 \,\mathrm{K}$ и различных величин F_{ev} . Меняя величину Fev при неизменной T эмиттера, можно менять количество эмиттирующих нановыступов на поверхности [11]. При этом ионный ток носит пульсирующий характер даже при постоянном приложенном напряжении, постоянном испаряющем поле и температуре. Таким образом, полевые ионные источники, использующие испарение при высоких Т, несомненно обладают преимуществами по сравнению с источниками, работающими при криогенных Т, поскольку имеют значительно больший ресурс работы и долговечность, однако естественным их недостатком является тот факт, что эмитируемый ими эмиссионный ионный ток является в принципе нестабильным и сильно флюктуирующим особенно при работе в стационарном режиме.

Рис. 3. Полевые электронные изображения поверхности W-эмиттера в случае одновременного воздействия на эмиттер температуры T = 2300 K и различных величин испаряющего поля F_{ev} : a - чистый W; b - после воздействия при T = 2300 K и $F_{ev} \sim 40$ V/nm; c - после воздействия при T = 2300 K и $F_{ev} \sim 37$ V/nm; d - после воздействия при T = 2300 K и $F_{ev} \sim 32$ V/nm.

Для понимания характера процесса полевого испарения при высоких Т очень важно определить реальную величину F_{ev} , которая действует непосредственно в процессе испарения при высоких Т, поскольку именно она главным образом и определяет характер процесса. Обычно данную величину определяли косвенным методом. Вначале после достижения стационарного состояния ионной эмиссии при высоких T и Fev резко выключали нагрев эмиттера и "замораживали" ситуацию на поверхности при приложенном электрическом поле, а затем определяли величину F_{ev} на основе эмиссионных характеристик Фаулера-Нордгейма, которые получались уже при комнатной Т. Нами в работах [12,13] предложен другой метод определения величины F_{ev}, который позволяет определить такую величину Fev, которая действует непосредственно в процессе высокотемпературного полевого испарения, данным методом мы и воспользуемся. Предположим, что и в случае испарения вольфрама зависимость скорости полевого испарения (т.е. ионного тока i) от T характеризуется обычным законом Аррениуса, только величина энергии активации испарения меняется в зависимости от величины напряженности приложенного электрического поля F_{ev} , тогда, согласно [2], полагаем, что величина ионного тока полевого испарения определяется выражением

$$i = v_0 \exp(-Q_n/kT),\tag{1}$$

где v_0 — предэкспоненциальный множитель, а Q_n — энергия активации испарения *n*-кратно заряженного иона. Выражение же для Q_n удобно представить в

следующем виде:

$$Q_n = \lambda_0 + \sum I_n - n\varphi - 1.2n\sqrt{nF} + 3.45 \cdot 10^{-7} \alpha F^2, \quad (2)$$

где λ_0 — теплота испарения материала эмиттера, I_n — потенциал ионизации *n*-кратно заряженного иона, φ — работа выхода эмиттера и α — поляризуемость иона. При такой записи выражения величина Q_n получается непосредственно в eV, если величина F_{ev} определяется в V/nm, а величина α — в nm³. Как было нами показано в работах [11,12], если зафиксировать при какойлибо *T* эмиттера равенство ионных токов W⁺² и W⁺, то можно получить универсальное выражение для оценки величины напряженности испаряющего электрического поля F_{ev} для процесса высокотемпературного полевого испарения, поскольку при этом величины Q₁ = Q₂ и, пренебрегая в выражении (2) последним членом с поляризацией, получаем

$$F_{ec} = \left[(I_2 - \varphi)/2.19 \right]^2.$$
(3)

Подобное равенство ионных токов одно- и двухзарядных ионов будет наблюдаться практически всегда, поскольку при более низких Т преобладают ионы W⁺², а при более высоких — наоборот ионы W^+ , и кривые токов i(T) обязательно пересекаются. В случае полевого испарения W эти кривые ионных токов пересекаются в точке T = 2200 К. Подставляя соответствующие для W величины второго потенциала ионизации $I_2 = 18 \,\mathrm{eV}$ и работы выхода $\varphi = 4.5 \,\mathrm{eV}$, мы получим величину напряженности испаряющего поля $F_{ev} = 38 \,\mathrm{V/nm}$, которая оказывается заметно меньше величин $F_{ev} = 55-57 \text{ V/nm}$, полученных для случая испарения W при криогенных T [1]. При этом необходимо отметить, что подобный метод определения (оценки) величины Fev имеет ограничения. Он позволяет определять реальную величину F_{ev} , только при той температуре, при которой равны токи одно- и двухзарядных ионов. Хотя состояние поверхности эмиттера в процессе полевого испарения при высоких Т динамически меняется, однако средние величины напряженности испаряющего поля Fev меняются при этом не сильно.

Заключение

Таким образом, основными выводами работы являются следующие:

1. В процессе полевого испарения вольфрама при высоких $T \ge 2000$ К наблюдаются только ионы низких зарядов — W⁺ и W⁺², причем чем выше *T*, тем большую долю ионного тока составляют однозарядные ионы W⁺.

2. В процессе испарения наблюдаются ионы всех четырех основных изотопов W, и амплитуды пиков в масс-спектре изотопов W примерно соответствуют стандартному изотопному отношению для природного W, хотя иногда и наблюдаются отклонения от стандартного отношения как в большую, так и в меньшую стороны

для некоторых изотопов вследствие флуктуаций и нестабильного характера процесса испарения.

3. Исследуя зависимости величин ионного тока для ионов разных зарядов от температуры эмиттера T — кривые i(T), можно определить величину напряженности испаряющего поля F_{ev} непосредственно для условий испарения, зафиксировав точку пересечения этих кривых для одно- и двухзарядных ионов. Данная величина F_{ev} для случая полевого испарения W при T = 2200 K составляет $F_{ev} = 38$ V/nm, что много меньше величин $F_{ev} = 55-57$ V/nm, которые характерны для случаев полевого испарения X при F1,2].

Список литературы

- [1] *Мюллер Э.В., Цонь Т.Т.* // Автоионная микроскопия. М.: Металлургия, 1972. 360 с.
- [2] Мюллер Э.В., Цонг Т.Т. // Полевая ионная микроскопия, полевая ионизация, полевое испарение. М.: Наука, 1980. 217 с.
- [3] Голубев О.Л., Блашенков Н.М., Логинов М.В. // Письма в ЖТФ. 2010. Т. 36. Вып. 20. С. 43–49.
- [4] *Толстогузов А.Б.* // Масс-спектрометрия. 2009. Т. 6. Вып. 4. С. 280–288.
- [5] Голубев О.Л., Блашенков Н.М., Лаврентьев Г.Я. // Письма в ЖТФ. 2006. Т. 32. Вып. 20. С. 46–51.
- [6] Голубев О.Л., Блашенков Н.М., Лаврентьев Г.Я. // ЖТФ. 2007. Т. 77. Вып. 10. С. 11–15.
- [7] Голубев О.Л., Блашенков Н.М., Логинов М.В. // ЖТФ. 2012. Т. 82. Вып. 3. С. 111–116.
- [8] Шредник В.Н. // Ненакаливаемые катоды. М.: Сов. радио, 1974. 335 с.
- [9] Бакулина И.Н., Блашенков Н.М., Ионов Н.И., Лаврентьев Г.Я., Шустров Б.Н. // А.с. № 711935. БИ. 1987. № 48.
- [10] Бутенко В.Г., Голубев О.Л., Конторович Е.Л., Шредник В.Н. // Письма в ЖТФ. 1992. Т. 18. Вып. 8. С. 86–91.
- [11] Голубев О.Л., Ивченко В.А. // Письма в ЖТФ. 2012. Т. 38. Вып. 20 С. 63–68.
- [12] Голубев О.Л., Блашенков Н.М. // Письма в ЖТФ. 2016. Т. 42. Вып. 14. С. 80–86.
- [13] Голубев О.Л., Блашенков Н.М. // ЖТФ. 2017. Т. 87. Вып. 8. С. 1238–1242.