05

Определение плазменных колебаний в металлах методом полного внешнего отражения рентгеновских лучей

© В.М. Стожаров

Российский государственный педагогический университет им. А.И. Герцена, 191186 Санкт-Петербург, Россия e-mail: gut1111@yandex.ru

Поступило в Редакцию 8 февраля 2018 г. В окончательной редакции 8 февраля 2018 г. Принято к публикации 4 февраля 2019 г.

Предложено определение плазменных колебаний в металлах методом полного внешнего отражения (ПВО) рентгеновских лучей. Показана возможность расчета энергии плазмонов, концентрации электронов проводимости и энергии Ферми из экспериментально измеренных скользящих углов падения рентгеновских лучей, испытавших ПВО. Наблюдаются зависимости этих характеристик от определенных кристаллографических направлений и в отдельных случаях наблюдаются зависимости этих характеристи характеристик от глубины формирования ПВО.

DOI: 10.21883/JTF.2019.07.47794.51-18

Введение

В 50-е г. Бом и Пайнс [1,2] разработали теорию взаимодействующих электронов твердых тел. Они показали, что коллективное поведение квантовой электронной плазмы твердого тела проявляется в виде плазменных колебаний — плазмонов с энергией $E_p = \hbar \omega$. Наряду с классическими исследованиями плазмонов по характеристическим потерям отраженных электронов средних энергий от металлов [3-5], в последние десятилетия началось детальное теоретическое и экспериментальное исследование оптических свойств поверхностных плазмонов в островковых пленках и в ультрадисперсных металлических средах [6-8]. Эти исследования послужили основой создания оптического поверхностно-плазмонного микроскопа, широко применяющегося в настоящее время в биологии и медицине [9]. В обзоре [10] указывается на возможность измерения плазменных частот материалов с помощью полного внешнего отражения (ПВО) рентгеновских лучей.

На основе экспериментальных данных по ПВО различных поликристаллических металлов, полученных в работах [11,12] для разных кристаллографических плоскостей, в настоящей работе представлены результаты расчетов энергии плазмонов, возбужденных рентгеновским излучением $CuK_{\alpha 1}$ с энергией кванта 8047 eV в условиях полного внешнего отражения рентгеновских лучей, а также результаты расчетов концентраций электронов проводимости и энергий Ферми. Детали эксперимента подробно изложены в работе [11].

Теоретические представления

В одноэлектронном приближении на основе теории металлов Друде-Лоренца [13] статическая проводи-

мость σ_0 (при частоте электромагнитного поля $\omega = 0$) определяется соотношением

$$\sigma_0 = \frac{Ne^2\tau}{m},\tag{1}$$

где N — электронная плотность, e и m — заряд электрона и его масса соответственно, τ — время релаксации электрона проводимости (т. е. время между двумя последовательными столкновениями этого электрона с ионами кристаллической решетки металла).

Из формулы (1) по удельным сопротивлениям $\rho = 1/\sigma \sim 10^{-8} \,\Omega \cdot m$ для металлов, взятым из таблиц Кэй и Лэби [14], рассчитанная величина времени релаксации τ составляет порядка 10^{-14} s. Высокочастотная проводимость по электронной теории металлов [13,15] является комплексной величиной и выражается соотношением, которое включает зависимость проводимости от частоты электромагнитного поля ω :

$$\sigma(\omega) = \frac{\sigma_0}{1 - i\omega\tau},\tag{2}$$

где σ_0 — статическая проводимость, определяемая формулой (1). Из уравнений Максвелла для высокочастотных электромагнитных полей функция диэлектрической проницаемости $\varepsilon(\omega)$ так же, как и высокочастотная проводимость, является комплексной величиной и с учетом формулы (2) определяется соотношением

$$\varepsilon(\omega) = 1 + \frac{4\pi i \sigma_0}{\omega(1 - i\omega\tau)}.$$
(3)

Для используемого в настоящей работе мягкого рентгеновского излучения $\operatorname{Cu}K_{\alpha 1}$ с длиной волны $\lambda = 1.5406$ Å и соответственно с угловой частотой $\omega = 2\pi c/\lambda \sim 10^{19} \,\mathrm{s}^{-1}$, где c — скорость света, и с учетом сделанной выше оценки величины τ для металлов произведение в формуле (3) $\omega \tau$ составляет порядка

 $10^5 \gg 1$. Следовательно, единицей в знаменателе формулы (3) можно пренебречь и поэтому функция $\varepsilon(\omega)$ становится вещественной. С учетом формулы (1) она выражается простым соотношением [16]:

$$\varepsilon(\omega) = 1 - \frac{4\pi\sigma_0}{\omega^2 \tau} = 1 - \frac{\omega_p^2}{\omega^2} = 1 - \frac{E_p^2}{E^2},$$
(4)

где, согласно теории плазмонов [13,15,16], $\omega_p^2 = \frac{4\pi N e^2}{m}$ — квадрат угловой частоты плазменных колебаний электронов проводимости; $E_p = \hbar \omega_p$ — энергия плазмона; E = 8047 eV — энергия падающего рентгеновского излучения. Из соотношения для ω_p^2 плотность электронов проводимости N рассчитывается по формуле

$$N = \frac{mE_p^2}{4\pi\hbar^2 e^2}.$$
(5)

Согласно теории Займана [16], решение уравнений Максвелла для твердого тела в виде плоской, нестационарной электромагнитной волны приводит к модулю волнового вектора K, величина которого в общем случае комплексная и выражается соотношением

$$K = \frac{\omega}{c}\sqrt{\varepsilon + \frac{4\pi\sigma i}{\omega}} = \frac{\omega n}{c},\tag{6}$$

где показатель преломления *n* в этом общем случае является комплексной величиной и с учетом соотношения (6) выражается формулой

$$n = \sqrt{\varepsilon + \frac{4\pi\sigma i}{\omega}}.$$
 (7)

Оценка мнимого слагаемого в подкоренном выражении для *n*: $\frac{4\pi\sigma}{\omega} = \frac{4\pi}{\rho\omega}$ производится следующим образом. Из табл. 1.2 [13] удельное сопротивление металлов $\rho \sim 10^{-8} \,\Omega \cdot m$, а для мягкого рентгеновского излучения угловая частота $\omega \sim 10^{19} \,\mathrm{s}^{-1}$, отсюда $\frac{4\pi}{\rho\omega} \sim 10^{-10} \ll 1$. Поэтому мнимым слагаемым в показателе преломления в металлах для рентгеновского излучения можно смело пренебречь и в дальнейших расчетах пользоваться простейшим соотношением [15]

$$n = \sqrt{\varepsilon}.$$
 (8)

Применение теоретических представлений к полному внешнему отражению рентгеновских лучей от металлов

ПВО рентгеновских лучей происходит под скользящими углами падения пучка рентгеновских лучей α, связанными геометрически с показателем преломления *n* рентгеновских формулой

$$n = \cos \alpha. \tag{9}$$

Рис. 1. Рентгенограмма полированного поликристаллического тантала в условиях полного внешнего отражения рентгеновских лучей с указанием скользящих углов падения *α*.

Рис. 2. Рентгенограмма полированного поликристаллического молибдена в условиях полного внешнего отражения рентгеновских лучей с указанием скользящего угла падения *α*.

Из формул (4) и (9) нетрудно определить энергию плазменных колебаний, зная из эксперимента величину скользящего угла падения α пучка рентгеновских лучей, испытавших ПВО:

$$E_p = E\sqrt{1 - \cos^2\alpha} = E \cdot \sin\alpha.$$
(10)

Характерной особенностью ПВО рентгеновских лучей является его генетическая связь с теми кристаллитами, кристаллографические плоскости которых параллельны поверхности исследуемого металла [11]. Таким образом, метод ПВО рентгеновских лучей обеспечивает возможность измерения энергий плазмонов и связанных с ними других характеристик твердого тела только в определенных кристаллографических направлениях. Для каждого исследованного металла в определенных

Журнал технической физики, 2019, том 89, вып. 7

Данные расчетов твердотельных параметров

Металл	α^0	hkl	E_p, eV	h, Å	$N \cdot 10^{28} \mathrm{m}^{-3}$	$E_{\rm F}, {\rm eV}$
Ni	0.0099	311	1.33	33.6	1.15	1.86
	0.0727	200	10.21	287	6.776	6.04
Cu	0.0178	111	2.06	53	4.062	4.32
	0.0261	200	4.06	105	8.707	7.15
Mo	0.0776	200	10.9	84	7.723	6.64
Та	0.0095	200	1.40	6.46	1.274	1.98
	0.0785	222	11.0	50.9	7.865	6.68
Pt	0.0141	111	1.98	5.35	2.548	3.15
	0.0878	222	12.33	35.8	9.909	7.80
Ag	0.0124	111	1.74	9.04	1.768	2.50
Au	0.0612	111	8.60	40.2	4.807	4.78

кристаллографических направлениях по формуле (10) вычисляются энергии плазмонов E_p , а по формуле (5) — плотности электронов проводимости N.

Из квантовой теории металлов Зоммерфельда [13] для кристаллитов металлов в определенных кристаллографических направлениях вычисляются также энергии Ферми *E*_F по формуле

$$E_{\rm F} = \frac{\hbar^2}{2m} \, (3\pi^2 N)^{2/3}.\tag{11}$$

Результаты расчетов и их обсуждение

В таблице для ряда металлов и кристаллографических направлений в них приведены результаты расчетов энергий плазменных колебаний E_p из экспериментально измеренных скользящих углов падения α рентгеновских лучей, испытавших ПВО, а также плотности электронов проводимости N, индексы Миллера (hkl) кристаллографических плоскостей, глубины выхода h рентгеновских лучей, испытавших ПВО, и энергии Ферми E_F . Глубину выхода h рассчитывали из практического пробега квантов рентгеновского излучения Cu $K_{\alpha 1}$ для каждого металла, умноженного на sin α .

Анализ данных, приведенных в таблице, позволяет сделать вывод о наблюдающемся размерном эффекте, выражающемся в увеличении энергии плазмонов, концентрации электронов проводимости и энергии Ферми с ростом глубины выхода *h* в тех исследованных металлах, которые характеризуются двумя разными показателями преломления рентгеновских лучей (никель, медь, тантал и платина). На рис. 1 в качестве примера приведена рентгенограмма для полного внешнего отражения рентгеновских лучей от поликристаллического полированного тантала с двумя максимумами, соответствующими двум разным показателям преломления рентгеновских лучей, а на рис. 2 в противоположность танталу приведена рентгенограмма для ПВО от поликристаллического полированного молибдена с одним максимумом.

Заключение

Разработанная методика расчета плазменных колебаний в металлах с помощью ПВО рентгеновских лучей позволяет определять целый ряд характеристик твердого тела, включая энергию плазмонов, концентрацию электронов проводимости, энергию Ферми. Плазмоны с малыми значениями энергии $E_p \sim 2 \text{ eV}$, возбужденные рентгеновским излучением от некоторых кристаллографических плоскостей таких металлов, как медь, никель, платина, серебро, тантал, могут быть использованы в оптическом поверхностно-плазмонном микроскопе.

Список литературы

- [1] Pines D., Bohm D. // Phys. Rev. 1952. Vol. 85. P. 338-355.
- [2] Зубарев Д.Н. // ЖЭТФ. 1953. Т. 25. С. 548–555.
- [3] Борзяк Н.Г., Запесочный И.П., Коновалов И.Л. В кн.: Диспергированные металлические пленки. Киев. АН УССР, 1976. С. 104–107.
- [4] Бронштейн И.М., Краинский И.Л. // Изв. АН СССР, сер. физ. 1976. Т. 40. № 8. С. 1656–1658.
- [5] Фельдман Л., Майер Дж. Основы анализа поверхности и тонких пленок. М.: Мир, 1989.
- [6] Комник Ю.Ф. Физика металлических пленок. М.: Атомиздат, 1979. 263 с.
- [7] *Петров Ю.И.* Физика малых частиц. М.: Наука, 1982. 358 с.
- [8] Климов В.В. Наноплазмоника. М.: Физматлит, 2009. 480 с.
- [9] Ramanavieius A., Herberg F.W. Acta Medica Litnavica. 2005. Vol. 12. N 3. P. 1–22.
- [10] Бойко М.Е., Шарков М.Д., Конников С.Г., Бобыль А.В., Будкина Н.С. // ЖТФ. 2015. Т. 85. Вып. 11. С. 1–29.
- [11] Стожаров В.М. // ЖТФ. 2017. Т. 87. Вып. 1. С. 125–129.
- [12] Стожаров В.М., Пронин В.П. // ЖТФ. 2017. Т. 87. Вып. 12. С. 1901–1905.
- [13] Ашкрофт Н., Мермин Н. Физика твердого тела. Т. 1. М.: Мир, 1979. 399 с.
- [14] Кэй Д., Лэби Т. Справочник физика-экспериментатора. М.: ИЛ, 1969. 420 с.
- [15] Гроссе П. Свободные электроны в твердых телах. М.: Мир, 1982. 260 с.
- [16] Займан Дж. Принципы твердого тела. М.: Мир, 1966. 315 с.