04 Исследование рельсового электромагнитного источника плазменной струи

© А.В. Воронин, В.Ю. Горяинов, В.К. Гусев, А.Н. Новохацкий, С.А. Поняев

Физико-технический институт им. А.Ф. Иоффе РАН, 194021 Санкт-Петербург, Россия e-mail: voronin.mhd@mail.ioffe.ru

Поступило в Редакцию 6 февраля 2019 г. В окончательной редакции 6 февраля 2019 г. Принято к публикации 13 февраля 2019 г.

> Представлены исследования элементов рельсового электромагнитного ускорителя (рельсотрона), направленные на изучение механизма формирования потока плотной и чистой плазмы с большой кинетической энергией. Проведены испытания ускорителя с импульсным напуском газа с различной формой и длиной электродов, а также с дополнительным магнитным полем, создаваемым внешними проводниками с током. Разработана методика контроля параметров плазменной струи на стенде плазменной пушки с применением датчика давления и тепловизора. Исследована зависимость давления потока дейтериевой плазмы от расстояния до ускорителя, проведена оценка кинетической энергии струи.

DOI: 10.21883/JTF.2019.07.47791.39-19

Введение

Потоки плотной и чистой плазмы с большой кинетической энергией представляют интерес для решения прикладных и фундаментальных задач, например для подачи топлива в термоядерные устройства, а также для облучения и изучения свойств новых материалов при облучении мощными потоками плазмы. Интенсивная инжекция вещества в активную область реактора позволит значительно улучшить энергетические параметры плазмы, прежде всего концентрацию и давление, управлять процессами зажигания, горения и гашения разряда. Эффективность подачи топлива обеспечивается за счет сильной зависимости термоядерной мощности от плотности плазмы $P_{fusion} \sim n^2$ [1].

Существуют различные способы импульсной подачи вещества в термоядерные устройства: центрифуги, пневматические пушки [2,3], плазменные источники типа Маршалла [4], эрозионный источник Бостика [5], компактные торы [6], разряд в капиллярных каналах [7], устройства с плазменным фокусом [8]. Но их практическому использованию препятствует наличие большого количества примесей, возникающих вследствие эрозии электродов, и недостаточная кинетическая энергия инжектируемого вещества. Метод нейтральной инжекции является одним из самых успешных в задаче подачи топлива в реактор, но также имеет ряд ограничений и высокую стоимость аппаратуры [9]. Изучение ускорителей типа "рельсотрон" проводятся в основном с целью ускорения твердых тел в атмосфере или в среде различных газов. В настоящей работе представлены результаты исследования возможности рельсового электромагнитного ускорителя с целью получения большой кинетической энергии плазменной струи в вакууме.

Экспериментальный стенд

Исследования рельсотрона проводилось на стенде плазменной пушки. Стенд состоял из вакуумной камеры объемом 2.5 m³, рельсотрона и диагностик для измерения параметров плазменной струи (рис. 1). Стенд позволял присоединять к вакуумному затвору камеры различные варианты плазменных источников. Струя ускоренной плазмы могла свободно вытекать в большой объем камеры стенда без взаимодействия с ее стенками.

Давление плазменной струи на различных расстояниях от источника регистрировалось лабораторным датчиком. Эта методика подробно описана в работе [10]. В отличие от ранее используемых датчиков в работе применялся детектор, надежно экранированный от электромагнитных наводок и потенциала плазменной струи.

На стенде была налажена новая методика измерения поперечного размера и профиля энергии струи с помощью тепловизора FLIR серии SC7300M. С этой целью в вакуумной камере в поперечном сечении струи располагался медный экран с размерами 220 × 220 mm толщиной 0.1 mm. На зачерненной теневой стороне экрана регистрировалось поле температур, создаваемое потоком плазмы. Для регистрации поля температур тепловизор располагался с теневой стороны экрана снаружи вакуумной камеры. Регистрация теплового потока осуществлялась через окно из селенида цинка (SeZn). Окно пропускало излучение в видимой и инфракрасной областях спектра. Характерные размеры пятна термограммы с высокой достоверностью характеризовали поперечные размеры струи плазмы в месте ее взаимодействия с экраном. Перемещение экрана вдоль оси струи позволяло измерять зависимость диаметра струи от расстояния до источника. Профиль температуры на экране сохранялся в неизменном виде в течение ≤ 1 s.

Рис. 1. Схема стенда плазменной пушки с диагностиками: *I* — рельсотрон, *2* — вакуумная камера, *3* — струя плазмы, *4* — подвижный датчик давления, *5* — тепловизор, *6* — подвижный медный экран, *7* — вакуумный затвор.

Частота кадров тепловизора составляла 5 ms. Оценка энергии, выделяемой при столкновении струи с экраном, проводилась по формуле

$$W_{\text{target}} = M \cdot C \cdot T_{\text{mean}},\tag{1}$$

где *M*, *C* и *T*_{mean} — масса, удельная теплоемкость материала и средняя температура нагрева экрана соответственно. Для $C=385 \text{ J}/(\text{kg} \cdot \text{K}), M=S \cdot h \cdot \rho = 0.222 \cdot 10^{-4} \cdot 8930 = 0.0432 \text{ kg}, где S — площадь, <math>h$ — толщина, ρ — плотность экрана, имеем

$$W_{\text{target}} = 0.0432 \cdot 386 T_{\text{mean}} = 16.7 T_{\text{mean}}.$$
 (2)

На рис. 2 представлен лабораторный макет рельсотрона в керамической вакуумной камере, а также тестируемые электроды. Импульсный напуск дейтерия (~ 10^{20} частиц) в ускоритель производился с помощью клапана электродинамического типа в течение ~ $300\,\mu$ s перед началом разряда. Питание рельсотронного ускорителя осуществлялось с помощью емкостного накопителя $160\,\mu$ F, напряжением до 6 kV, током разряда до 120 kA и длительностью импульса ~ $20\,\mu$ s. Выбор максимального рабочего напряжения и тока разряда был обусловлен ограничением поступления примесей с электродов ускорителя.

С целью увеличения ускоряющего магнитного поля рельсотрон был оснащен двумя дополнительными проводниками, расположенными снаружи керамической камеры параллельно электродам ускорителя. Впервые такой рельсотрон уже был успешно применен для ускорения твердых тел [11]. Для эффективного ускорения плазмы длина электродов выбиралась меньше длины внешних проводников и составляла 120 mm. Расстояние между электродами в области напуска газа и на выходе из ускорителя составляли 10 и 20 mm соответственно. В качестве рабочего газа использовался аргон. В ходе исследований было обнаружено, что кинетическая энергия струи практически не зависела от рода рабочего газа. Поэтому в экспериментах применялся также дейтерий, водород и воздух. Ток во внешних проводниках создавался до начала разряда с помощью конденсаторного накопителя емкостью $200 \,\mu$ F, напряжением 5 kV, и позволял увеличить магнитное поле в зазоре между электродами рельсотрона. Разряд в ускорителе зажигался в момент, когда внешнее поле было максимальным.

Результаты исследования

В наших экспериментах проводились измерения параметров плазменной струи, создаваемой источником с импульсной подачей дейтерия в керамическую вакуумную камеру рельсотрона. На рис. 3 представлена зависимость давления плазменной струи от расстояния до источника для различных электродов. Видно, что ускоритель со всеми тестированными электродами генерировал струю с давлением, не превышающим 0.3 MPa. С увеличением расстояния между ускорителем и датчиком от 50 до 400 mm давление значительно уменьшалось с 0.3 до 0.01 MPa. Вероятно, взаимодействие непроводящих стенок керамической камеры рельсотрона с разрядом и образование примесей препятствовали ускорению плазмы.

С целью увеличения кинетической энергии струи плазмы было создано дополнительное магнитное поле в зазоре между электродами с помощью внешних

Рис. 3. Зависимость давления струи от расстояния до источника для различных электродов рельсотрона. Зазор между электродами, указанный в скобках, соответствует началу развития разряда.

Рис. 4. Результаты расчета магнитного поля в рельсотроне с внешними проводниками: *a* — витки 0kA, электроды 100kA; *b* — витки 100kA, электроды 100kA. Расстояние между прямоугольными электродами 20 mm.

проводников с током. Результаты расчета магнитного поля в зазоре между электродами рельсотрона представлены на рис. 4. Видно, что величина поля в зазоре увеличилась с 3 до 5 Т за счет проводников с током, установленных снаружи керамической камеры. Фотография интегрального во времени свечения плазменной струи, облучающей экран, расположенный в камере стенда, представлена на рис. 5, *а*. Виден факел струи и интенсивное свечение в центре экрана. Термограмма, создаваемая потоком плазменной струи на экране спустя 5 ms после облучения, представлена на рис. 5, *b*. Термограмма характеризовала профиль кинетической энергии и давления струи плазмы в месте ее

Рис. 5. *а* — плазменная струя, облучающая экран, расположенный в вакуумной камере; *b* — термограмма, создаваемая потоком плазменной струи на экране спустя 5 ms после облучения; *с* — зависимость температуры экрана от расстояния вдоль выделенного направления, указанного на термограмме: *I* — без внешнего магнитного поля, *2* — с внешним магнитным полем. Расстояние между экраном и ускорителем 970 mm.

взаимодействия с экраном. Максимальная яркость в центре экрана соответствовала максимальной температуре. Видно также, что пятно было аксиально симметрично. Горизонтальная линия показывала направление, вдоль которого измерялась температура экрана, для случаев, когда ток во внешних проводниках составлял 0 и 100 kA соответственно (рис. 5, с). Видно, что при увеличении магнитного поля в зазоре с 3 до 5Т температура в центре экрана увеличилась с 16 до 25°С. Также возросла и его средняя температура с 8 до 12°С. Оценки показали, что при увеличении поля в зазоре выделенная в экране энергия увеличилась со 133.6 до 200.4 J, т. е. с 7 до 10% от полной энергии конденсаторного накопителя. Диаметр пятна на уровне $T_{0.5\,\text{max}}$ составлял $\sim 120\,\text{mm}$ и не зависел от величины магнитного поля. Полученные результаты следует рассматривать как оценку кинетической энергии струи снизу, так как значительная ее доля могла теряться, например, в виде радиационных потерь.

Заключение

Проведены исследования рельсотронного источника плазмы с импульсным напуском газа, различной формой и длиной электродов, а также с дополнительным магнитным полем, создаваемым внешними проводниками с током. Разработана и налажена новая методика измерения поперечного размера и профиля энергии струи с помощью тепловизора. Получены зависимости давления и диаметра струи дейтериевой плазмы от расстояния до ускорителя. На выходе источника была получена плазма с давлением ~ 0.3 MPa. Повышение магнитного поля в зазоре с 3 до 5 Т между электродами с помощью внешних проводников с током позволило увеличить кинетическую энергию струи плазмы примерно в 1.5 раза без увеличения тока разряда.

Список литературы

- [1] Wesson J. Tokamaks. Oxford, 2004. P. 8-9.
- [2] Combs S.K. // Rev. Sci. Instrum. 1993. Vol. 64. N 7. P. 1679– 1698.
- [3] Drobyshevsky E.M., Zhukov B.G., Sakharov V.A. // IEEE. Trans. Magn. 1995. Vol. 31. N 1. P. 299–302.
- [4] Marshall J. // Phys. Fluids. 1960. Vol. 3. P. 134-135.
- [5] Voronin A.V., Hellblom K.G. // Plasma Phys. Contr. Fusion. 1999. Vol. 4. P. 293–302.
- [6] Perkins L.J., Ho S.K., Hammer J.H. // Nucl. Fusion. 1988.
 Vol. 28. N 8. P. 1365–1378.
- [7] Семенов В.К., Спекторов Л.А. // ЖТФ. 1964. Т. 34. С. 853– 860.
- [8] Vasiljeva R.P. et al. // Plasma Phys. Contr. Nucl. Fusion Res. 1969. Vol. 2. P. 39–47.
- [9] ITER Physics Basis. // Nucl. Fusion. 1999. Vol. 39. N 12.
 P. 2391–2469.
- [10] Воронин А.В., Гусев В.К., Герасименко Я.А., Судьенков Ю.В. // ЖТФ. 2013. Т. 83. Вып. 8. С. 36–42.
- [11] Поняев С.А., Резников Б.И., Куракин Р.О., Попов П.А., Жуков Б.Г. // Письма в ЖТФ. 2019. Т. 45. Вып. 2. С. 10–13.