04 Сверхвысокочастотный пробой воздуха, инициированный помещенным на диэлектрической поверхности электромагнитным вибратором

© П.В. Булат,^{1,2} Л.П. Грачев,³ И.И. Есаков,³ А.А. Раваев,³ Л.Г. Северинов³

 ¹ Балтийский государственный технический университет "BOEHMEX" им. маршала Д.Ф.Устинова, 190005 Санкт-Петербург, Россия
² Университет ИТМО, 197101 Санкт-Петербург, Россия
³ АО "Московский радиотехнический институт РАН", 117519 Москва, Россия e-mail: grachev@mrtiran.ru
Поступило в Редакцию 28 ноября 2018 г.

В окончательной редакцию 20 нолоря 2010 г. Принято к публикации 22 января 2019 г.

Описаны экспериментальные исследования возможности инициирования электрического пробоя воздуха в квазиоптическом сверхвысокочастотном (СВЧ) пучке с подкритическим уровнем поля. Пробой инициирован линейным электромагнитным (ЭМ) вибратором, помещаемым в бегущую ЭМ-волну, на обращенной к волновому вектору волны **k** поверхности диэлектрического листа, на его противоположной поверхности и около нее. При этом для исследованных в опытах вариантов проведены теоретические расчеты индуцированного поля в концевых областях вибратора. Численные оценки и результаты экспериментов показали, что помещение вибратора на диэлектрическую поверхность может позволить инициировать пробой воздуха при существенно более подкритическом уровне поля в СВЧ-пучке по сравнению с его помещением в поле бегущей СВЧ-волны.

DOI: 10.21883/JTF.2019.07.47790.409-18

Введение

Для реализации газового электрического разряда в квазиоптическом СВЧ-пучке при сравнительно высоких газовых давлениях р, как правило, первоначально необходимо осуществить электрический пробой газа. Один из способов реализации электрического пробоя газа в СВЧ-пучке с малым уровнем поля заключается в помещении в пучок вдоль вектора его электрической составляющей Е линейного ЭМ-вибратора [1]. Вибратор может быть расположен как в поле бегущей СВЧ-волны, так и над помещенным в ЭМ-пучок плоским металлическим экраном [2]. При наличии экрана вибратор может располагаться как в пучности СВЧ-волны на расстоянии $h = \lambda/4$ от плоскости экрана, где λ — длина волны поля, так и при $h < \lambda/4$. При этом при приближении вибратора к экрану, т.е. при гармонически уменьшающейся величине возбуждающего его поля Е, индуцированное поле $E_{\rm pol}$ на концевых поверхностях вибратора резонансной длины 2L_{rez} существенно возрастает, и вибратор может инициировать пробой газа при существенной подкритичности исходного поля [3]. Здесь под термином критическое поле E_{cr} понимается минимальная величина поля, которая может обеспечить безэлектродный пробой газа в пространственно однородном и непрерывном во времени поле.

"Физика" процесса увеличения *E*_{pol} при расположении вибратора над экраном достаточно ясна. Наличие экрана

подразумевает появление в его объеме на расстоянии h от поверхности экрана фиктивного противофазного вибратора. При этом реальный вибратор начинает меньше переизлучать энергию ЭМ-волны, т.е. падает его эквивалентное сопротивление излучения. В результате растет добротность Q вибратора как эквивалентного колебательного контура. Причем при приближении вибратора к экрану темп роста Q превышает темп падения возбуждающего вибратор поля.

На практике рассматриваются различные варианты применения инициированных ЭМ-вибратором или их системой подкритических СВЧ-разрядов. Например, для поджига потока горючих смесей в прямоточных реактивных двигателях или гиперзвуковых летательных аппаратах [4]. В настоящее время анализируется возможность использования инициированного СВЧ-разряда в схеме сжигания сверхбедных топливных смесей в камерах сгорания микротурбины [5]. При этом газовой горючей смесью заполняется заглушенная на одном конце радиопрозрачная трубка. СВЧ-разряд инициируется вибратором, укрепленным на внутренней поверхности диэлектрической стенки трубки около заглушенного ее конца. Сама трубка помещается вдоль оси СВЧ-пучка, поле которого и обеспечивает зажигание инициированного СВЧ-разряда.

Настоящая работа как раз и посвящена изучению возможности расположенного на диэлектрической поверхности ЭМ-вибратора инициировать газовый электриче-

1017

ский пробой в СВЧ-волне с подкритическим уровнем поля.

1. Численное моделирование

В рамках настоящей работы первоначально было проведено 3D-электродинамическое моделирование. Расчеты проводились в нескольких вариантах. Первоначально в линейно поляризованный СВЧ-пучок с частотой излучения $f = 2.45 \,\text{GHz}$ (длина волны $\lambda = 12.2 \,\text{cm}$) вдоль электрического вектора поля Е помещался линейный ЭМ-вибратор. Он представлял собой металлический пруток диаметром $2a = 1.2 \,\mathrm{mm}$ с полусферически закругленными концами. В процессе моделирования его длина 2L варьировала. В следующем варианте перпендикулярно волновому вектору k пучка помещалась диэлектрическая пластина из технического полиметилметакрилата (плексиглас) толщиной *d* = 4.25 mm. Предварительные измерения дали ее диэлектрические параметры: $\varepsilon = 2.5$ и tg $\delta = 0.01$. При наличии пластины вибратор располагался как на ее поверхности, обращенной к вектору k пучка, так и с противоположной стороны пластины. Анализировалась и ситуация, когда между поверхностью пластины и вибратором имелся небольшой зазор.

Основные результаты моделирования отражены на рис. 1. На рисунке кривая *I* соответствует расположению вибратора в поле бегущей ЭМ-волны. При этом моделирование показало, что ЭМ-поле сконцентрировано в окрестности вибратора симметрично относительно его оси. Максимум поля находится на полюсной поверхности вибратора, примыкающей к его осевой линии. Эта кривая, как и положено [4], имеет резонансный характер. Ее максимум соответствует длине вибратора $2L_{\rm rez} = 55$ mm, что дает отношение $2L_{\rm rez}/(\lambda/2) = 0.9$. Оно совпадает с этим отношением, следующим из работы [4], при значении параметра $\lambda/2a = 100$.

Моделирование показало, что структура поля в окрестности вибратора, расположенного на диэлектри-

Рис. 1. Результаты численного моделирования.

ческой поверхности, практически не зависит от того, на какой стороне пластины находится вибратор. В обоих случаях поле концентрируется в полюсных областях вибратора в зазоре между его концевыми полусферическими поверхностями и поверхностью пластины. Это и иллюстрируют кривые 2 и 3 на рис. 1. Кривая 2 показывает усиление поля на полюсах вибратора в зависимости от его длины, а кривая 3 — в зазоре между примыкающими к поверхности пластины полусферически закругленными поверхностями вибратора и поверхностью пластины. Из них следует, что эти кривые, как и следует, имеют резонансный характер. При этом максимум поля смещен в сторону поверхности диэлектрической пластины.

Численное моделирование показало, что при толщине пластины $d \ll \lambda |\varepsilon|$ качественно и количественно его результаты не зависят от того, с какой стороны находится вибратор. В этом заключается принципиальное отличие исследованной системы от конструкции, состоящей от линейного вибратора, расположенного вблизи металлической пластины. ЭМ-излучение за металлическую пластину просто не проникает. Как и в случае помещения вибратора над металлической поверхностью, поле в полюсных областях вибратора существенно превышает исходное поле. В то же время в случае диэлектрической поверхности вибратор может располагаться непосредственно на ней — без зазора.

На рис. 1, кривая 4 соответствует зависимости от длины вибратора уровня поля в зазоре между вибратором и пластиной при его удалении от пластины на малую величину, равную 0.2 mm. Из сравнения кривых следует, что при удалении вибратора от поверхности пластины его резонансная длина $2L_{rez}$ увеличивается, приближаясь к величине $2L_{rez}$ вибратора, располагающегося в поле бегущей волны. При этом коэффициент усиления поля уменьшается.

Экспериментальная установка, методика выполнения опытов и их результаты

Эксперименты выполнялись на описанной в работе [4] установке с $\lambda = 12.2$ сm. Их схема приведена на рис. 2.

На рисунке условно показан СВЧ-генератор. Генерируемая им СВЧ-волна с частотой f = 2.45 GHz, т.е. $\lambda = 12.2$ сm, мощностью $P_{\text{gen}} \approx 1$ kW и длительностью одиночных импульсов $\tau_{\text{pul}} = 0.2$ s распространяется по заполненному атмосферным воздухом прямоугольному волноводу с размерами поперечного сечения 9×4.5 сm. К волноводу пристыкован рупор в виде усеченной пирамиды длиной 15 сm и максимальным сечением 9×9 сm. Рупор оканчивается прямоугольной призмой с теми же размерами поперечного сечения и высотой 3 сm. Между волноводом и входным сечением рупора расположена радиопрозрачная перегородка, герметизирующая объем

Рис. 2. Схемы экспериментов.

волновода от объема рупора. Рупор излучает в герметичную ЭМ-безэховую рабочую камеру, вертикально вниз линейно поляризованную СВЧ-волну. Излучение падает на СВЧ-поглотитель, поверхность которого отстоит от выходного сечения рупора на размер H = 70 mm. На поглотитель по оси ЭМ-пучка установлена пенопластовая прямоугольная стойка высотой 32 mm и размерами поперечного сечения 35×35 mm. По своей верхней плоскости вдоль вектора Е СВЧ-волны стойка имеет прямоугольный паз с поперечным размером в 1.2 mm и такой же глубиной. В опытах в этот паз симметрично оси ЭМ-пучка может помещаться дюралевый пруток с полусферически закругленными концами диаметром 2a = 1.2 mm и варьируемой длиной 2L. Этот пруток и является ЭМ-вибратором.

В состав установки входит искровой разрядник, расположенный на расстоянии 10 ст оси СВЧ-пучка. Он включается синхронно с СВЧ-импульсом. Его пространственное положение в опытах подбирается так, чтобы ультрафиолетовое (УФ) излучение от искры облучало один из концов прутка-вибратора. Это обеспечивает наличие начальных электронов у поверхности этого конца при включении СВЧ-импульса, что стабилизирует развитие процесса пробоя в случае выполнения необходимых условий по величине возбуждающего пробой поля. Рабочая камера первоначально заполнена атмосферным воздухом и может откачиваться форвакуумным насосом до p = 3.102 Ра. Величина давления в камере фиксируется с точностью $\pm 1.5 \cdot 10^2$ Ра. Контрольные опыты с СВЧ-импульсами показали, что при давлении в камере $p \le 10^3$ Ра, на обращенной к камере поверхности диэлектрической перегородки, отделяющей волновод и излучающий рупор, может развиваться поверхностный СВЧ-разряд, что, естественно, нежелательно. В связи с этим основные опыты при $p \le 10^3$ Ра не проводились.

В опытах при выбранном размере вибратора 2L и заданном его расположении определялось максимальное давление воздуха в камере $p_{\rm br}$, при котором в каждом

СВЧ-импульсе загорался СВЧ-разряд. Разряд надежно фиксировался визуально через оптически прозрачное окно в боковой поверхности рабочей камеры. Для определения $p_{\rm br}$ камера первоначально откачивалась с шагом в $3 \cdot 10^3$ Ра. При регистрации разряда она дозаполнялась воздухом на эти $3 \cdot 10^3$ Ра, а затем откачивалась уже с шагом в $3 \cdot 10^2$ Ра.

Первоначально была опытно определена исходная величина поля СВЧ-пучка E_0 в его области, прилегающей к верхней плоскости пенопластовой стойки. Для этого на нее вдоль E_0 по оси пучка помещался ЭМ-вибратор с размерами 2a = 5.6 mm и 2L = 22.4 mm, т. е. при отношении 2L/2a = 4. В этом случае отношение $E_{pol}/E_0 = 10$ [4]. С этим вибратором СВЧ-разряд начинал загораться около облучаемого УФ-излучением полюса вибратора при $p_{br} = 15 \cdot 10^2$ Ра.

Это экспериментально определенное значение $p_{\rm br}$ позволяет рассчитать величину поля E_0 :

$$E_0 = 42 \cdot p_{\rm br} \cdot \xi / 10; [\rm V/cm].$$
 (1)

В этой формуле произведение

$$42 \cdot p_{\rm br} = E_{\rm cr}; [\rm V/cm] \tag{2}$$

является критическим полем пробоя, т.е. минимальным полем пробоя в случае его пространственной однородности и непрерывности во времени. В формулах (1) и (2), как и во всех дальнейших оценочных формулах, размерность $p - 10^2$ Ра. Формула (2) справедлива при $v_c \gg \omega$, где ω — круговая частота поля, а $v_c = 4 \cdot 10^9 p_{\text{br}}$; 1/s — частота столкновений нарождающихся плазменных электронов с молекулами воздуха [4].

В формуле (1) коэффициент ξ учитывает необходимое увеличение величины пробойного поля по сравнению с $E_{\rm cr}$ при пространственной неоднородности поля, в которой развивается пробой. В рассматриваемом случае величина индуцированного поля при удалении от концевой поверхности вибратора резко падает. В работе [6] этот вариант проанализирован, и в приведенном на рис. 3 графике дана зависимость величины коэффициента ξ от параметра $\eta = 0.84/(a p_{\rm br})$, где размерность $a - {\rm cm}$. В рассматриваемом эксперименте параметр $\eta = 0.2$ и по рис. 3 коэффициент $\xi = 2.6$.

Число 10 в формуле (1) задано соотношением размеров вибратора 2L/2a [4].

Таким образом, в экспериментальных условиях в области, в которой будут проводиться эксперименты, амплитуда электрической составляющей СВЧ-волны $E_0 = 135$ V/cm.

Близость этого оцененного по эксперименту значения E_0 к реальной величине поля можно оценить, рассчитав мощность СВЧ-пучка, распространяющегося по этой области. Предположим, что в этой области, как в ближней зоне излучения, сохраняется волноводный тип волны H_{10} с поперечными размерами, примерно равными поперечным размерам выходного сечения

Рис. 3. Зависимость увеличения величины пробойного поля над величиной критического поля пробоя от степени пространственной неоднородности поля.

излучающего рупора — x = y = 9 ст. В этом случае мощность пучка [7]:

$$P_{\rm MW} = (1/4)(E_0^2/Z_0)xy, [W].$$
 (3)

Здесь $Z_0 = 120\pi$; Ω — волновое сопротивление свободного пространства, размерность E_0 — V/cm, а размерности *x* и *y* — cm. Подстановка в формулу (3) указанных величин дает значение $P_{\rm MW} = 10^3 W = 1$ kW, что совпадает с мощностью $P_{\rm gen}$.

В следующем контрольном эксперименте исследовалась способность линейного ЭМ-вибратора инициировать пробой воздуха в поле бегущей волны. Их результаты можно сравнить с данными, полученными в такой же экспериментальной постановке [4], и результатами расчетов, приведенных в предыдущем разделе настоящей статьи.

В этих опытах в прямоугольный паз в пенопластовой стойке симметрично оси СВЧ-пучка помещался вибратор с 2a = 1.2 mm и первоначальной длиной 2L = 63 mm. Эта длина заведомо больше определенной в оценках резонансной длины вибратора [4]. При этом значении 2L воздух начинал пробиваться при $p_{\rm br} = 15 \cdot 10^3$ Pa. Затем, как указано выше, длина вибратора ступенчато с шагом $\Delta 2L = 1$ mm уменьшалась до 2L = 47 mm и при каждом значении 2L определялось давление $p_{\rm br}$. На рис. 4 нанесены экспериментальные значения $p_{\rm br}$ и аппроксимирующая их обозначенная цифрой I зависимость $p_{\rm br}(2L)$.

Из рис. 4 следует, что отдельные экспериментальные значения p_{br} имеют отклонения от аппроксимирующей их кривой 1. Их величина характеризует степень идентичности экспериментальных условий при варьировании размера 2L.

Из рис. 4 и кривой *1* следует, что резонансная длина вибратора $2L_{rez}$, при которой он инициирует пробой воздуха наибольшего давления, равна 54 mm. В работе [4] приведен график зависимости отношения $2L_{rez}/(\lambda/2)$ от параметра $\lambda/2a$. В нашем случае величина $\lambda/2a = 100$ и из приведенного в [4] графика $2L_{rez}/(\lambda/2) = 0.885$, что дает $2L_{rez} = 54.4$ mm. Экспериментальное значение $2L_{rez}$ кривой I совпало и с его величиной, приведенной выше в разд. 1.

Из кривой *1* на рис. 4 следует, что при $2L_{\rm rez}$ вибратор пробивает воздух при давлении $p_{\rm br\,max} = 36 \cdot 10^3$ Ра. Можно оценить соответствующую ему величину поля на полюсе вибратора. При этих экспериментальных величинах параметр $\eta = 0.04$ и, следовательно, по рис. 3 коэффициент $\xi = 1.35$. Таким образом, рассчитанное по формуле $E_{\rm br} = 42p_{\rm br}$; [V/cm], поле $E_{\rm pol} = 2 \cdot 10^4$ V/cm. Следовательно, при измеренной величине E_0 отношение $E_{\rm pol}/E_0 = 148$. Это значение практически совпало с полученным при численном моделировании значением отношения $E_{\rm pol}/E_0 = 150$.

Проведенные сравнения результатов контрольного эксперимента с имеющимися данными и численными расчетами показали правомерность данной экспериментальной постановки.

В серии основных экспериментов первоначально на пенопластовую стойку симметрично относительно СВЧ-пучка клался лист из оргстекла толщиной 4.2 mm и поперечными размерами 10×10 cm. Для оргстекла, как указывалось, измеренные на рабочей частоте f

Рис. 4. Экспериментальные результаты инициации электрического пробоя воздуха ЭМ-вибратором в квазиоптическом СВЧпучке с подкритическим уровнем поля.

диэлектрическая проницаемость $\varepsilon = 2.5$ и тангенс угла диэлектрических потерь tg $\delta = 0.01$. На этот лист также симметрично оси СВЧ-пучка вдоль вектора E_0 помещался дюралевый ЭМ-вибратор с 2a = 1.2 mm. Его первоначальный размер 2L был равен 52.5 mm. Опыты определили шаг последовательного уменьшения этого размера $\Delta 2L \approx 0.5$ mm.

На рис. 4 нанесены экспериментальные значения pbr при разных значениях 2L. По ним линией 2 построена аппроксимирующая зависимость *p*_{br}(2*L*). В этих опытах разброс экспериментальных значений pbr от аппроксимирующей зависимости был значительным. Это связано со сложностью в последовательных опытах соблюдать относительное расположение вибратора и геометрических параметров, возбуждающего его СВЧ-пучка. Из зависимости 2 следует, что в диапазоне 2L = (47.5 - 48.5) mm в данной экспериментальной постановке вибратор инициирует пробой воздуха и при атмосферном давлении. Резонансная длина вибратора в этом случае $2L_{\rm rez} = 48$ mm, что меньше длины вибратора 2L_{rez} при его помещении в бегущую СВЧ-волну. Выросла и добротность Q резонансной кривой $p_{\rm br}(2L)$ до значения Q = 10. У кривой 1 величина Q = 7.

Таким образом, помещенный на обращенную к СВЧпучку диэлектрическую поверхность резонансный ЭМвибратор инициирует пробой воздуха с подкритичностью поля, существенно большей его подкритичности при помещении вибратора в бегущую ЭМ-волну.

В следующей серии экспериментов ЭМ-вибратор помещался на противоположную поверхность диэлектрического листа. При этом он помещался в паз на верхней плоскости пенопластовой стойки. В этих опытах экспериментальные значения p_{br} имели очень большой и нерегулярный разброс при разных последовательных значениях длины вибратора 2*L*. Основным их результатом является то, что график зависимости $p_{br}(2L)$ практически повторил кривую 2 на рис. 4. Это соответствует выводам численных расчетов.

В следующих экспериментах вибратор по-прежнему располагался с тыльной стороны пластины, но несколько отстоял от нее. Для этого паз в пенопластовой стойке был слегка углублен так, что между нижней поверхностью листа и боковой поверхностью вибратора образовался зазор примерно в 0.1 mm. Длина вибратора варьировала от 2L = 57.5 до 2L = 47 mm. На рис. 4 нанесены и эти экспериментальные значения p_{br} и их аппроксимирующая кривая 3. Из нее следует, что 2L_{rez} в этом случае примерно равна 51.5 mm и лежит посредине ранее определенных 2L_{rez}. Максимальное давление, при котором вибратор инициирует пробой воздуха $p_{\text{br max}} = 48 \cdot 10^2 \,\text{Pa}$, и также лежит посредине ранее определенных *p*_{br max}. Добротность резонансной кривой в этом случае Q = 8.5 также является средней величиной.

Выводы

Таким образом, результаты численного моделирования и подтверждающие их эксперименты показали, что диэлектрическая поверхность в определенном смысле эквивалентна металлической поверхности. Помещение на нее СВЧ-вибратора резонансной длины позволяет инициировать пробой газа в глубоко подкритическом СВЧ-поле. При этом в отличие от металлической поверхности вибратор может непосредственно прилегать к диэлектрической поверхности и при малых потерях СВЧ-энергии в диэлектрике располагаться и на поверхности, противоположной направлению распространения СВЧ-волны.

Полученные результаты позволяют рассматривать варианты применения такого способа инициирования СВЧ-разряда в практических устройствах, например, при разработке схем поджига горючей смеси в гиперзвуковых летательных аппаратах, в камерах сгорания микротурбин и т.п.

Финансирование работы

Работа выполнена при финансовой поддержке Министерства образования и науки Российской Федерации (соглашение № 14.575.21.0148, уникальный идентификатор проекта RFMEFI57517X0148).

Список литературы

- [1] Грачев Л.П., Есаков И.И., Мишин Г.И., Ходатаев К.В. // ЖТФ. 1995. Т. 65. Вып. 7. С. 60–67.
- [2] Александров К.В., Волков А.А., Грачев Л.П., Есаков И.И., Северинов Л.Г. // ЖТФ. 2011. Т. 81. Вып. 3. С. 35–39.
- [3] Грачев Л.П., Есаков И.И., Лавров П.Б., Раваев А.А. // ЖТФ. 2012. Т. 82. Вып. 2. С. 73–78.
- [4] Грачев Л.П., Есаков И.И., Александров К.В., Раваев А.А., Северинов Л.Г., Ходатаев К.В. Газовый электрический разряд в квазиоптическом СВЧ-пучке. М.: АО МРТИ, 2015. 248 с.
- [5] Грачев Л.П., Булат П.В., Есаков И.И., Булат М.П., Волобуев И.А., Упырев В.В. // Problemele Energetiticii Regionale. 2018. Vol. 2. N 37. P. 71–84.
- [6] Грачев Л.П., Есаков И.И., Ходатаев К.В., Цыпленков В.В. // Физика плазмы, 1992. Т. 18. Вып. 3. С. 411–415.
- [7] Лебедев И.В. Техника и приборы СВЧ. М. 1970. 639 с.