20

Спонтанное и вынужденное комбинационное рассеяние света в протиевой и дейтериевой воде *

© В.С. Горелик^{1,2}, Dongxue Bi², Ю.П. Войнов¹, А.И. Водчиц³, В.А. Орлович³, А.И. Савельева²

¹ Физический институт им. П.Н. Лебедева РАН,

119991 Москва, Россия

² Московский государственный технический университет им. Н.Э. Баумана,

105005 Москва, Россия

³ Институт физики им. Б.И. Степанова НАН Беларуси,

220072 Минск, Беларусь

e-mail: gorelik@sci.lebedev.ru

Поступила в Редакцию 20.11.2018 г. В окончательной редакции 12.02.2019 г. Принята к публикации 12.02.2019 г.

Выполнено сопоставление спектров комбинационного рассеяния для различных проб протиевой и дейтериевой воды. Регистрация спектров была проведена с использованием волоконно-оптической методики и малогабаритного спектрометра BWS465-785H. Возбуждение спектров спонтанного комбинационного рассеяния осуществлялось с помощью непрерывного лазера с длиной волны 785 nm. Наблюдались существенные различия низкочастотных спектров комбинационного рассеяния от разных проб воды, объясняемые присутствием структурных изменений и примесей в анализируемых пробах. Зарегистрированы спектры вынужденного комбинационного рассеяния в протиевой и дейтериевой воде при возбуждении пикосекундными лазерными импульсами с длиной волны 532 nm. Обнаружено наличие низкочастотных спутников в спектре вынужденного комбинационного рассеяния, свидетельствующих о структурировании воды, обусловленном формированием кластеров, состоящих из нескольких молекул.

DOI: 10.21883/OS.2019.06.47771.51-19

Введение

Вода является важным компонентом биосферы, структура и молекулярный состав которого играют большую роль в процессах жизнедеятельности биообъектов. Молекулярная структура воды обусловлена строением ее молекул, а также формированием так называемого дальнего порядка, приводящего к образованию микрокластеров и пространственно организованной "сетки" [1-5]. При введении в воду различных объектов в виде растворенных компонентов или частиц, находящихся во взвешенном состоянии, молекулярная структура воды может существенно видоизменяться [6]. Изменение структуры непосредственно отражается на качестве воды, что, в свою очередь, может приводить к различным дисфункциям в живых организмах [7]. Изучение свойств и тестирование качества воды является необходимым условием для нормального здорового существования.

Эффективными средствами анализа молекулярного состава и структуры являются оптические методы, в частности спектроскопия спонтанного и вынужденного комбинационного рассеяния [8–11]. Особый интерес для биосферы представляет дейтериевая вода (D₂O), присут-

ствие которой в организмах приводит к существенным изменениям процессов метаболизма, подавлению ферментативных реакций и клеточного роста [12]. Дейтериевая вода применяется в качестве изотопного индикатора в химии и биологии, а также для обнаружения нейтронов в астрофизике и физике элементарных частиц. Такая вода обладает способностью замедления скорости нейтронных пучков, что имеет большое значение для реализации процессов термоядерного синтеза. Присутствие дейтериевой воды устанавливается в результате анализа соответствующих спектров спонтанного комбинационного рассеяния (СКР) [13]. Новые возможности для исследования физических свойств воды открываются при наблюдении процессов вынужденного комбинационного рассеяния (ВКР) в протиевой и дейтериевой воде.

Ранее спектры СКР в воде изучались в работах [14–18]. При этом исследовалась главным образом область высоких частот ($2800-3500 \text{ cm}^{-1}$). В работах [11,19–22] были обнаружены также комбинационные полосы, соответствующие кластерным модам: трансляциям и либрациям молекул протиевой воды. ВКР в протиевой воде изучалось в работе [23]. При этом анализировались спектры в области высокочастотной полносимметричной моды с частотой 3300 сm⁻¹. Спектры поглощения в дейтериевой воде исследовались в работе [24] в диапазоне частот 4000–8000 сm⁻¹. При этом обнаружились полосы, соответствующие обертонным переходам молекулы D₂O. В работе [25] исследовалось

^{*} The 22nd Annual Conference Saratov Fall Meeting 2018 (SFM'18): VI International Symposium "Optics and Biophotonics" and XXII International School for Junior Scientists and Students on Optics, Laser Physics & Biophotonics, September 24–29, 2018, Saratov, Russia. https://www.sgu.ru/structure/fiz/saratov-fall-meeting/previousconferences/saratov-fall-meeting-2018

ВКР в D₂O при возбуждении наносекундными импульсами второй оптической гармоники лазера Nd:YAG. При этом конкурирующим с процессом ВКР является вынужденное рассеяние Мандельштама-Бриллюэна. Возбуждение ВКР в дейтериевой воде пикосекундными лазерными импульсами было выполнено в работе [26]. При этом длительность импульсов возбуждающего излучения составляла 5-6 рs. Вследствие малой длительности таких импульсов и самофокусировки излучения наблюдаемый спектр ВКР имел вид континуума со слабо выраженным пиком интенсивности на частоте полносимметричного валентного колебания.

В настоящей работе ставилась задача исследования закономерностей в спектрах СКР и ВКР в протиевой и дейтериевой воде в широкой области спектра, включая низкочастотный диапазон. ВКР в протиевой и дейтериевой воде наблюдалось при возбуждении лазерными импульсами длительностью 60 ps, т.е. на порядок превышающими длительность импульсов, используемых в работе [26]. Это обеспечило отсутствие континуализации наблюдаемых спектров вследствие увеличения длительности возбуждающих импульсов по сравнению с работой [26] в соответствии с соотношением неопределенности для энергии-времени.

Методика эксперимента

В качестве объектов исследования нами были выбраны различные пробы протиевой и дейтериевой воды: водопроводная вода, бутилированная вода типа "Шишкин Лес" и вода, отфильтрованная с помощью фильтра "Аквафор Модерн". Проба дейтериевой воды в соответствии с паспортом изготовителя содержала 99% D₂O и 1% Н₂О. Проба воды "Шишкин Лес" является артезианской водой H₂O. Для регистрации спектров СКР использовался полупроводниковый лазер с длиной волны 785 nm со средней мощностью до 420 mW (рис. 1). Анализ спектров СКР в воде проводился с использованием малогабаритного волоконно-оптического спектрометра типа BWS465-785H. Возбуждающее и рассеянное излучение передавалось волоконно-оптической системой к образцу и к детектору сигнала СКР (многоэлементному приемнику).

Для возбуждения ВКР в воде использовалась вторая оптическая гармоника лазера YAG: Nd³⁺ с длиной волны генерации $\lambda = 532$ nm. Такой лазер обеспечивал генерацию в импульсно-периодическом режиме сверхкоротких импульсов (60 ps) с частотой повторений 100 Hz при средней мощности 10–100 mW. Принципиальная схема для исследования ВКР в протиевой и дейтеривой воде приведена на рис. 2.

При этом импульсное лазерное излучение фокусировалось с помощью линзы 3 в кювете с водой, помещаемой в дополнительный резонатор, формируемый диэлектрическими зеркалами 4, 6. Регистрация спектров ВКР осуществлялась для геометрий рассеяния "вперед"

Рис. 1. Схема экспериментальной установки для регистрации спектров СКР в воде; *1* — лазерный источник излучения, *2–4* — линзы, *5, 6* — интерференционные фильтры, *7* — анализируемый образец, *8* — миниспектрометр BWS465-785H, *9* — компьютер.

Рис. 2. Схема экспериментальной установки для регистрации спектров ВКР в воде; 1 — лазерный источник излучения, 2 — поворотное диэлектрическое зеркало, 3, 7, 11 — линзы, 4, 6, 10 — диэлектрические зеркала, 5 — кювета с водой, 8, 12 — спектрометры, 9, 13 — компьютеры.

и "назад" волоконно-оптическими миниспектрометрами *8, 12*, обеспечивающими возможность анализа спектров в широком спектральном диапазоне: 200–1000 nm.

Результаты и их обсужждение

Известно [22], что в спектре СКР воды присутствуют полосы, соответствующие трем фундаментальным типам колебаний молекулы $H_2O: A_1$ -тип, $v_1 = 3450 \text{ cm}^{-1}$

Рис. 3. Вид спектров СКР ($\lambda = 785$ nm) протиевой воды в трех различных пробах (*a*-*c*).

(валентное полносимметричное колебание), A_1 -тип, $v_2 = 1645 \,\mathrm{cm}^{-1}$ (деформационное полносимметричное колебание) и B_1 -тип, $v_3 = 3630 \,\mathrm{cm}^{-1}$ (валентное неполносимметричное колебание). На рис. 3, *a*-*c* представлены спектры СКР в области частот внешних мод и фундаментального колебания типа $v_1(A_1)$ для нескольких проб протиевой воды.

Как видно из сравнения рис. 3, a-c, в области колебания типа $v_2(A_1)$ (полносимметричная деформационная мода) на приведенных спектрах трех проб воды наблюдаются существенные различия. На рис. 3, a в этой области присутствует одиночная полоса, в то время как на рис. 3, b, c наблюдаются две полосы с различными распределениями интенсивности. Кроме того, на всех рис. 3, a-c обнаруживается несколько перекрывающихся полос в области низкочастотного релаксационного

Рис. 4. Вид спектров СКР ($\lambda = 785$ nm) дейтериевой воды при трех режимах регистрации спектрометра (*a*-*c*).

крыла, свидетельствующие о проявлении либрационных мод, обусловленных формированием молекулярных образований (кластеров) [27] в различных пробах воды. В высокочастотной области СКР протиевой воды присутствуют полосы, соответствующие двум типам валентных колебаний: $v_2(A_1)$ (полносимметричная валентная мода) и $v_3(B_1)$ (антисимметричная валентная мода).

На рис. 4, a-c приведены спектры СКР в одной пробе дейтериевой воды при различных режимах регистрации спектрометра. Из этих рисунков видно, что в спектрах СКР дейтериевой воды обнаруживаются три фундаментальные полосы $v_1(A_1)$, $v_2(A_1)$ и $v_3(B_1)$, а также дополнительная структура в низкочастотной области, соответствующая проявлению кластерных либрационных мод и составных тонов вблизи $v_1(A_1)$. Частоты фундаментальных колебаний в спектре СКР дейтериеа

0

b

С

430

-1170

-1000

2630

2000

4000

3421

3420

4000

6000

6807

-2170

-840

-2000

 ν , cm⁻¹

1010

0

 ν , cm⁻¹

Рис. 5. Вид спектров ВКР в протиевой воде при различных интенсивностях лазерной накачки ($\lambda = 532$ nm): $a - I_0 = 5$ rel. units, $b - I_0 = 1$ rel. units, c - нормированные спектры стоксова и антистоксова ВКР в протиевой воде при интенсивности накачки $I_0 = 20$ rel. units.

0

2000

 ν , cm⁻¹

вой воды существенно меньше соответствующих частот компонент СКР протиевой воды, поскольку дейтерий тяжелее водорода, и соответствующие колебания ниже по частоте.

На рис. 5 и 6 приведены спектры ВКР в протиевой и дейтериевой воде соответственно. В протиевой воде в спектре ВКР обнаруживается несколько антистоксовых компонент (рис. 5, a), низкочастотные стоксовы и антистоксовы компоненты (рис. 5, b) и несколько высокочастотных стоксовых компонент, наблюдаемых при большой интенсивности накачки (рис. 5, c). В случае дейтериевой воды также наблюдается несколько стоксовых и антистоксовых компонент (рис. 6, a-c), частоты

Рис. 6. Вид спектров ВКР в дейтериевой воде при различных интенсивностях лазерной накачки ($\lambda = 532 \text{ nm}$); *а* — антистоксово ВКР, *b* — стоксово и антистоксово ВКР, *с* — нормированные спектры стоксова и антистоксова ВКР в дейтериевой воде при большой интенсивности накачки.

которых существенно ниже соответствующих спутников в спектре ВКР протиевой воды.

Многочастотное ВКР осуществляется в результате распада двух квантов возбуждающего излучения на соответствующие стоксовы и антистоксовы компоненты. В этом случае законы сохранения энергии и квазимпульса приобретают вид

$$2\omega_L = \omega_{1S} + \omega_{1A}, \quad 2\mathbf{k}_L = 2\mathbf{k}_{1S} + \mathbf{k}_{1A};$$
$$2\omega_L = \omega_{2S} + \omega_{2A}, \quad 2\mathbf{k}_L = 2\mathbf{k}_{2S} + \mathbf{k}_{2A};$$
$$2\omega_L = \omega_{3S} + \omega_{3A}, \quad 2\mathbf{k}_L = 2\mathbf{k}_{3S} + \mathbf{k}_{3A}.$$

I, arb. units

1.0

0.8

0.6

0.4

0.2

0

3.0

2.5

2.0

1.5

1.0

0.5

0

1.0

0.8

0.6

0.4

0.2

0

I, arb. units

-4000

-3345

-2000

I, arb. units

-4000

-3300

-3000

-3290

2070

-2000

В наблюдаемых спектрах ВКР присутствуют два стоксовых спутника и один антистоксов спутник (рис. 5, cи 6, c). Отметим также, что, кроме основных частот, соответствующих фундаментальной моде $v_1(A_1)$, в спектрах ВКР присутствуют также линии, обусловленные низкочастотными оптическими модами. Таким образом, в отличие от типичных спектров ВКР в спектре ВКР воды при достаточно большой интенсивности возбуждающего лазерного излучения присутствуют спутники, соответствующие различным типам колебаний, а также проявляются четырехфотонные параметрические процессы.

Заключение

Таким образом, установлено, что спектры СКР различных проб воды имеют существенные отличия. Это свидетельствует о наличии примесей и структурных изменений в реальных пробах воды.

Спектры многочастотного ВКР, наблюдаемого при воздействии пикосекундными импульсами, зависят от режима возбуждения. При этом обнаруживаются стоксовы и антистоксовы спутники, соответствующие фундаментальной полносимметричной моде $v_2(A_1)$.

Установлено, что в спектрах как СКР, так и ВКР протиевой и дейтериевой воды проявляются как внутримолекулярные моды молекул воды, так и моды микрокластеров, соответствующие трансляционным и либрационным движениям. Присутствие микрокластерных мод в спектре СКР воды свидетельствует о формировании при определенных условиях квазикристаллической сетки микрокластеров и может служить средством установления степени структурирования воды. Спектры СКР могут быть использованы для диагностики чистоты воды и степени ее структурирования.

Присутствие в спектрах ВКР воды низкочастотных спутников, соответствующих трансляционным и либрационным модам, представляет интерес для фотостимулированного структурирования воды и повышения таким образом степени усвоения протиевой воды организмами.

При наносекундном лазерном возбуждении ВКР в воде формируются когерентные трансляционные и либрационные волны квазикристаллической сетки, а также внутримолекулярные осцилляции ионов в молекулах H₂O или D₂O большой амплитуды.

При пикосекундном возбуждении ВКР в дейтериевой воде интенсивными лазерными импульсами видимого диапазона формируются ударные волны, соответствующие валентной полносимметричной моде, при сохранении температуры других степеней свободы вблизи равновесных значений.

Финансирование работы

Работа выполнена при поддержке РФФИ (гранты № 18-02-00181, 18-32-00259) и China Scholarship Council.

Список литературы

- [1] Захаров С.Д., Мосягина И.В. Препринт. М.: Физ. ин-т им. П.Н. Лебедева, 2011. 24 с.
- [2] Волошин В.П., Желиговская Е.А., Маленков Г.Г., Наберухин Ю.И., Тытик Д.Л. // Журн. Рос. хим. об-ва им. Д.И. Менделеева. 2001. Т. 45. № 3. С. 31.
- [3] Мосин О.В., Игнатов И. // Интернет-журнал "НАУКОВЕ-ДЕНИЕ". 2013. № 3.
- [4] Френкель Я.И. Кинетическая теория жидкостей. Л.: Наука, 1975. 592 с.
- [5] Maheshwary S., Patel N., Sathyamurthy N., Kulkarni A.D., Garde S.R. // J. Phys. Chem. A. 2001. V. 105. N 46. P. 10525.
- [6] Хентов В.Я., Шачнева Е.Ю. Физико-химические процессы в техносфере. Учебное пособие. М.: РУСАЙНС, 2016. 36 с.
- [7] Савостикова О.Н., Стехин А.А., Яковлева Г.В., Михайлова Р.И., Кирьянова Л.Ф. // Гигиена и санитария. 2007. № 6. С. 46.
- [8] Белянчиков М.А., Горелик В.С., Горшунов Б.П., Пятышев А.Ю. // Кристаллография. 2017. Т. 62. № 2. С. 278; Belyanchikov М.А., Gorelik V.S., Gorshunov B.P., Pyatyshev A.Yu. // Crystallography. 2017. V. 62. N 2. P. 278.
- [9] Downesand A., Elfick A. // J. Sensors. 2010. V. 10. N 3. P. 1871.
- [10] Sikirzhytski V., Virkler K., Lednev I.K. // J. Sensors. 2010.
 V. 10. N 4. P. 2869.
- [11] Walrafen G.E. // J. Chem. Phys. 1964. V. 40. P. 3249.
- [12] *Мосин О.В., Игнатов И.* // Вода и водоочистные технологии. 2013. № 2. С. 12.
- [13] Деулин Б.И. // Известия Волгоградского гос. техн. ун-та. 2008. Т. 9. № 47. С. 70.
- [14] Carey D.M., Korenowski G.M. // J. Chem. Phys. 1998. V. 108. N 7. P. 2669.
- [15] Brysev A., Bunkin A., Klopotov R., Krutyanskii L., Nurmatov A., Perchin S. // Opt. Spectrosc. 2002. V. 93. N 2. P. 282.
- [16] Perchin S. // Opt. Spectrosc. 2004. V. 96. N 2. P. 811.
- [17] Burikov S., Dolenko T., Fadeev V. // Research Lett. in Optics. 2008. V. 2008. N 2. P. 4.
- [18] Hafizi B., Palastro J.P., Penano J.R., Gordon D.F., Jones T.G., Helle M.H., Kaganovich D. // Opt. Lett. 2015. V. 40. Iss. 7. P. 1556.
- [19] Rahn O., Maier M., Kaiser W. // Opt. Commun. 1969. V. 1. P. 109.
- [20] Gorelik V.S. // J. Russian Laser Research. 1999. V. 20. P. 152.
- [21] Gorelik V.S., Kudryavtseva A.D., Orlovich V.A., Tcherniega N.V., Vodchits A.I., Voinov Yu.P. // Nonlinear Phenomena in Complex Systems. 2012. V. 15. P. 360.
- [22] Горелик В.С., Свербиль П.П. // Оптическая спектроскопия и стандарты частоты. Молекулярная спектроскопия. / Под ред. Синица Л.Н., Виноградов Е.А. 2004. С. 85.

- [23] Водчиц А.И., Войнов Ю.П., Горелик В.С., Кудрявцева А.Д., Орлович В.А., Чернега Н.В. // Краткие сообщения по физике. 2013. Т. 40. № 12. С. 3; Vodchits A.I., Voinov Yu.P., Gorelik V.S., Kudryavtseva A.D., Orlovich V.A., Tcherniega N.V. // Bulletin of the Lebedev Physics Institute. 2013. V. 40. N 12. P. 329.
- [24] Workman Jr.J., Weyer L. Practical Guide and Spectral Atlas for Interpretive Near-infrared Spectroscopy. London: Taylor and Francis Group, 2013. 320 p.
- [25] Li Z., Li Z., Zhou M., Wang Y., Men Z., Sun C. // Opt. Lett. 2012. V. 37. P. 1319.
- [26] Penzkofer A., Beidoun A., Lehmeir H.J. // Opt. and Quant. Electron. 1993. V. 25. P. 317.
- [27] Зацепина Г.Н. Свойства и структура воды. М.: Изд-во МГУ, 1974. 168 с.