13.2

Автоэмиссия многоострийных катодных матриц на кремнии *p*-типа в сильных импульсных электрических полях

© Р.К. Яфаров

Саратовский филиал Института радиотехники и электроники им. В.А. Котельникова РАН, Саратов, Россия E-mail: pirpc@yandex.ru

Поступило в Редакцию 31 января 2019 г. В окончательной редакции 31 января 2019 г. Принято к публикации 5 февраля 2019 г.

Экспериментально исследованы динамические свойства автоэлектронной эмиссии в сильных импульсных электрических полях микросекундной длительности для многоострийных катодных матриц, изготовленных на основе поверхностно модифицированных кристаллов кремния дырочного типа. Показано, что уменьшение порогов начала автоэмиссии с увеличением длительности импульсов увеличивает прозрачность потенциальных барьеров за счет увеличения энергии электронов. Параметры автоэмиссии определяются дипольными моментами поверхностей и встроенными поверхностными потенциалами, которые формируются при плазменном травлении кремния в различных химически активных средах.

DOI: 10.21883/PJTF.2019.09.47702.17721

Развитие вакуумной микроэлектроники в настоящее время во многом определяется возможностями увеличения частотного диапазона работы полевых источников электронов, используемых при создании активной элементной базы, и снижением времени готовности, которое характеризуется длительностью выхода параметров автоэмиссии на стационарный режим функционирования. Одним из наиболее привлекательных материалов для полевых источников электронов вакуумной микроэлектроники остается кристаллический кремний [1,2]. В первую очередь это обусловлено развитой технологической базой, а также обнаруженными люминесцентными свойствами нанокристаллического кремния, которые позволяют надеяться на создание в будущем сверхбыстродействующих радиационно-стойких кремниевых интегральных схем с оптической связью [3,4].

Целью настоящей работы является исследование эмиссионной способности в сильных импульсных электрических полях наноструктурированных кремниевых катодных матриц, модифицированных с использованием плазмохимической обработки в различных химически активных средах.

Получение поверхностно наноструктурированных кремниевых катодных матриц проводилось в вакуумной установке с использованием СВЧ ионно-плазменного источника, описанного в работе [5]. Мощность СВЧ-излучения и индукция магнитного поля, соответствующая возникновению в зоне газового разряда электронно-циклотронного резонанса, составляли 250 W и 875 G соответственно. Давление рабочих газов в процессе плазменной обработки было равно 0.1 Ра и обеспечивало выполнение условий электронно-циклотронного резонанса, при котором степень ионизации плазмы составляла $\sim 5\%$ [5]. В качестве рабочих газов для травления пластин кремния, пассивированных тонкой пленкой естественного окисла, использовались хладон-14 и

аргон. Величины ускоряющих напряжений в процессах плазменного травления были фиксированными и составляли -100 V. Исследовались автоэмиссионные свойства кристаллов кремния КДБ (0.01-0.02) ориентации (100). Процесс их поверхностного наноструктурирования осуществлялся в одном технологическом цикле по методике, изложенной в работах [6,7]. Поверхностная плотность и высота острий наноструктурированных поверхностей кристаллов кремния составляли соответственно $\rho \approx (3-5) \cdot 10^{10} \, {\rm cm}^{-2}$ и $h \approx 7-10 \, {\rm nm}$. Исследования автоэмиссионных свойств проводились в условиях высокого вакуума (10⁻⁵ Ра) на диодной структуре, способной изменять расстояние между электродами с точностью до 1 µm. Расстояние между анодом и катодной структурой 20 µm. Диаметр рабочей поверхности анода, изготовленного из углеродного материала МПГ-6, составлял 3 mm. Исследовано влияние длительности импульсов (10, 30, 50 µs) и амплитуды напряжений (от 10 V до 3.5 kV) при различных частотах повторения импульсов на порог начала автоэмиссии, автоэмиссионные токи и длительности установления стационарных режимов при импульсном воздействии сильных электрических полей. Пороги начала автоэмиссии определялись по напряженности электрического поля, при которой токи автоэмиссии составляли 5 µА. Длительность импульсных воздействий составляла 5 и 10 min.

На рис. 1–3 приведены зависимости порогов и токов автоэмиссии от длительности импульсов анодных напряжений, а также амплитуд автоэмиссионных токов от количества импульсов анодных напряжений различной длительности при напряженности поля, превышающей порог автоэмиссии на $10 \text{ V}/\mu \text{m}$, для кристаллов кремния с плазменной обработкой в различных химически активных средах. Из экспериментальных данных следует, что при плазменной обработке в среде аргона с увеличением длительностей импульсов пороги начала авто-

Рис. 1. Зависимости порогов (1) и токов автоэмиссии (2) при напряженности поля, превышающей порог автоэмиссии на 10 V/µm, от длительности импульсов анодных напряжений для кристаллов кремния с плазменной обработкой в различных химически активных средах. *a* — Ar, *b* — CF₄.

эмиссии монотонно уменьшаются от 112 до $103 \text{ V}/\mu\text{m}$ с одновременным увеличением автоэмиссионных токов от 0.1 до 0.3 mA (рис. 1, *a*). При длительных импульсных воздействиях анодных напряжений амплитуды автоэмиссионных токов практически мгновенно выходят на стационарный уровень для всех длительностей импульсов (рис. 2).

Для кристаллов, обработанных в плазме CF₄, характеры изменения порогов начала автоэмисси и автоэмиссионных токов в зависимости от длительностей импульсов такие же, как при обработке в плазме аргона (рис. 1, *b*). Однако при обработке в плазме хладона-14 пороги автоэмиссии значительно меньше, а токи выше. При долговременных испытаниях с короткими длительностями импульсов наблюдается небольшое уменьшение огибающих амплитуд анодных импульсов. При длительностях импульсов более 30μ s амплитуды автоэмиссионных токов не зависят от длительности испытаний (рис. 3).

Одинаковые тенденции уменьшения порогов начала автоэмиссии и рост автоэмиссионных токов для обоих видов плазменной обработки при увеличении длительности импульсов электрических полей свидетельствуют, согласно представлениям Фаулера и Нордгейма [8], о возрастании прозрачности потенциальных барьеров. Причиной этого является увеличение собственной (кинетической) энергии туннелирующих электронов с ростом длительности импульсов электрических полей. Различие в абсолютных значениях порогов начала автоэмиссии и автоэмиссионных токов может быть объяснено различием встроенных поверхностных потенциалов и дипольных моментов эмитирующих поверхностей, которые формируются при плазменном травлении кристаллов кремния в различных химически активных средах [7,9].

При использовании низкоэнергетической плазмы аргона травление осуществляется по ионно-физическому механизму за счет распыления атомов кремния и частиц его естественного окисла ускоренными ионами. Благодаря инертности аргона химические связи с поверхностными атомами кремния не образуются. В результате такой обработки поверхность кремния приобретает структуру и плотность оборванных (ненасыщенных) связей, характерных для атомно-чистой поверхности кремния заданной кристаллографической ориентации [10]. Поверхностные атомы кремния, имеющие ненасыщенную химическую связь, действуют как дырочные ловушки, заряжаясь положительно при отдаче электронов в зону проводимости полупроводника и/или при их туннелировании в бомбардирующий ион аргона, когда их электронные волновые функции перекрываются. Это приводит к ухудшению проводимости приповерхностного слоя и образованию в нем трехвалентного кремния с положительным зарядом.

При плазмохимическом травлении кремния в CF₄ химически активными частицами являются ионы C⁺, CF_n⁺, где n = 1...4, а также радикалы CF_n и нейтральные атомы фтора, которые при хемосорбции образуют адкомплексы Si-C и Si-F [5]. Хемосорбированные комплексы SiC и SiF имеют сильные энергии химической связи (4.55 и 5.6 eV соответственно), которые превышают энергию химических связей атомов кремния (3.38 eV), и пассивируют часть оборванных (ненасыщенных) химических связей поверхностных атомов кремния, уменьшая их поверхностную плотность.

Формирование ненасыщенных электронных связей при плазмохимическом травлении приводит к образованию на поверхности кремния встроенного положительного заряда, поверхностная плотность которого выше в случае использования плазмы аргона. Вследствие этого при обработке в плазме хладона-14 уменьшаются (по сравнению с таковыми при обработке в плазме аргона) величина приповерхностного электрического поля, направленного в объем полупроводника, а также степень обеднения приповерхностной области кремния основными носителями. Это приводит к уменьшению порогов "включения" проводимости и полевой эмиссии. При одинаковой величине внешнего электрического поля

Рис. 2. Зависимость амплитуд анодных токов от количества импульсов с длительностью $10\,\mu$ s для кристаллов *p*-типа, обработанных в плазме аргона.

Рис. 3. Зависимости амплитуд автоэмиссионных токов от количества импульсов анодных напряжений длительностью 10 (1) и 50 μ s (2) при напряженностях поля, превышающих порог автоэмиссии на 10 V/ μ m, для кристаллов кремния с плазменной обработкой в среде CF₄.

автоэмиссионный ток катодной матрицы, обработанной в плазме хладона-14, увеличивается (рис. 1). Однако это увеличение не является достаточно существенным, как это следовало бы ожидать из снижения порогов начала автоэмиссии и представлений Фаулера и Нордгейма. Причиной этого является высокая электроотрицательность атомов фтора, которые увеличивают дипольный момент эмитирующих центров из-за присутствия на поверхности кремния диполей Si-F [9]. Влияние дипольного момента эмитирующей поверхности обнаруживается при увеличении длительности импульсов анодных напряжений: из-за увеличения кинетической энергии электронов в сильных импульсных электрических полях уменьшается длительность их кулоновского взаимодействия с поверхностными диполями. Это способствует ускоренному росту автоэмиссионных токов и более сильному уменьшению порогов автоэмиссии при длительностях импульсов более 30 µs (рис. 1).

В процессе полевой эмиссии одновременно осуществляется динамическая нейтрализация поверхностных ловушек захвата дрейфующими к поверхности под действием импульсов анодного напряжения электронами. При плазменной обработке кристаллов кремния в среде аргона их заполнение осуществляется достаточно быстро и выражается в практически мгновенном выходе на стационарный режим огибающих амплитуд анодных напряжений уже при длительности импульсов около 10 µs (рис. 2). При плазмохимической обработке кристаллов кремния в среде хладона-14 уменьшение огибающих амплитуд анодных импульсов в процессе долговременных испытаний с короткими длительностями импульсов, вероятнее всего, обусловлено увеличением суммарного дипольного момента эмиссионной поверхности. Увеличение происходит в результате адсорбции электронов в поверхностных ловушках захвата и ослабления за счет этого кулоновского взимодействия между зарядами, образующими диполи Si-F. При длительностях более $30 \, \mu s$ увеличиваются собственная энергия и прозрачность потенциальных барьеров для туннелирующих электронов. Благодаря этому в процессе долговременных испытаний амплитуды автоэмиссионных токов увеличиваются, а их выход в стационарный режим происходит практически мгновенно (кривая 2 на рис. 3).

Финансирование работы

Исследование выполнено за счет гранта Российского научного фонда (проект № 16-19-10033).

Список литературы

- Marcus R.B., Ravi T.S., Gmitter T. // Appl. Phys. Lett. 1990.
 V. 56. N 3. P. 236–238.
- [2] Velásquez-García L.F., Guerrera S., Niu Y., Akinwande A.I. // IEEE Trans. Electron Dev. 2011. V. 58. N 6. P. 1783–1791.
- [3] Герасименко Н.Н., Пархоменко Ю.Н. Кремний материал наноэлектроники. М.: Техносфера, 2007. 352 с.
- [4] Успехи наноинженерии: электроника, материалы, структуры / Под ред. Дж. Дэвиса, М. Томсона. М.: Техносфера, 2011. 496 с.
- [5] Яфаров Р.К. Физика СВЧ вакуумно-плазменных нанотехнологий. М.: Физматлит, 2009. 216 с.
- [6] Яфаров Р.К., Шаныгин В.Я. // ФТП. 2017. Т. 51. В. 4. С. 558–562.
- [7] Яфаров Р.К. // ФТП. 2019. Т. 53. В. 1. С. 18–25.
- [8] Fowler R.H., Nordheim L. // Proc. Roy. Soc. London. A. 1928.
 V. 119. N 781. P. 173–181.
- [9] Яфаров Р.К. // Письма в ЖТФ. 2018. Т. 44. В. 13. С. 68-74.
- [10] Оура К., Лифшиц В.Г., Саранин А.А., Зотов А.В., Катаяма М. Введение в физику поверхности. М.: Наука, 2006. 490 с.