11,14

Исследование кинетики твердофазного перехода в тетракозане С₂₄Н₅₀ методом высокоразрешающей синхротронной рентгеновской порошковой дифракции

© В.А. Марихин¹, П.В. Дороватовский², Я.В. Зубавичус³, М.В. Байдакова¹, Е.М. Иванькова⁴, Л.П. Мясникова¹

 ¹ Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия
² НИЦ "Курчатовский Институт", Москва, Россия
³ Институт катализа СО РАН, Новосибирск, Россия
⁴ Институт высокомолекулярных соединений РАН, Санкт-Петербург, Россия
E-mail: V.Marikhin@mail.ioffe.ru

Поступила в Редакцию 15 января 2019 г. В окончательной редакции 15 января 2019 г. Принята к публикации 15 января 2019 г.

Методом малоугловой рентгеновской дифракции при использовании синхротронного рентгеновского излучения на исследовательской установке "БЕЛОК" Курчатовского источника синхротронного излучения в НИЦ "Курчатовский институт" показано, что твердофазный переход I рода в тетракозане $C_{24}H_{50}$ развивается по гетерогенному механизму в узком температурном интервале $\Delta T \sim 1 \,\mathrm{K}$ в соответствии с теорией размытых фазовых переходов.

Работа выполнена при финансовой поддержке Программы Президиума РАН № 32 "Наноструктуры: физика, химия, биология, основы технологий" и Российского фонда фундаментальных исследований (код проекта 16-03-00493А) с использованием оборудования УНУ "Курчатовский источник синхротронного излучения".

DOI: 10.21883/FTT.2019.06.47698.355

1. Введение

Длинноцепочечные молекулярные кристаллы (ДМК) различной природы (н-алканы и их производные н-алкано-спирты, н-карбоновые кислоты и т.п.) благодаря возможности получения их с очень высокой степенью химической чистоты и, как следствие, монодисперсности молекулярной массы (99.9%), а также отсутствия структурных и конформационных дефектов представляют значительный интерес для решения многих дискуссионных вопросов физики полимеров, в частности, развития количественных моделей описания фазовых переходов.

В настоящее время органические ДМК рассматриваются как перспективные материалы с изменяющейся фазой (Phase Change Materials, PCM) для решения практических задач поглощения, хранения и преобразования потоков тепловой энергии за счет собственных термически инициируемых фазовых переходов (ФП) в циклах нагревания — охлаждения [1].

Среди ДМК большой интерес представляют наиболее простые по химическому строению и устойчивые к внешним воздействиям н-алканы $CH_3(CH_2)_nCH_3$ с различной длиной цепи ($17 \le n \le 40$), т.к. они могут использоваться в качестве РСМ в температурной об-

ласти от -40 до +80°С, крайне важной для создания комфортабельных условий жизнедеятельности людей в экстремальных условиях.

Изучение ФП в н-алканах проводилось многими исследователями при использовании практически всех современных физических методов [см. [2–4] и приведенные в них ссылки на оригинальные публикации].

Одним из эффективных методов является дифференциальная сканирующая калориметрия (ДСК) [5,6], позволившая обнаружить, что в ДМК при нагревании переход из твердого состояния в расплав и из расплава в твердое состояние осуществляется специфическим образом, а именно, в два этапа, которым соответствуют два эндо- или экзо- термических пика теплоемкости (C_p), разнесенных на несколько градусов Кельвина по температурной шкале.

При использовании специальных методических подходов методом ДСК выявлена природа наблюдаемых ФП: первый, низкотемпературный, пик при $T_{s-s} < T_m$ соответствует твердофазному переходу І рода (ФП-І), связанному с изменением типа симметрии кристаллической структуры. Следующий за ним более высокотемпературный пик C_p соответствует фазовому переходу второго рода (ФП-ІІ) типа порядок — беспорядок, сопровождающийся плавлением образца [5,6]. Оказалось, что переход ФП-I в ДМК, в отличие от низкомолекулярных соединений, происходит в достаточно широком температурном интервале — полуширина пика теплоемкости составляет $\Delta T \leq 1$ К. Такие переходы получили название "размытых Λ - образных фазовых переходов I рода" [7,8].

В настоящее время для анализа подобных переходов развита теория самосогласованного поля [7,8]. Тот факт, что переход в ДМК становится размытым, означает, что изменение фазового состояния кристалла происходит не внезапно во всем объеме (как, например, гомогенный переход в металлах при плавлении, т.е. при $\Delta T \sim 0 \,\mathrm{K}$), а по гетерогенному механизму путем возникновения флуктуационных нанозародышей новой фазы на дефектах различной природы. Постепенное увеличение объема новой фазы осуществляется дискретно за счет движения возникшей межфазной границы путем добавления в нее новых устойчивых элементарных нанозародышей объемом ω . Оказалось, что объемы подобных специфических нанозародышей по данным ДСК достигают $\omega \approx 100$ -200 nm³ и могут содержать до нескольких сотен молекул рассматриваемых ДМК [5,6].

В ряде рентгенодифракционных работ при исследовании начального и конечного состояний при ФП-I было показано, что происходит изменение кристаллографической симметрии как основных, так и субъячеек [9–11], однако, в этих работах не исследовалась кинетика структурных трансформаций при фазовых переходах.

Методами оптической и электронной микроскопии установлено [12,13], что ДМК макроскопических размеров состоят из протяженных стопок наслоенных друг на друга тонких пластинчатых (ламелярных) нанокристаллов, толщина которых (единицы nm) сопоставима с длиной молекул ДМК. Трехмерноупорядоченные кристаллические сердечники отдельной ламели образованы короткими транс-последовательностями метиленовых CH₂-групп за счет слабых ван-дер-ваальсовых сил.

Чередующиеся прослойки меньшей плотности между соседними ламелями в стопках включают две контактирующие между собой концевые группы молекул, в случае н-алканов, это метильные CH₃-группы, также взаимодействующие за счет сил Ван-дер-Ваальса.

Рентгенодифракционные исследования в области больших и малых углов дифракции позволяют выявить характер взаимного расположения молекул в кристаллических сердечниках отдельных ламелей, а также особенности укладки ламелей друг относительно друга.

В ДМК рассматривают два типа кристаллографических ячеек:

1) основную ячейку (main cell), характеризующую способ укладки ламелей друг относительно друга в стопках [14,15], и

2) субъячейку (sub-cell), описывающую характер укладки молекул в кристаллических сердечниках индивидуальных ламелей [14,16,17].

В зависимости от типа ДМК и условий кристаллизации как основные, так и субъячейки могут быть триклинными, орторомбическими, моноклинными или гексагональными, но при этом не обязательно одной и той же симметрии одновременно, поскольку во всех ДМК, содержащих четное число атомов углерода в цепи, молекулы в сердечниках ламелей расположены под некоторым углом к базовым плоскостям из концевых групп, тогда как при нечетном числе — молекулы расположены перпендикулярно базовым плоскостям. Параметры субьячеек определяют на основании анализа большеугловых рентгенограмм, тогда как сведения о типе основной ячейки обычно получают при сопоставлении больше- и малоугловых рентгенодифракционных данных с учетом геометрических размеров молекул.

Экспериментальные данные о типе субъячеек можно получить также при анализе ИК-спектров поглощения, поскольку частоты ряда фундаментальных колебательных мод от протяженных метиленовых транспоследовательностей зависят от симметрии субъячеек [18–20]. Важные сведения о строении межламеллярных прослоек получают также при анализе специфических ИК-полос поглощения, соответствующих колебательным модам концевых групп, в случае н-алканов, CH₃ группам.

Методом ИК-Фурье спектроскопии на примере тридекановой кислоты $CH_3(CH_2)_{11}COOH$ мы показали [21], что действительно при ФП-I происходит флуктуационное возникновение наноразмерных зародышей новой фазы и их последующее постепенное распространение на весь объем прежней фазы в узком (около *DeltaT* ≈ 1 K) температурном интервале.

В этой связи представляется крайне важным изучить кинетику развития $\Phi\Pi$ -I в н-алкане $C_{24}H_{50}$ с помощью интенсивного пучка синхротронного рентгеновского излучения, позволяющего существенно уменьшить время экспозиции для получения одновременно больше- и малоугловых дифрактограмм. Эти исследования позволят проследить за трансформацией структуры н-алканов при $\Phi\Pi$ -I на двух уровнях:

1) особенности взаимной укладки наноламелей друг относительно друга в стопках — трансформация большепериодной структуры (малоугловые рефлексы) и изменения параметров основной ячейки (большеугловые рефлексы).

2) изменение симметрии субъячеек при ФП-I, связанные с трансформацией параметров субъячеек.

В данной статье будут рассмотрены особенности изменения взаимного расположения наноламелей в стопках в области $\Phi\Pi$ -I в процессе нагревания н-тетракозана $C_{24}H_{50}$.

2. Экспериментальная часть

Исследовались образцы монодисперсного (чистотой 99.9%) тетракозана $C_{24}H_{50}$ фирмы Sigma–Aldrich. По термограммам, полученным с помощью калориметра DSC-6100 фирмы "Seiko" (Япония), определяли положения максимумов пиков теплоемкости при ФП-1 и ФП-2 [6].

Рентгенодифракционные исследования проводились при использовании интенсивного синхротронного излучения с $\lambda = 0.962593$ Å на установке "БЕЛОК" Курчатовского источника синхротронного излучения в НИЦ "Курчатовский институт" в геометрии "съемка на просвет". Сечение рентгеновского пучка составляло 0.4×0.4 mm, поток фотонов на образце достигал примерно $10^{11} - 10^{12}$ photon/mm², что позволяло в нашем случае накапливать нужную интенсивность для записи дифрактограмм за 10 min. Регистрация дифрактограмм одновременно в области больших и малых углов дифракции (расстояние образец-детектор составляло 80.5 mm) осуществлялась с помощью двумерного ССД-детектора Rayonix SX-165 (2048 × 2048 пикселей). Обработку полученных двумерных рентгенограмм проводили с помощью программы Fit2D при 360- градусном азимутальном усреднении интенсивностей рефлексов.

Исследовались поликристаллические образцы $C_{24}H_{50}$, помещенные в кварцевый капилляр с наружным диаметром 0.2 mm и толщиной стенок 10 mkm производства фирмы "Hampton Research" (США).

Образцы готовились следующим образом: небольшая навеска порошка $C_{24}H_{50}$ с помощью пинцета помещалась в расширенную часть на конце капилляра и затем осторожно нагревалась в потоке теплого воздуха до температуры плавления тетракозана (около 60° C). Расплав тетракозана медленно затекал в капилляр и затем кристаллизовался при охлаждении на воздухе до комнатной температуры.

Далее капилляр тщательно устанавливался в однокружном гониометре установки "Белок" и при получении порошковых дифрактограмм непрерывно вращался вокруг своей оси со скоростью 2 оборота в min.

Для изучения структурных трансформаций при фазовых переходах проводился ступенчатый нагрев образца в капилляре от комнатной температуры T_{room} до $T > T_m$ (температуры плавления) с помощью низкотемпературной приставки Oxford Cryo Jet, позволяющей регулировать температуру потока нагретого азота с точностью ± 0.1 К. Нагрев образца от T_{room} до температуры вблизи ФП-1 (около T = 320 К) и после прохождения ФП-1 до T_m и выше (321-326 К) осуществлялся с пошаговым повышением температуры на $\Delta T = \pm 2$ К. В области ФП-1 (от T = 320 К до T = 321 К) величина пошагового повышения температуры составляла $\Delta T = 0.2$ К. Во всем температуры проводилась запись дифрактограммы в течение $\tau = 10$ min.

3. Результаты и их обсуждение

На рис. 1 приведены некоторые характерные выборочные дифрактограммы для $C_{24}H_{50}$, полученные при различных температурах: 300 K(*a*), 320.6 K (*b*), 320.8 K (*c*), 320.8 K (*d*), 321 K (*e*), 322 K (*f*), 323 K (*g*) и 325 K (*h*).

Представленные рентгенограммы показывают, что в процессе нагревания тетракозана происходят существенные изменения дифракционной картины, обусловленные

изменениями как симметрии субъячеек в кристаллических сердцевинах ламелей (большеугловые рефлексы), так и изменения взаимного расположения ламелей друг относительно друга (малоугловые рефлексы).

В данной статье мы рассмотрим особенности трансформации малоугловых рефлексов во всем исследованном температурном диапазоне. Анализ данных об изменениях дифракционной картины в больших углах готовится к печати.

На рис. 2 приведены зависимости интенсивности малоугловых рефлексов нескольких порядков дифракции для C24H50 при комнатной температуре. Прежде всего можно отметить, что в исходных образцах, закристаллизованных при $T_{\text{гоот}}$, возникают весьма регулярные и протяженные стопки из единичных ламелей н-алкана, поскольку удается наблюдать по крайней мере шесть порядков дифракции (остальные возможные порядки дифракции невозможно выделить на фоне интенсивных большеугловых рефлексов).

На рис. 3 представлены температурные изменения положения и интенсивности малоугловых рефлексов (два порядка) при варьировании температуры от T = 300 K до T = 323 K.

На малоугловых 2D-дифрактограммах (рис. 1) видно, что в процессе приготовления образцов при течении расплава $C_{24}H_{50}$ в узком капилляре (внутренний диаметр около 0.18 mm) возникает заметная текстура вдоль оси капилляра в ориентации многочисленных, возникающих при кристаллизации стопок из ламелей, поскольку обнаруживается азимутальное разбиение наблюдаемых малоугловых дифракционных колец на отдельные дуги.

Значения "больших" периодов D_{00l} , рассчитанные для всех наблюдаемых порядков дифракции при разных температурах от T = 300 K до T = 323 K, приведены в таблице.

Можно отметить, что радиальные полуширины всех порядков малоугловых рефлексов (FWHM) при этом оказались практически одинаковыми и небольшими, от 0.19° до 0.23°, что свидетельствует о достаточно большом количестве ламелей в стопках и их регулярном расположении друг относительно друга.

Из таблицы следует, что при нагревании $C_{24}H_{50}$ вплоть до T = 320.2 K образовавшиеся при T_{crvst} = 300 К стопки ламелей в значительной степени сохраняют свою регулярность, так как при всех температурах наблюдается до шести порядков дифракции. Можно отметить лишь незначительное увеличение значений "большого" периода — на $\Delta D_{00l} \leq 0.02 - 0.03$ nm (если принимать во внимание лишь первые порядки дифракции, положение больших порядков — менее достоверное). Это незначительное увеличение параметра повторяемости вдоль направления укладки стопок D₀₀₁ может быть связано с обычным тепловым расширением.

Иная картина наблюдается в области ФП-1. Из данных таблицы и рис. 4 следует, что в узком температурном интервале от T = 320 K до T = 321 K наблюдается одновременное сосуществование двух значений больших

Рис. 1. Двумерные рентгенограммы тетракозана, полученные при различных температурах: 300 К (*a*), 320.6 К (*b*), 320.8 К (*c*), 321 К (*d*), 323 К (*e*), 325 К (*f*).

Температура,	L, Å				
K	002	003	004	005	006
300	30.3247	30.31602	30.34	30.3244	30.32046
309	30.3247	30.31602	30.272	30.3064	30.29046
316	30.39196	30.36864	30.31844	30.3122	30.31446
320	30.41876	30.30495	30.32136	30.30145	30.26484
320.2	30.37762	30.29649	30.2836	30.28205	30.27294
320.4	32.7427 30.338	30.38397	30.2836	30.29945	30.31644
320.6	32.84536	32.78235	30 261 52	30 2 5 9 8 5	
520.0	30.35636	30.27453	50.20152	50.25705	
320.8	32.92518	32.78373	32.7024		
321	32.853	32.89665	32.75984		
323	32.8714	32.86335	32.7116		

Значения больших периодов для малоугловых пиков до и после фазового перехода

периодов: 1) $D - 1 \sim 3.04$ nm — значения большого периода в исходных закристаллизованных образцах, и 2) $D - 2 \sim 3.28$ nm — новые значения большого периода (до четырех порядков дифракции), появившиеся в области ФП-1 и сохраняющиеся вплоть до T = 323 K. На рис. 5 представлено изменение соотношения интенсивностей этих двух рефлексов в области ФП-1.

Вышеприведенные малоугловые рентгенодифракционные данные показывают, что действительно при твердофазном структурном переходе I рода происходит флуктуационное возникновение наноразмерных зародышей новой фазы и постепенное увеличение объема новой фазы за счет "съедания" исходной по мере развития фазового перехода в температурном интервале $\Delta T \approx 1$ K,

Рис. 2. Малоугловая дифрактограмма тетракозана при T = 300 K.

Рис. 3. Температурные зависимости интенсивности малоугловых рефлексов 002 и 003 в тетракозане в области температур от T = 300 K до T = 323 K.

Рис. 4. Температурные зависимости значений малоугловых больших периодов в тетракозане в области температур от T = 300 K до T = 323 K.

Рис. 5. Соотношение площадей малоугловых пиков для гексагональной и триклинной фаз в области фазового перехода I рода в тетракозане.

как это и рассматривается в теории размытых фазовых переходов.

Для интерпретации наблюдаемых температурных изменений большого периода необходимо сопоставить значения D_{001} с длиной молекулы н-алкана $C_{24}H_{50}$.

Обычно [22], длину 1 молекулы н-алканов (длину транс-участка молекулы) рассчитывают из соотношения $l = (nc - 1) \times 0.127$ nm, где: n_c — число атомов углерода в молекуле н-алкана, 0.127(4) nm — размер проекции С-С-связи транс-зигзага на ось молекулы.

Тогда для длины только транс-зигзага тетракозана получим: $l_{23}(\text{trans}) = 2.9302 \text{ nm}$, то есть значение, которое не совпадает ни с одним из вышеприведенных значений большого периода.

Это обусловлено тем, что в вышеприведенном соотношении для длины молекулы не учитываются размеры двух концевых метильных групп, которые, несомненно, будут вносить свой вклад в значения больших периодов при взаимной укладке единичных ламелей в когерентнорассеивающие стопки.

Известно [23], что в метильной группе два атома водорода расположены в плоскости, перпендикулярной оси молекулы, подобно расположению в метиленовых группах транс-зигзага, а третий атом водорода расположен вдоль оси молекулы. Тогда размеры концевой метильной группы можно оценить двумя способами.

1) На основании дифракционных исследований принято считать [14], что длина химической связи С-Н (то есть. расстояние между центрами атомов С и Н) равна: $l_{C-H} = 0.108$ nm. К этому значению необходимо добавить Боровский радиус атома водорода $R_{\rm O} = 0.0529 \,\mathrm{nm}$, то есть размер метильный группы будет равен $l_{CH3} = 0.1609$ nm. Соответственно, полная длина молекулы тетракозана с учетом двух концевых групп составит l_{24} (trans) = 3.252 nm. Это значение в пределах точности эксперимента хорошо соответствует среднему значению большого периода $D-2 \sim 3.28 \, \text{nm}$, характерному для образцов, измеренных при температурах $T \ge T_{\Phi\Pi^{-1}}$, то есть при температурах, при которых образец должен находиться в гексагональной фазе с вертикальным расположением молекул относительно базовых плоскостей из концевых групп.

2) Можно оценить размер концевой группы на основании величины инкремента объема метильной группы [14]: $V_{\rm CH3} = 0.0235 \,\rm nm^3$, что дает величину $l_{\rm CH3} = 0.1777 \,\rm nm$ и, соответственно, полную длину молекулы $l_{24}({\rm trans}) = 3.285 \,\rm nm$, которая даже несколько лучше соответствует значению *D*-2 для гексагональной фазы.

В этой связи можно полагать, что экспериментальная величина большого периода в исходных образцах $D-1 \sim 3.04$ nm соответствует толщине элементарных ламелей, в которых молекулярные цепи тетракозана наклонены относительно базовых плоскостей из концевых групп. Из соотношения значений D-1 и D-2 можно найти значение угла наклона цепей $\beta = 67.58^{\circ}$ в ламелях наших исходных образцов тетракозана, закристаллизованных в капилляре при комнатной температуре. Это значение угла наклона близко к величине угла $\beta(c,a) = 72.281^{\circ}$ для триклинной основной ячейки (main cell) в тетраконтане, определенному методом высокоразрешающей порошковой дифракции при использовании синхротронного излучения [24]. Кроме того, эта величина близка к значению $\beta(c,a) = 68.71^{\circ}$, рассчитанному для $C_{24}H_{50}$ в работе [25] на основании предложенной авторами и общепринятой концепции определения всех параметров кристаллографических ячеек в изоструктурных рядах н-алканов, если хотя бы для одного члена из этого ряда известны достоверные данные о всех параметрах ячейки, это так называемая "ключевая структура", "key structure". Для четных н-алканов приняли в качестве "key structure" данные для н-октадекана $C_{18}H_{38}$ [26], для которого $\beta(c,a) = 67.80^{\circ}$.

Для изоструктурных рядов должна выполняться линейная зависимость величины большого периода от числа атомов углерода в цепи н-алканов [22]. Подобные зависимости наблюдались многими авторами для всех типов main cell — триклинных, моноклинных, орторомбических. В работе [27], [см. также цитируемые в ней ссылки на оригинальные публикации] суммированы данные опубликованных работ.

Для н-алканов с орторомбическим ячейками симметрии P_{bcm} (имеющих вертикальное расположение осей цепей относительно базовых плоскостей) подобные линейные зависимости описываются соотношением $D_{001} = 1.27$ (Å) $\times (n_c - 1) + G$ (Å) где: D_{001} — значения больщого периода, Å, n_c — число атомов углерода в молекулах нечетных н-алканов, G (Å) — так называемый "gap" (промежуток), представляющий собой разницу между значениями большого периода и размером только транс-участка молекулы (без концевых групп).

В работах по малоугловой рентгеновской дифракции [22,27] при рассмотрении эмпирических зависимостей большого периода от длины молекулы ДМК обычно не дается какой-либо интерпретации появляющихся значений величин "gap" в этих соотношениях.

По данным ряда авторов для орторомбических ячеек P_{bcm} значения G составляли: 0.325 nm; 0.3148 nm и 0.31165 nm. Эти эмпирические значения "gap" близки к нашим вышеприведенным оценкам удвоенных значений размеров концевых групп l_{CH3} . а именно: 0.3218 nm и 0.3554 nm, то есть можно полагать, что приводимые в литературе эмпирические значения "gap" действительно связаны с особенностями взаимного расположения концевых групп в соседних ламелях при различных типах симметрии основных (main) ячеек.

Выше мы отмечали, что второе значение (0.3554 nm) лучше соответствует нашим экспериментальным данным для значений большого периода D_{001} в случае гексагональной упаковки молекул по типу "голова к хвосту" в соседних ламелях.

Известно [14], что в орторомбических основных ячейках трансцепочки молекул в соседних ламелях должны несколько (~ 0.01 nm) смещаться друг относительно друга в базовых плоскостях концевых групп, чтобы по стерическим соображениям обеспечить наиболее плотную упаковку метильных групп. По-видимому, в этом случае значения "gap" могут быть несколько меньшими, чем при гексагональной упаковке основной ячейки.

Для четных C_{2p} н-алканов с триклинной основной ячейкой также наблюдается линейная зависимость большого периода от числа n_c [27], но в этом случае прямолинейная зависимость имеет меньший угол наклона по сравнению с орторомбическими ячейками в случае нечетных C_{2p+1} н-алканов, что, естественно, обусловлено наклоном цепей относительно плоскостей из концевых групп.

Линейные зависимости для триклинных ячеек описываются иным эмпирическим соотношением [27]: $D_{001} = 1.2085n_c + 1.2868$ (Å), на основании которого труднее сопоставлять величину "gap" в этом случае с размерами концевых групп.

Авторы [27] на основании имеющихся в литературе данных о координатах атомов в триклинной ячейке для $C_{18}H_{38}$ оценили величину "gap" как G = 0.274 nm, что несколько меньше, чем в орторомбических и гексагональных основных ячейках.

В ранних работах [28,29] рассматривались схемы особенностей взаимной упаковки концевых метильных групп в соседних ламелях четных и нечетных н-алканов, связанные с различием симметрии самих молекул и, как следствие, наклонным (C_{2p}) или вертикальным (C_{2p+1}) расположением транс-зигзагов относительно базовых плоскостей из концевых групп.

Концевые группы в зависимости от симметрии молекулы оказываются либо в *cis*-положении (нечетные н-алканы), либо в trans-положении (четные н-алканы). Показано, что при вертикальном расположении как четных, так и нечетных н-алканов относительно базовых плоскостей нет существенных различий в строении межламеллярных прослоек из концевых групп, тогда как при наклонном расположении цепей наблюдается более плотная и одинаковая упаковка концевых групп с обеих сторон ламелей для четных н-алканов. В случае же нечетных н-алканов при наклонном расположении цепей должна быть более сложная схем упаковки своеобразное чередование более рыхлых (как при вертикальном расположении цепей) и более плотных (как в случае четных н-алканов) — межламеллярных промежутков. Каких-либо оценок размеров и плотностей этих прослоек в работах [28,29] не проводилось.

4. Заключение

Методом малоугловой рентгеновской дифракции при использовании синхротронного рентгеновского излучения показано, что твердофазный переход I рода в тетракозане развивается по гетерогенному механизму в соответствие с теорией размытых фазовых переходов первого рода. В узком температурном интервале $\Delta \approx 1 \text{ K}$ наблюдалось возникновение нанозародышей новой (гексагональной) фазы и их постепенное распространение на весь объем исходной (триклинной) фазы.

Найдено, что для корректного сопоставления значений малоугловых "больших периодов" с размерами молекул н-алканов необходимо учитывать не только размеры концевых метильных групп, но и особенности их взаимной укладки в поверхностных слоях двух соседних ламелей в зависимости от симметрии молекул (эффект четности) и типа образующихся при кристаллизации основных (main) ячеек.

Список литературы

- [1] A.S. Fleischer. Thermal energy storage using phase change materials. Springer, Heidelberg (2015), 96 p.
- [2] D.M. Small. The physical chemistry of lipids. Plenum Press, NY.-London, (1986), 262 p.
- [3] K. Mukherjee. Phys. Reports 588, 1 (2015).
- [4] M. Dirand, M. Bouroukba, V. Chevallier, D. Petitjean, E. Behar, V. Ruffier-Meray. J. Chem. Eng. Data 47, 115 (2002).
- [5] V.M. Egorov, V.A. Marikhin, L.P. Myasnikova. Polymer Science A 49, 1366 (2007).
- [6] В.М. Егоров, В.А. Марихин, Л.П. Мясникова, П.Н. Якушев. ФТТ **59**, 2044 (2017).
- [7] Б.К. Ролов, В.Э. Юркевич. Физика размытых фазовых переходов. Изд-во Ростов. ун-та, (1983), 317 с.
- [8] G.A. Malygin. Phys. Usp. 44, 173 (2001).
- [9] T. Yamamoto, K. Nozaki, T. Hara. J. Phys. Chem., **92**, 631 (1990).
- [10] R. Popovitz-Biro, J.L. Wang, J. Majewski, E. Shavit, L. Leiserowitz, M. Lahav. J. Am. Chem. Soc. 116, 1179 (1994).
- [11] S. Abrahamson, G. Larsson, E. Sydov. Acta Cryst. 13, 770 (1960).
- [12] S. Amelincksx. Acta Cryst. 9, 217 (1956).
- [13] I.M. Dawson. Brit. J. Appl. Phys. 4, 177 (1956).
- [14] А.И. Китайгородский. Молекулярные кристаллы. Наука, М. (1971), 424 с.
- [15] А.И. Китайгородский. Органическая кристаллохимия. Издво АНСССР, М. (1955). 558 с.
- [16] E. Segerman. Acta Cryst. 19, 789 (1965).
- [17] A.E. Smith. J. Chem. Phys. 21, 2229 (1953).
- [18] R.G. Snyder. J. Mol. Spectr. 7, 116 (1961).
- [19] R.F. Holland, J.R. Nielsen. J. Mol. Spectr. 9, 436 (1962).
- [20] J.L. Koenig. Spectroscopy of polymers. American Chemical Society (1992). 324 p.
- [21] V.A. Marikhin, L.P. Myasnikova, E.I. Radovanova, B.Z. Volchek, D.A. Medvedeva. Phys. Solid State. 59, 331 (2017).
- [22] M.G. Broadhurst. J. Res. Nature Bur. Stands. A. 66, 241 (1962).
- [23] R.E. Dickerson, H.B. Gray. G.P. Haight. Chemical principles. Benjamin/Cummings Publishing Co, Menio Park, C.A. (1984). 10007 p.
- [24] S.R. Craig, G.P. Hastie, K.J. Roberts, J.N. Sherwood. J. Mater. Chem. 4, 977 (1994).
- [25] S.C. Nyburg, J.A. Potworowski. Acta Cryst. B 29, 347 (1973).
- [26] S.C. Nyburg, H. Luth. Acta Cryst. B 28, 2992 (1972).
- [27] V. Chevallier, D. Petitjean, V. Ruffier-Meray, M. Dirand. Polymer 40, 5953 (1999).
- [28] T. Malkin. Trans. Far. Soc. 29, 977 (1933).
- [29] T. Malkin. J. Chem. Soc. 133, 2796 (1931).

Редактор К.В. Емцев