08,04

Парамагнитные ионы в легированном европием искаженном перовските YAIO₃

© В.А. Важенин¹, А.П. Потапов¹, А.Г. Петросян², Г.Р. Асатрян³, А.В. Фокин¹, М.Ю. Артёмов¹

¹ Уральский федеральный университет (Институт естественных наук и математики), Екатеринбург, Россия

² Институт физических исследований НАН РА, Аштарак-2, Армения,

³ Физико-технический институт им. А.Ф. Иоффе, Санкт-Петербург, Россия

E-mail: Vladimir.Vazhenin@urfu.ru

Поступила в Редакцию 10 января 2019 г. В окончательной редакции 15 января 2019 г. Принята к публикации 15 января 2019 г.

В кристаллах ортоалюмината иттрия, легированных изотопом ¹⁵¹Eu, обнаружены парамагнитные центры Eu²⁺, Cr³⁺, Gd³⁺, Mo³⁺. Определены или уточнены параметры тонкой структуры спинового гамильтониана указанных центров. Для центров Cr³⁺ проведен учет ориентационного поведения ранее ненаблюдаемых запрещенных переходов. Показано, что детектируемые в магнитных полях параллельных кристаллографическим осям два сигнала Mo³⁺ принадлежат не разным центрам молибдена, а являются двумя внутридублетными переходами одного центра.

Работа выполнена в рамках государственного задания Минобрнауки России (3.6115.2017/8.9). Измерения проведены на спектрометре Центра коллективного пользования "Современные нанотехнологии" Уральского федерального университета.

DOI: 10.21883/FTT.2019.06.47691.353

1. Введение

Кристаллы ортоалюмината иттрия (YAlO₃), активированные ионами редких земель и группы железа, находят многочисленные применения в лазерной физике и оптоэлектронике. Для оптимизации используемых в практических приложениях характеристик этих материалов необходима информация о природе, структуре и количестве дефектов в реальных кристаллах. Усилия лабораторий, занимающихся ростом монокристаллов алюмината иттрия, направлены на получение образцов с заданным содержанием активатора и минимизацией концентрации неконтролируемых примесей. Для кристаллов, выращенных в молибденовом контейнере, неконтролируемой примесью часто являются ионы молибдена.

Спектр электронного парамагнитного резонанса (ЭПР) ионов Mo³⁺ (один внутридублетный переход центров молибдена (4d³) с электронным спином S = 3/2), замещающих в алюминате иттрия позиции алюминия, впервые был зарегистрирован авторами [1]. Большое начальное расщепление двух крамерсовых дублетов не позволяет детектировать междублетные переходы в *X*-диапазоне. Отнесение наблюдаемого сигнала к центру Mo³⁺ в [1] оказалось возможным благодаря характерной сверхтонкой структуре (СТС) этого иона, обусловленной ядерным спином I = 5/2. В работе [2], кроме упомянутого выше центра молибдена [1], наблюдался внутридублетный сигнал второго центра Mo³⁺. Авторы [2] предполагают, что этот центр обусловлен на-

личием вблизи иона молибдена какого-то дефекта. Ориентационное поведение сигналов двух центров Mo^{3+} в трех кристаллографических плоскостях [2] было описано ромбическим спиновым гамильтонианом с эффективным спином S = 1/2.

В работе [3] нами в алюминате иттрия была исследована тонкая структура ЭПР спектра высокоспиновых (S = 7/2) центров Eu²⁺, Gd³⁺ и определены ее параметры. Поскольку исследованный кристалл был легирован европием с естественным содержанием изотопов и демонстрировал сложную слабо разрешенную СТС, в нем удалось оценить только параметр сверхтонкого взаимодействия A = -95MHz для ¹⁵¹Eu²⁺. Вновь выращенный кристалл, исследованный в настоящей работе, был активирован европием, обогащенным ионами одного изотопа Eu²⁺. В этом кристалле детектировались интенсивные спектры Cr³⁺ [4–6], Eu²⁺[3], Gd³⁺ [3,7–9] и Mo³⁺, исследованные авторами [2], а также не идентифицированные узкие линии.

Данная работа посвящена идентификации наблюдаемых ЭПР-сигналов, определению или уточнению параметров тонкой структуры указанных центров, а также установлению их локализации.

2. Образцы и методика эксперимента

Несмотря на малую температурную область устойчивости фазы YAlO₃ [10], получение монокристаллов алюмината иттрия возможно с использованием расплавных методов кристаллизации [11]. В настоящей работе выращивание монокристаллов YAlO3.¹⁵¹Eu проводилось методом вертикальной направленной кристаллизации [12,13] с использованием высокочистого оксида иттрия (марки ИтО-В), кристаллического сапфира (99.95%) и оксида изотопа европия ¹⁵¹Eu₂O₃ (97.5%¹⁵¹Еи и 2.5%¹⁵³Еи). Для стабилизации в решетке достаточных количеств центров Eu²⁺ в расплавы дополнительно вводили оксид SiO2. Состав исходных расплавов соответствовал $Y_{1-x}Eu_xAl_{1-y}Si_yO_3$ (x = 0.02; у = 0.04). Процесс выращивания проводили в молибденовых трубках диаметром 12 mm на затравки, ориентированные вдоль оси b, в атмосфере Ar/H₂, при скоростях 2 mm/h и тепловых полях, обеспечивающих низкую вероятность образования микротрещин и двойников.

Качество кристаллов контролировали на поляризационном микроскопе МПС-2. Полученные кристаллы бесцветны и не окрашиваются при длительном воздействии дневного света. Наличие в кристаллах ионов европия (Eu³⁺ и Eu²⁺) контролировали по спектрам поглощения на спектрофотометре SPECORD200 PLUS (по f-f-переходам ионов Eu³⁺ и полосе переноса заряда Eu³⁺-O²⁻). Примесные ионы европия замещают в решетке узлы Y³⁺, окруженные восьмью кислородами; ввиду разницы в ионных радиусах (Eu³⁺ — 1.066 Å, Eu²⁺ — 1.25 Å, Y³⁺ — 1.019 Å) коэффициент распределения меньше единицы и концентрация примеси по длине кристалла возрастает.

Измерения спектров ЭПР образцов YAlO₃:¹⁵¹Eu проводились при комнатной температуре на спектрометре трехсантиметрового диапазона EMX Plus Bruker. Ориентация образцов в резонаторе спектрометра производилась с помощью штатного одноосного автоматического гониометра и приспособления, позволяющего вращать образец вокруг оси, перпендикулярной оси гониометра. Для достижения выделенных ориентаций (**B** || **a**, **b**, **c**, где **B** — индукция магнитного поля и **a**, **b**, **c** — кристаллографические оси) использовалось ориентационное поведение положений переходов Mo³⁺, Cr³⁺ и наконец, Gd³⁺, имеющих наиболее сильные угловые зависимости.

3. Результаты эксперимента и их обсуждение

Кристаллы YAlO₃ имеют структуру искаженного перовскита (YAP) с пространственной группой *Pbnm* (D_{2h}^{16}) [14] и параметрами элементарной ячейки: a = 5.176 Å, b = 5.332 Å, c = 7.356 Å (для описания структуры используется и система *Pnma* [15]). Центры молибдена и хрома, замещая ионы Al³⁺, имеют магнитную кратность 4 (группа симметрии позиции $\bar{1}(c)$). Они переходят друг в друга при отражении в плоскостях, нормальных к осям **a**, **b**, **c**, вследствие чего в указанных плоскостях две пары центров Mo³⁺ и Cr³⁺ становятся эквивалентными, при $\mathbf{B} \parallel \mathbf{a}, \mathbf{b}, \mathbf{c}$ сигналы четырех центров сливаются.

Примесные редкоземельные ионы Gd^{3+} и Eu^{2+} (электронные спины S = 7/2) в YAP замещают "квазиредкоземельные" ионы Y³⁺, имеющие единственную операцию симметрии — отражение в плоскости **ab** (группа точечной симметрии — C_S). Четыре позиции иттрия попарно связаны операцией инверсии и отражением в плоскостях **ca** и **cb**. В случае нелокальной зарядовой компенсации примесного иона Eu^{2+} , а также для иона Gd^{3+} будет существовать два магнитно-неэквивалентных центра, которые становятся эквивалентными только в этих плоскостях.

На рис. 1 приведены ЭПР-спектры алюмината иттрия с примесью Eu²⁺ при комнатной температуре и **B** || **a**, **b**, **c**. Как и следовало ожидать, в спектре наблюдаются довольно интенсивные группы сигналов, несомненно, принадлежащие центрам ¹⁵¹Eu²⁺ (I = 5/2), хотя электронных переходов с классической сверхтонкой структурой за счет взаимодействия с ядерным спином (шесть эквидистантных компонент одинаковой интенсивности) крайне мало. Это всего два перехода при **B** || **c** в полях 395 mT и 444 mT (рис. 1).

Наиболее интенсивными в спектре оказались сигналы триклинных центров Cr^{3+} (рис. 1), исследованных в работах [4–6]. Причиной неожиданно высокой концентрации хрома в кристалле скорее всего являются молибденовые трубки низкого качества, использованные при выращивании образцов. Важно отметить, что сверхтонкая структура, обусловленная изотопом $^{53}Cr^{3+}$ (I = 3/2, естественная распространенность 9.5%), демонстрирует интенсивные запрещенные переходы с переворотом ядерного спина. Расчеты показали, что такая СТС имеет место даже при изотропном сверхтонком взаимодействии и в ориентациях магнитного поля вдоль кристаллографических осей.

В нижних частях рис. 1 приведены расчетные положения и интегральные интенсивности переходов Gd^{3+} и Eu^{2+} в YAP. Для расчета спектра Eu^{2+} использовались параметры моноклинного спинового гамильтониана [3] в определении [16],

$$H_{sp} = g\beta(\mathbf{BS}) + 1/3(b_{20}O_{20} + b_{21}O_{21} + b_{22}O_{22}) + 1/60(b_{40}O_{40} + b_{41}O_{41} + b_{42}O_{42} + b_{43}O_{43} + b_{44}O_{44}) + 1/1260\sum_{m} b_{6m}O_{6m},$$
(1)

где g - g-фактор, β — магнетон Бора, O_{nm} — спиновые операторы Стивенса [16], b_{nm} — параметры тонкой структуры. Величины параметров в [3] получены с использованием примерных положений центров СТС в системе координат X || **a**, Y || **c**, Z || **b** (**c** — нормаль к плоскости отражения в группе симметрии позиции). Как видно, многие переходы Eu²⁺ перекрываются как друг с другом, так и с сигналами Gd³⁺ или Cr³⁺, что сильно

затрудняет анализ достаточно сложной СТС. Рассмотрение в алюминате иттрия сверхтонкой структуры центров $^{151}\text{Eu}^{2+}$, а также ионов $^{95}\text{Mo}^{3+}$, $^{97}\text{Mo}^{3+}$ и $^{53}\text{Cr}^{3+}$ будет предметом следующей публикации.

Положения и интенсивности резонансов Gd³⁺ рассчитаны с параметрами табл. 1, которые являются резуль-

Рис. 1. ЭПР-спектр YAlO₃:¹⁵¹Eu²⁺ при **B** || **a**, **b**, **c** и комнатной температуре на частоте 9833 MHz. В нижней части рисунков приведены результаты расчета положений и интегральных интенсивностей переходов: сплошные отрезки — для Gd³⁺, штриховые — для центров сверхтонкой структуры переходов Eu²⁺. Верхние стрелки указывают переходы ионов Mo³⁺, нижние — переходы центров Cr³⁺.

Таблица 1. Параметры спинового гамильтониана центров Gd³⁺ в YAlO₃ в системе координат: $\mathbf{x} \parallel \mathbf{a}, \mathbf{y} \parallel \mathbf{b}, \mathbf{z} \parallel \mathbf{c}$. Среднеквадратичное отклонение расчетных частот от экспериментальных F(N) (где N — число использованных экспериментальных положений сигналов) и параметры b_{nm} , c_{nm} приведены в MHz

Параметры	[8,9]	[8,9] Данная работа	
g_x	1.9918	1.991	
\overline{g}_{y}	1.9935	1.991	
g_z	1.9929	1.991	
b_{20}	-334.8^{*}	-333.5^{*}	
b_{22}	1621.4	1619.5	
c ₂₂	2432.2	2425.7	
b_{40}	19.0	19.2	
b_{42}	-69.0	-65.2	
C42	-170.1	-167.5	
b_{44}	-123.3	-125.1	
C 44	99.9	95.6	
b_{60}		-1.6^{**}	
F(N)		7(23)	

Примечание. * знак b_{20} не определялся, ** остальные параметры шестого ранга малы.

татом оптимизации параметров моноклинного спинового гамильтониана [16] методом наименьших квадратов на множестве экспериментальных положений переходов рис. 1.

Следует отметить хорошее согласие полученных нами параметров (табл. 1) с результатами авторов [8,9]. Заметное отличие параметров табл. 1 от значений, приведенных в нашей предыдущей работе [3], объясняется меньшим количеством переходов, использованных в [3] в процедуре fitting. Этот факт обусловлен малой интенсивностью спектра гадолиния, например, при **B** || **c** не было зарегистрировано ни одного перехода центров Gd^{3+} .

Как видно на рис. 1, сигнал, отнесенный авторами [2] к центру Мо³⁺, при **B** || **с** демонстрирует шесть компонент СТС, две из которых находятся под интенсивным переходом четных изотопов. Это хорошо согласуется с наличием у молибдена двух изотопов: ⁹⁵Мо (I = 5/2, распространенность 15.7%) и ⁹⁷Мо (I = 5/2, распространенность 9.5%) с почти равными значениями ядерного магнитного момента. Для этого перехода величина параметра сверхтонкого взаимодействия $A \approx 137$ MHz, что близко к значениям $A \approx 130$ MHz и $A \approx 143$ MHz, полученным в работе [17] для тригональных центров Мо³⁺ в гранатах Y₃Al₅O₁₂ и Lu₃Al₅O₁₂ соответственно.

Предположение [2] о том, что второй центр Mo^{3+} (второй сигнал молибдена на рис. 1) обусловлен ионом молибдена в позиции Al^{3+} , ассоциированным с неким дефектом, не кажется правдоподобным. Поскольку зарядовые состояния примесного и матричного ионов одинаковы, нет разумных механизмов ассоциации Mo^{3+} с дефектами.

В решетке YAlO₃ имеется две позиции с точечной симметрией $\overline{1}(C_i)$ [18,19], только в одной из которых

Рис. 2. Ориентационное поведение положений переходов $1 \leftrightarrow 2$ (сплошные кривые) и $3 \leftrightarrow 4$ (штриховые) центров Mo^{3+} , полученное в результате расчета с параметрами первой колонки табл. 2.

располагается ион алюминия, окруженный шестью ионами кислорода на расстоянии ≈ 0.19 nm, вторая сфера состоит из шести ионов иттрия с расстоянием до них больше 0.3 nm. В ближайшем окружении второй позиции имеется три пары ионов кислорода с расстояниями 0.157, 0.219 и 0.284 nm и два иона Y³⁺, располагающихся на расстоянии 0.186 nm, что говорит о крайней энергетической невыгодности помещения в нее Mo³⁺ или Al³⁺.

В связи с отсутствием веских аргументов в пользу существования альтернативной локализации Mo^{3+} в решетке YAlO₃, было выдвинуто предположение о регистрации в [2] переходов не двух центров Mo^{3+} , а двух внутридублетных переходов одного центра. Для центра со спином S = 3/2 и большим начальным расщеплением в случае локализации примесного иона в позиции с достаточно низкой точечной симметрией оба внутридублетных перехода соизмеримой интенсивности могут наблюдаться во всем диапазоне углов. Такая ситуация имела место для центров Cr^{3+} в моноклинных кристаллах Y_2SiO_5 и $Sc_2SiO_5[20]$).

В связи с этим, была предпринята попытка описать зависимости рис. 2 работы [2] спиновым гамильтонианом вида [16]

$$H_{sp} = \beta(\mathbf{BgS}) + 1/3(b_{20}O_{20} + b_{21}O_{21} + b_{22}O_{22} + c_{21}\Omega_{21} + c_{22}\Omega_{22}),$$
(2)

где O_{nm} и Ω_{nm} — косинусоидальные и синусоидальные спиновые операторы Стивенса, с S = 3/2 в предположении, что авторами [2] измерено поведение внутридублетных переходов (1 \leftrightarrow 2 и 3 \leftrightarrow 4) одного центра. Параметры (2), полученные в процедуре оптимизации, приведены в первой колонке табл. 2, а описываемые ими угловые зависимости положений сигналов Мо³⁺ из [2] показаны на рис. 2.

Так как данные для оптимизации параметров (2) были получены оцифровкой рис. 2 из [2], среднеквадратичное отклонение экспериментальных и расчетных положений сигналов Mo³⁺ в трех кристаллографических плоскостях достаточно велико. Но сравнение рассчитанных зависимостей и приведенных на рис. 2 в [2] показывает, что описание сигналов Mo³⁺ спином S = 3/2 повторяет все наблюдаемые особенности в ориентационном поведении центров Mo³⁺ [2]. Кроме того, оказалось, что полученные параметры предсказывают в плоскости **b**с в небольшом диапазоне углов, в полях ≈ 1500 mT существование еще одного, не наблюдавшегося в [2], перехода 3 \leftrightarrow 4.

Таблица 2. Параметры триклинного спинового гамильтониана центров Mo^{3+} в YAlO₃ в системе координат: **x** || **a**, **y** || **b**, **z** || **c** (b_{nm} , c_{nm} и F(N) приведены в MHz)

Параметры	Данные [2], 20 K	Данная работа, 300 К
g_x	1.961	1.970
g_{y}	1.916	1.975
g_z	1.982	1.970
b_{20}	-8400^{*}	-10350^{*}
b_{21}	-22150	-23030
b_{22}	-11200	-9940
C 21	104450	113560
C 22	-17400	-20560
F(N)	250 (190)	32 (162)

Примечание. * знак b_{20} не определялся.

Таблица 3. Соотношение знаков параметров спинового гамильтониана (2) четырех центров, связанных отражением в плоскостях σ

Параметры	1 исходный	$\sigma \perp \mathbf{z}$	$\sigma \perp \mathbf{y}$	$4 \sigma \perp \mathbf{x}$
b_{20}	+	+	+	+
b_{21}	+	_	+	_
b_{22}	+	+	+	+
C 21	+	_	_	+
C 22	+	+	—	—

Уровни энергии центров Mo^{3+} (S = 3/2) в этом случае ($\theta = 34.5^{\circ}, \varphi = 90^{\circ}$) приведены на рис. 3.

Для подтверждения результатов расчета, полученных с использованием экспериментальных данных работы [2], нами были выполнены измерения ориентационного поведения положений сигналов Mo^{3+} в плоскости **bc**. Образцы не были предварительно ориентированы, поэтому измерение угловой зависимости положений переходов проводилось от "точной" ориентации **B** || **c** до кристаллографической плоскости **ab**. Результаты приведены на рис. 4, отсутствие экспериментальных точек в районе 300–400 mT объясняется невозможностью определения положений переходов Mo^{3+} и Eu^{2+} .

Расщепление всех кривых на рис. 4 обусловлено небольшим отклонением магнитного поля от плоскости **bc**. Величину выхода поля из плоскости около **b** ($\approx 3^{\circ}$) удалось оценить, моделируя расщепление одного из интенсивных и хорошо измеряемых переходов центров Gd³⁺ (см. рис. 5) с использованием параметров табл. 1.

Обнаружение высокополевого перехода 3 \leftrightarrow 4 в полях \approx 1500 mT (рис. 4), а также качественное описание положений переходов Mo³⁺ в ориентациях магнитного поля вдоль кристаллографических осей и вблизи плоскости **bc** (рис. 1 и 4), позволяют сделать однозначный вывод о существовании в ортоалюминате иттрия лишь одного центра Mo³⁺, локализованного в позиции Al³⁺. Параметры гамильтониана (2) этого центра приведены в табл. 2 (вторая колонка). Спектры четырех одинаковых, но различно ориентированных центров Mo³⁺ (а также любого другого парамагнитного иона, локализованного в той же позиции) в произвольной ориентации магнитного поля могут быть рассчитаны при изменении знаков параметров спинового гамильтониана согласно табл. 3 [21].

Для описания СТС ионов ⁵³Cr³⁺ (S = 3/2, I = 3/2) необходимо знание параметров спинового гамильтониана (2), описывающих тонкую структуру спектра ЭПР этого центра. Для изотопов хрома с нулевым ядерным спином эти параметры приводятся в целом ряде работ [4–6], но, к сожалению, в разных системах координат. Наличие в ориентациях **B** || **a**, **b**, **c** (рис. 1) легко идентифицируемых интенсивных сигналов Cr³⁺,

Рис. 3. Уровни энергии центров Mo^{3+} при $\theta = 34.5^{\circ}$ и $\varphi = 90^{\circ}$.

Рис. 4. Ориентационное поведение центров Mo³⁺ при вращении магнитного поля вблизи плоскости **zy** (**cb**), точки эксперимент, кривые — расчет при $\varphi = 90 \pm 3^{\circ}$ (сплошные кривые — переход 1 \leftrightarrow 2, штриховые — переход 3 \leftrightarrow 4).

Рис. 5. Полярная угловая зависимость перехода $5 \leftrightarrow 6$ центров Gd³⁺ вблизи плоскости **zy** (**cb**), точки — эксперимент, кривые — расчет при $\varphi = 90 \pm 3^{\circ}$.

а также регистрации их ориентационного поведения вблизи плоскости **bc** (рис. 6), позволили определить для ионов хрома параметры триклинного гамильтониана (2) в системе координат **x** || **a**, **y** || **b**, **z** || **c**. Как видно (рис. 6), полученные параметры хорошо описывают в диапазоне (250–450) mT полярную угловую зависимость положений трех разрешенных переходов (1 \leftrightarrow 2, 2 \leftrightarrow 3 и 3 \leftrightarrow 4) четырех магнитно неэквивалентных центров Cr³⁺ при учете выхода магнитного поля из плоскости **bc** около **b** на угол \approx 3°.

Ориентационное поведение вблизи плоскости **bc** упомянутых во введении не идентифицированных интенсивных и узких сигналов, помеченных на рис. 1 вертикальными стрелками, показано на рис. 6 штриховыми кривыми. Видно, что магнитная кратность этих сигналов также равна 4, и, следовательно, они принадлежат центрам, локализованным в позициях алюминия. Расчет показал, что указанные сигналы являются не наблюдавшимися в [4–6] из-за малой вероятности (< 10⁻² от вероятности разрешенных переходов) запрещенными переходами (1 \leftrightarrow 3, 2 \leftrightarrow 4 и 1 \leftrightarrow 4) центров Cr³⁺.

Использование в fitting процедуре параметров спинового гамильтониана всех данных на рис. 1 и 6 привело к значениям табл. 4. Сравнение полученных

Рис. 6. Полярная угловая зависимость положений переходов Cr³⁺ вблизи плоскости **zy** (**cb**), точки — эксперимент, сплошные кривые — расчет для разрешенных переходов, штриховые — для запрещенных.

Таблица 4. Параметры триклинного спинового гамильтониа-
на центров Cr^{3+} в YAlO ₃ в системе координат: $\mathbf{x} \parallel \mathbf{a}, \mathbf{y} \parallel \mathbf{b}, \mathbf{z} \parallel \mathbf{c}$
$(b_{nm}, c_{nm}$ и $F(N)$ приведены в MHz)

Параметры	300 K
g_x	1.9811
g_{y}	1.9826
g_z	1.9802
\bar{b}_{20}	824*
b_{21}	-1516
b_{22}	1594
C 21	-1761
C 22	-335
F(N)	8(417)

Примечание. * знак b_{20} не определялся.

параметров с результатами авторов [4–6] затруднено тем, что они определены в разных системах координат, однако можно сравнить не зависящие от системы координат величины начальных расщеплений основного состояния центров Cr^{3+} в YAlO₃. Получены следующие значения: в данной работе 2828 MHz (300 K), 2670 MHz (100–450 K) в [4], 2838 MHz (1.6 K) в [5] и 3244 MHz (300 K) в [6]. К сожалению, именно в работе [6], дающей для начального расщепления значение, заметно отличающееся от всех остальных, не указано какой экспериментальный материал использовался для определения параметров спинового гамильтониана, а также какова погрешность в описании эксперимента.

4. Заключение

В кристаллах алюмината иттрия, легированных изотопом европия 151 и кремнием, обнаружены ЭПР спектры именно центров $^{151}Eu^{2+}$, а также Cr^{3+} , Gd^{3+} и Mo^{3+} . Идентификация сигналов перечисленных центров проводилась с учетом их сверхтонкой структуры и литературных данных.

Уточнены параметры спинового гамильтониана центров Gd^{3+} и Cr^{3+} за счет использования большего, чем в ранних работах, количества переходов, а также более качественной ориентации образца.

Показано, что сигналы ионов Mo^{3+} (S = 3/2), наблюдаемые авторами [2] и отнесенные ими к переходам двух неэквивалентных центров молибдена, являются двумя внутридублетными переходами одного центра ионов Mo^{3+} , замещающих в YAIO₃ ионы Al³⁺. Определены параметры тонкой структуры указанного центра.

Список литературы

- [1] Г.Р. Асатрян, J. Rosa. ФТТ 44, 830 (2002).
- [2] V.V. Laguta, A.M. Slipenyuk, J. Rosa, M. Nikl, A. Vedda, K. Nejezchleb, K. Blazek. Rad. Measurements 38, 735 (2004).

- [3] В.А. Важенин, А.П. Потапов, Г.Р. Асатрян, А.Г. Петросян, К.Л. Ованесян, А.В. Фокин. ФТТ **59**, 1787 (2017).
- [4] A. Pinto, N.Z. Sherman, M.J. Weber. J. Magn. Res. 6, 422 (1972).
- [5] M. Yamaga, H. Takeuchi, T.P.J. Han, B. Henderson. J. Phys.: Condens. Matter. 5, 8097 (1993).
- [6] I. Stefaniuk, C. Rudowicz, P. Gnutek, A. Suchocki. Appl. Magn. Reson. 36, 371 (2009).
- [7] R.L. White, G.F. Herrmann, J.W. Carson, M. Mandel. Phys. Rev. A 136, 231 (1964).
- [8] Н.М. Низамутдинов, Н.М. Хасанова, А.А. Галеев, Г.Р. Булка, В.М. Винокуров, В.А. Аккерман, Г.А. Ермаков. Кристаллография 34, 893 (1989).
- [9] Н.М. Хасанова, Н.М. Низамутдинов, Г.Р. Булка, В.М. Винокуров, В.А. Аккерман, Г.А. Ермаков, А.А. Маркелов. Физика минералов и их синтетических аналогов. Изд-во Казанского ун-та. Казань (1988). С. 73.
- [10] N.A. Toropov, I.A. Bondar, F.Ya. Galahov, H.S. Nikogosyan, N.V. Vinogradova. Изв. AH СССР. Сер. хим. 7, 1159 (1964).
- [11] Х.С. Багдасаров, А.А. Каминский. Письма в ЖЭТФ 9, 501 (1969).
- [12] Modern Crystallography / Ed. A.A. Chernov, E.I. Givargizov, Kh.S. Bagdasarov, V.A. Kuznetsov, L.N. Dem'yanets, A.N. Lobachev. In: B.K. Vainshtain. Nauka, M. (1980).
- [13] A.G. Petrosyan. J. Crystal Growth 139, 372 (1994).
- [14] S. Geller, E.A. Wood. Acta Cryst. 9, 563 (1956).
- [15] R. Diehl, G. Brandt. Mater. Res. Bull. 10, 85 (1975).
- [16] С.А. Альтшулер, Б.М. Козырев. Электронный парамагнитный резонанс соединений элементов промежуточных групп. Наука, М. (1972). С. 121.
- [17] Э.Г. Шароян, О.С. Торосян, А.Г. Петросян, Э.А. Маркосян. Изв. АН Армянской ССР. Физика 12, 62 (1977).
- [18] М.Л. Мейльман, М.И. Самойлович. Введение в спектроскопию ЭПР активированных монокристаллов. Атомиздат, М. (1977). С. 30.
- [19] N.L. Ross, J. Zhao, R.J. Angel. J. Solid State Chem. 177, 1276 (2004).
- [20] В.А. Важенин, А.П. Потапов, Г.С. Шакуров, А.В. Фокин, М.Ю. Артёмов, В.А. Исаев. ФТТ 60, 2003 (2018).
- [21] В.А. Важенин, А.П. Потапов, В.Б. Гусева, М.Ю. Артёмов. ФТТ **52**, 480 (2010).

Редактор К.В. Емцев