20

Оптические свойства *in vitro* катарактальных хрусталиков глаза человека в видимом и ближнем ИК диапазонах*

© А.В. Беликов¹, А.М. Загорулько², С.Н. Смирнов^{1,¶}, А.Н. Сергеев¹, А.А. Михайлова³, А.А. Шимко³

¹ Университет ИТМО,

 197101 Санкт-Петербург, Россия
 ² Санкт-Петербургский филиал МНТК "Микрохирургия глаза" им. акад. С.Н. Федорова,
 192281 Санкт-Петербург, Россия
 ³ Санкт-Петербургский государственный университет, ресурсный центр "Оптические и лазерные методы исследования вещества",

198504 Санкт-Петербург, Россия

[¶] e-mail: s.n.smirnov@inbox.ru

Поступила в редакцию 08.01.2019 г. В окончательной редакции 24.01.2019 г. Принята к публикации 31.01.2019 г.

Исследованы спектральные зависимости коэффициента поглощения, коэффициента рассеяния, фактора анизотропии и транспортного коэффициента рассеяния для хрусталиков глаза человека *in vitro* с различной стадией катаракты. Спектры коэффициента поглощения и транспортного коэффициента рассеяния получены для спектрального диапазона 400–2300 nm, а спектры коэффициента рассеяния и фактора анизотропии рассеяния — для спектрального диапазона 400–1800 nm. Определены области длин волн, внутри которых спектры исследованных оптических характеристик хрусталика глаза человека статистически значимо не различаются для образцов с различной стадией зрелости катаракты и, наоборот, внутри которых они статистически значимо различаются.

DOI: 10.21883/OS.2019.05.47667.16-19

Введение

Оптимизация светового воздействия с целью диагностики, терапии или хирургии в офтальмологии невозможна без полного знания оптических свойств структур глаза в норме и при патологии. Развитие современных методов энергетической, в том числе лазерной хирургии катаракты, требует детального изучения спектральных зависимостей основных оптических характеристик хрусталика глаза человека с различной стадией катаракты, так как они определяют адекватность выбора параметров лазерного излучения, что является ключевым фактором, ответственным за успех лазерной экстракции катаракты.

Спектральные свойства хрусталика глаза животных и человека в норме и их изменение по мере старения достаточно хорошо изучены. В работе [1] обсуждается спектр поглощения хрусталика обезьяны в норме для диапазона длин волн от 300 nm до 5 μ m. Оптические свойства хрусталиков глаза быка и человека исследовались в работе [2] для длин волн 980, 1310 и 1530 nm. В работе [3] представлены оптические коэффициенты тканей глаза быка, в том числе хрусталика в норме, в спектральном диапазоне 750–1000 nm. Спектральные

* The 22nd Annual Conference Saratov Fall Meeting 2018 (SFM'18): VI International Symposium "Optics and Biophotonics" and XXII International School for Junior Scientists and Students on Optics, Laser Physics & Biophotonics, September 24–29, 2018, Saratov, Russia. https://www.sgu.ru/structure/fiz/saratov-fall-meeting/previousconferences/sara зависимости коэффициентов рассеяния и поглощения бычьих хрусталиков в норме были получены в [4] для трех длин волн излучения Ar-лазера (457.9, 488 и 514.5 nm). Спектры коллимированного пропускания хрусталика в диапазоне длин волн 300-1100 nm, рассчитанные для упорядоченных и неупорядоченных рассеивателей представлены в работе [5]. Экспериментальные спектры полного пропускания изолированных возрастного и катарактального хрусталиков в диапазоне длин волн 300-800 nm обсуждаются в работе [6]. В данном случае спектры демонстрируют достаточно близкий характер, поскольку при таком способе измерений изменение рассеивающих свойств ткани зарегистрировать трудно, а изменения в спектрах можно отнести в основном на счет изменения поглощения, которое более сильно проявляется для хрусталика с бурой катарактой [7]. Изменение состава рассеивателей и поглотителей с возрастом приводит к довольно существенным различиям также и в спектрах рассеяния хрусталика [7]. Результаты расчетов для обратного рассеяния и рассеяния под углом 90° в диапазоне длин волн 300-1100 nm [8] качественно согласуются с экспериментальными данными, представленными в [9].

В литературе также обсуждаются спектры поглощения содержащихся в хрусталике веществ, а также обсуждается влияние изменения концентрации этих веществ в течение жизни на спектр поглощения хрусталика. В работе [10] представлены спектры поглощения возрастного белка хрусталика, а также входящего в состав хрусталика триптофана и пигмента О- β глюкозид 3-HKG, в том числе показано, что полосы поглощения перечисленных веществ приходятся на УФ и видимую области спектра. В работе [11] обсуждаются спектры поглощения хрусталика обезьяны в норме и хрусталика пожилого человека. Установлено различие в спектрах поглощения, которое объясняется сменой доминирующего хромофора по мере старения вещества хрусталика: в молодых хрусталиках доминирует О- β глюкозид 3-HKG, а по мере старения доминирующим хромофором становится возрастной (желтый) белок.

Несмотря на достаточно большое количество спектральных исследований, к сожалению, следует отметить, что поведение основных оптических характеристик (коэффициент поглощения (μ_a), коэффициент рассеяния (μ_s), фактор анизотропии (g) и транспортный коэффициент рассеяния (μ'_s)) хрусталиков глаза человека с различной стадией созревания катаракты в инфракрасном диапазоне остается не до конца изученным, особенно в ближнем инфракрасном диапазоне, который представляет особый интерес, поскольку излучение лазеров этого спектрального диапазона (Nd:YAG ($\lambda = 1.44 \mu$ m) [12], Yb,Er:Glass ($\lambda = 1.54 \mu$ m) [13] и фемтосекундные лазеры с $\lambda \approx 1 \mu$ m [14]) широко используется в микрохирургии глаза и весьма перспективно для лазерной экстракции катаракт.

Настоящая работа посвящена исследованию поведения вышеперечисленных оптических коэффициентов хрусталика глаза человека с различной стадией зрелости катаракты в видимом и ближнем инфракрасном диапазонах спектра.

Материалы и методы

Хрусталики глаза человека для проведения экспериментальных исследований были получены в ходе операции по хирургии катаракты путем экстракапсулярной экстракции. После изъятия из полости глаза хрусталики были помещены в вискоэластик "Визитон-ПЭГ" (ООО "НЭП МГ", Россия) и хранились в нем не более одной недели в холодильнике при температуре ~ 4°С. Перед подготовкой образцов для спектрофотометрических измерений хрусталики тщательно промывались от остатков вискоэластика. Образцы представляли собой тонкие срезы диаметром 6.5 ± 0.3 mm, вырезанные из экваториальной части хрусталиков при помощи лезвия бритвы "Gillette Platinum Plus" (P&G, США). Образцы были разделены на 3 группы в зависимости от стадии (степени) катаракты, согласно [15]: Пстадия (5 образцов), III-IV стадия (8 образцов) и V стадия (5 образцов). Описание подготовленных для спектроскопических исследований образцов хрусталиков приведено в таблице. Фотографии типичных хрусталиков на исследуемых стадиях зрелости катаракты представлены на рис. 1.

Описание образцов хрусталиков глаза человека *in vitro* для спектрофотометрических исследований

№ образца	Толщина среза, mm	Стадия зрелости катаракты
$ \begin{array}{r} 1-5 \\ 6-13 \\ 14-18 \end{array} $	$\begin{array}{c} 1.55 \pm 0.11 \\ 1.24 \pm 0.08 \\ 1.32 \pm 0.13 \end{array}$	II III–IV V

Рис. 1. Фотографии типичных хрусталиков глаза человека *in vitro*: II (*a*), III–IV (*b*) и V (*c*) стадии катаракты. Размер кадра 12×12 mm.

Рис. 2. Схематичное изображение держателя образца: *1* — образец (срез хрусталика); *2* — резиновые прокладки (o-rings); *3* — предметное стекло; *4* — физраствор; *5* — инъекционная игла.

Образцы закреплялись в держателе с минимальной компрессией, поскольку она оказывает значительное влияние на оптические свойства исследуемой мягкой биоткани [16]. Держатель представлял собой два предметных стекла (BK7), между которыми располагались резиновые прокладки (o-rings) для поддержки образца и обеспечения его равномерного зажатия (рис. 2). Для предотвращения дегидратации образца во время проведения измерений пространство между резиновой прокладкой и образцом предварительно заполнялось физраствором.

Измерения коэффициентов полного пропускания и диффузного отражения образцов были проведены с использованием спектрофотометра "Lambda 1050" ("Perkin Elmer, Inc.", США) с интегрирующей сферой диаметром 150 mm. Спектральные зависимости данных коэффициентов были получены в диапазоне длин волн 400–2300 nm. Схемы измерения полного пропускания и диффузного отражения показаны на рис. 3, *a* и *b* соответственно. Размер падающего на образец пучка света в этих схемах ограничивался диафрагмой 2 и составлял 3.0 ± 0.1 mm.

Рис. 3. Схема измерения полного пропускания (*a*) и диффузного отражения (*b*): 1 — пучок света; 2 — круглая диафрагма (диаметр 3 mm); 3 — образец в держателе; 4 интегрирующая сфера; 5 — фотодетектор; 6 — эталонный рассеиватель.

Рис. 4. Схема диафрагмирования пучка при измерении коллимированного пропускания: *1* — пучок света; 2–5 — круглые диафрагмы (диаметр 2 mm); 6 — образец в держателе.

Коллимированное пропускание образцов измерялось также с использованием спектрофотометра "Lambda 1050" ("Perkin Elmer, Inc.", США), но вместо интегрирующей сферы в измерительный канал устанавливалась система диафрагм. Измерение коллимированного пропускания проводилось в диапазоне 400–1800 nm. Схема измерения коллимированного пропускания коллимированного пропускания показана на рис. 4. Размер падающего на образец пучка света в этом случае составлял 2.0 ± 0.1 mm.

Выбор диапазонов длин волн был обусловлен высоким отношением сигнал/шум и, как следствие, сравнительно малой погрешностью измерений. При измерениях в диапазоне 400–850 nm использовался стандартный фотоэлектронный умножитель, а ширина щели составляла 2 nm. При измерениях в диапазоне 850–2300 nm использовался стандартный InGaAs-детектор и был установлен режим "Servo", подбирающий ширину щели автоматически в зависимости от сигнала на детекторе. Сканирование осуществлялось с шагом 2 nm.

Все спектральные измерения проводились в центральной области образцов, при этом смещение пучка от центра образца не превышало 0.2 mm. Для каждого образца было выполнено по 10 измерений.

Полученные при помощи спектрофотометрических измерений коэффициенты диффузного отражения (R_d) , а также коэффициенты полного (T_t) и коллимированного

(*T_{cm}*) пропускания образцов представляли собой начальный набор данных для дальнейшего анализа. На следующем этапе данные обрабатывались в программе "IAD" [https://omlc.org/software/iad/], реализующей итерационный инверсный метод "добавления-удвоения" (ИДУ) [17] для решения обратной задачи переноса излучения. Метод ИДУ успешно применяется для обработки данных спектрофотометрических измерений с использованием интегрирующих сфер [18-20], а результаты вычисления при таком подходе не зависят от соотношения между собой коэффициентов поглощения и рассеяния образца [17]. Поскольку соотношение коэффициентов поглощения и рассеяния катарактальных хрусталиков с различной стадией катаракты в широком диапазоне длин волн неизвестно, метод ИДУ лучше всего подходит для обработки результатов.

В результате обработки программа "IAD" формирует спектральные зависимости коэффициента поглощения (μ_a) и транспортного коэффициента рассеяния (μ'_s) образцов. Транспортный коэффициент рассеяния определяется следующим соотношением:

$$\mu_s' = \mu_s (1-g), \tag{1}$$

где μ'_s — коэффициент рассеяния, g — фактор анизотропии рассеяния.

При расчете μ_a и μ'_s при помощи метода ИДУ фактор анизотропии рассеяния был принят равным g = 0.8, что характерно для большинства биологических тканей в видимой и ближнем инфракрасном диапазонах [21]. Показатель преломления *n* хрусталика был принят равным 1.4 [3,4].

В эксперименте диаметр исследуемого образца существенно превышал размеры падающего на его поверхность светового пучка. Это позволило избежать ошибок в определении оптических коэффициентов, которые могли появиться за счет потерь рассеянного излучения через боковые стороны образца [22].

Фактор анизотропии рассеяния g вычислялся на основе измеренного коэффициента коллимированного пропускания T_{cm} , а также полученных на предыдущем этапе коэффициентов μ_a и μ'_s . Согласно закону Бугера–Ламберта–Бера, коэффициент коллимированного пропускания T_c определяется следующим образом:

$$T_c = \exp(-\mu_t l) = \exp(-(\mu_a + \mu_s)l), \qquad (2)$$

где μ_t — коэффициент экстинкции, l — толщина среза (образца), μ_s — коэффициент рассеяния, μ_a — коэффициент поглощения.

Для получения коэффициента коллимированного пропускания образца T_c необходима корректировка измеренного коэффициента коллимированного пропускания T_{cm} , т.е. необходимо учесть потери, связанные с отражением света на поверхностях стекол, между которыми был закреплен образец. Суммарный коэффициент отражения для системы воздух-стекло-воздух может быть оценен как [23]

$$R = \frac{R_{ag} + R_{gs} - 2R_{ag}R_{gs}}{1 - R_{ag}R_{gs}},$$
 (3)

где R_{ag} — коэффициент френелевского отражения на границе воздух-стекло, R_{gs} — коэффициент френелевского отражения на границе стекло-образец.

В таком случае измеренный коэффициент пропускания *T_{cm}* связан с коэффициентом коллимированного пропускания образца *T_c* следующим выражением [23]:

$$T_{cm} = \frac{(1-R)^2 T_c}{1-R^2 T_c^2}.$$
(4)

Отсюда коэффициент T_c может быть выражен как

$$T_c = \frac{-(1-R)^2 - \sqrt{(1-R)^4 + 4R^2 T_{cm}^2}}{2T_{cm}R^2}.$$
 (5)

Исходя из (1) и (2) для фактора анизотропии рассеяния образца имеем следующее выражение:

$$g = \frac{\mu'_s}{\frac{\ln(T_c)}{t} + \mu_a} + 1. \tag{6}$$

Для статистической обработки полученных данных использовался программный пакет "StatGraphics Plus" (Statgraphics Technologies, Inc., США). Для коэффициента поглощения (μ_a), коэффициента рассеяния (μ_s), фактора анизотропии (g) и транспортного коэффициента рассеяния (μ'_s) хрусталиков вычислялись среднее и доверительный интервал для каждого значения длины волны спектра. Сравнение спектров вышеперечисленных оптических коэффициентов, полученных для катарактальных хрусталиков с различной стадией катаракты между собой на предмет их статистически значимого различия, проводилось по тесту Колмогорова-Смирнова.

Результаты и обсуждение

Рассчитанные при помощи метода ИДУ спектральные зависимости коэффициента поглощения (μ_a) и транспортного коэффициента рассеяния (μ'_s) образцов хрусталика глаза человека с различной стадией катаракты представлены на рис. 5.

При сравнении спектральных зависимостей коэффициента поглощения образцов катарактальных хрусталиков II и III–IV стадий тест Колмогорова-Смирнова показал, что во всем исследованном спектральном диапазоне, за исключением $\lambda = 2100-2125$ нм, эти спектры статистически значимо отличаются друг от друга (p < 0.05). При сравнении спектров поглощения образцов катарактальных хрусталиков II и V стадий статистически значимое отличие наблюдается также во всем диапазоне длин волн, за исключением области $\lambda = 1400-1500$ nm,

а при сравнении III–IV и V стадий — за исключением $\lambda = 760-785\,\mathrm{nm}$ и 1855–1890 nm.

При сравнении спектральных зависимостей транспортного коэффициента рассеяния образцов катарактальных хрусталиков II и III–IV стадий тест Колмогорова-Смирнова показал, что во всем исследованном спектральном диапазоне, за исключением $\lambda = 2100-2125$ nm, эти спектры статистически значимо отличаются друг от друга (p < 0.05). При сравнении спектров транспортного коэффициента рассеяния образцов катарактальных хрусталиков II и V стадий статистически значимое отличие наблюдается также во всем диапазоне длин волн, за исключением $\lambda = 1385-1395$, 1530-1570, 1770-1850, 2100-2300 nm, а при сравнении III–IV и V стадий — за исключением $\lambda = 590-620$ и 2270-2300 nm.

Спектр поглощения катарактального хрусталика в видимой области в основном определяется пигментами, которые получаются из аминокислоты триптофан и накапливаются с возрастом и при катаракте [24-26. В ближней ИК области спектр поглощения хрусталика определяется содержащейся в нем свободной и связанной водой — пики поглощения в окрестностях 1450 и 1950 nm. В работе [27] отмечено отсутствие значительного изменения содержания воды в ядре хрусталиков человека при изменении возраста от 13 до 82 лет, что может быть не связано с катарактой. При катаракте ядро хрусталика уплотняется, а содержание связанной воды в нем уменьшается [27,28]. В диапазоне 1900-2100 nm наблюдается искажение спектров, связанное с практически нулевым пропусканием образцов, что обусловливает низкое значение соотношения сигналшум. Стоит отметить высокие значения транспортного коэффициента рассеяния (μ'_s) как в видимой, так и в ближней ИК областях спектра. Появление максимумов в спектрах μ'_{s} в ближней ИК области, где находятся полосы интенсивного поглощения воды, наблюдалось также в [18]. Согласно [18], подобный эффект может быть связан с ростом мнимой части показателя преломления рассеивателей и базового вещества, приводящим к значительному уменьшению фактора анизотропии рассеяния g, который, в частности, определяет транспортный коэффициент рассеяния.

Рассчитанные на основе выражений (1) и (6) спектральные зависимости коэффициента рассеяния (μ_s) и фактора анизотропии рассеяния (g) образцов хрусталика глаза человека с различной стадией катаракты представлены на рис. 6.

Искажение спектров в области 850-980 nm может быть связано с переключением датчиков: при $\lambda \le 850$ nm регистрация сигнала осуществлялась при помощи ФЭУ, а при $\lambda > 850$ nm — при помощи InGaAs фотоприемника.

При сравнении спектральных зависимостей коэффициента рассеяния катарактальных хрусталиков II и III-IV стадий тест Колмогорова-Смирнова показал, что

Рис. 5. Спектральные зависимости коэффициента поглощения $\mu_a(a)$ и транспортного коэффициента рассеяния $\mu'_s(b)$ образцов хрусталика глаза человека *in vitro* с различной стадией катаракты: 1 — II стадия, 2 — III–IV стадия, 3 — V стадия.

Рис. 6. Спектральные зависимости коэффициента рассеяния μ_s (*a*) и фактора анизотропии рассеяния *g* (*b*) образцов хрусталика глаза человека *in vitro* с различной стадией катаракты: *I* — II стадия, *2* — III—IV стадия, *3* — V стадия.

во всем исследованном спектральном диапазоне, за исключением области 1410-1520 nm, эти спектры статистически значимо отличаются друг от друга (p < 0.05). Спектральные зависимости коэффициента рассеяния катарактальных хрусталиков III–IV и V стадий статистически значимо отличаются друг от друга (p < 0.05) во всем исследованном диапазоне. При сравнении спектров поглощения катарактальных хрусталиков II и V стадий статистически значимое отличаются друг аликов II и V стадий статистически значимое отличие наблюдается также во всем диапазоне длин волн, за исключением $\lambda = 780-830$ nm.

При сравнении спектральных зависимостей фактора анизотропии образцов катарактальных хрусталиков II и III—IV стадий, а также при сравнении II и V стадий тест Колмогорова-Смирнова показал, что во всем исследованном спектральном диапазоне эти спектры статистически значимо отличаются друг от друга (p < 0.05). При сравнении спектров поглощения фактора анизотропии образцов катарактальных хрусталиков III–IV и V стадий статистически значимое отличие наблюдается также во всем диапазоне длин волн, за исключением $\lambda = 630-680$ и 1160–1280 nm.

Увеличение коэффициента рассеяния при переходе от II стадии катаракты к V стадии может быть связано с уплотнением ядра. Повышение жесткости ядра с возрастом отмечалось в работах [28,29]. Авторы работы [30] связывают уплотнение ядра с появлением новых волокон хрусталика на протяжении всей жизни, в результате чего старые волокна сжимаются в центре, а также с увеличением количества агрегированных нерастворимых белков. В исследованном диапазоне (400–1800 nm) зависимость коэффициента рассеяния от длины волны не была монотонно убывающей, а имела максимум в области полосы поглощения воды с центром около 1450 nm. Подобное явление также отмечалось в [31], где объяснялось ростом влияния комплексной части показателя преломления рассеивающих центров.

Заключение

Изучены оптические свойства хрусталиков глаза человека с различной стадией зрелости катаракты. Получены спектральные зависимости коэффициента поглощения (μ_a) и транспортного коэффициента рассеяния (μ'_s) в диапазоне 400–2300 nm, а также фактора анизотропии рассеяния (g) и коэффициента рассеяния (μ_s) (в диапазоне 400–1800 nm) для центральной части катарактальных хрусталиков глаза человека. Установлено, что при изменении стадии катаракты от II к III–IV, а затем к V стадии спектры вышеперечисленных оптических коэффициентов хрусталика статистически значимо изменяются, что необходимо учитывать при разработке новых методов диагностики, профилактики и лечение катаракты. Благодарности

Благодарности

Все измерения были проведены в ресурсном центре "Оптические и лазерные методы исследования вещества" Санкт-Петербургского государственного университета.

Соблюдение этических норм

Все исследования и процедуры с участием людей, соответствуют этическим стандартам Хельсинкской декларации 1964 г. и ее последующим изменениям или сопоставимым нормам этики. От каждого из включенных в исследование участников было получено информированное добровольное согласие.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- Maher E.F. // USAF School of Aerospace Medicine. 1978. Report SAM-TR-78-32.
- [2] Sardar D.K., Yow R.M., Swanland G.-Y., Thomas R.J., Tsin A.T.C. // Proc. SPIE. 2006. V. 6138. P. 613815.
- [3] Yust B.G., Mimun L.C., Sardar D.K. // Lasers Med Sci. 2012.
 V. 27. N 2. P. 413–422.
- [4] Sardar D.K., Yust B.G., Barrera F.J., Mimun L.C., Tsin A.T.C. Lasers Med Sci. 2009. V. 24. N 6. P. 839–847.

- [5] Tuchin V.V., Maksimova I.L., Kochubey V.I., Semenova T.N., Tatarintsev S.N., Babkova N.L. // Proc. SPIE. 1995. V. 2393.
 P. 237–253.
- [6] Tuchin V.V., Maksimova I.L., Yaroslavskaya A.N., Semenova T.N., Tatarintsev S.N., Kochubey V.I., Isotova V.F. // Proc. SPIE. 1994. V. 2126. P. 393–406.
- [7] Тучин В.В. Лазеры и волоконная оптика в биомедицинских исследованиях. 2-е изд., испр. и доп. М.: Физматлит, 2010. 488 с.
- [8] Tuchin V.V., Zhestkov D.M. // Proc. SPIE. 1997. V. 3053.
 P. 123–128.
- [9] Zigman S., Sutliff G., Rounds M. // Lens Eye Toxicity Res. 1991. V. 8. P. 259–280.
- [10] Dillon J. // J. Photochem. Photobiol. B: Biol. 1991. V. 10.
 N 1–2. P. 23–40.
- [11] Gaillard E.R., Zheng L., Merriam J.C., Dillon J. // Investigative Ophthalmology & Visual Science. 2000. V. 41. N 6. P. 1454–1459.
- [12] Копаев С. Ю., Малюгин Б. Э., Копаева В.Г. // Офтальмохирургия. 2014. № 4. С. 22–28.
- [13] Беликов А.В., Гагарский С. В., Губин А.Б., Вайнер С.Я., Сергеев А.Н., Смирнов С.Н. // Научно-технический вестник информационных технологий, механики и оптики. 2015. Т. 15. № 6. С. 1021–1029.
- [14] Donaldson K.E., Braga-Mele R., Cabot F., Davidson R., Dhaliwal D.K., Hamilton R., Jackson M., Patterson L., Stonecipher K., Yoo S.H. // J. Cataract. Refract. Surg. 2013. V. 39. P. 1753–1763.
- [15] *Buratto L.* Phacoemulsification: Principles and Techniques. SLACK Incorporated, 2003. 768 p.
- [16] Chan E. K., Sorg B., Protsenko D., O'Neil M., Motamedi M., Welch A.J. // IEEE J. Sel. Top. Quant. Electron. 1996. V. 2. N 4. P. 943–950.
- [17] Prahl S.A., Van Gemert M.J.C., Welch A.J. // Appl. Opt. 1993.
 V. 32. N 4. P. 559–568.
- [18] Bashkatov A.N., Genina E.A., Kochubey V.I., Tuchin V.V. // J. Phys. D: Appl. Phys. 2005. V. 38. P. 2543–2555.
- [19] Башкатов А.Н., Генина Э.А., Кочубей В.И., Тучин В.В. // Опт. и спектр. 2010. Т. 109. № 2. С. 226–234; Bashkatov A.N., Genina E.A., Kochubey V.I., Tuchin V.V. // Opt. Spectrosc. 2010. V. 109. Iss. 2. Р. 197–204.
- [20] Башкатов А.Н., Генина Э.А., Козинцева М.Д., Кочубей В.И., Городков С.Ю., Тучин В.В. // Опт. и спектр. 2010. Т. 120. № 1. С. 6–14; Bashkatov A.N., Genina E.A., Kozintseva M.D., Kochubei V.I., Gorodkov S.Yu., Tuchin V.V. // Opt. Spectrosc. 2016. V. 120. Iss. 1. P. 1–8.
- [21] *Tuchin V.V.* Tissue Optics: Light scattering methods and instruments for medical diagnosis. SPIE Press, 2007. 882 p.
- [22] Pickering J.W., Prahl S.A., van Wieringen N., Beek J.F., Sterenborg H.J.C.M., van Gemert M.J.C. // Appl. Opt. 1993. V. 32. N 4. P. 399–410.
- [23] Кочубей В.И., Башкатов А.Н. Спектроскопия рассеивающих сред. Саратов: Новый ветер, 2014. 91 с.
- [24] Simunovic M.P. // Arch Ophthalmol. 2012. V. 130. N 7. P. 919–926.
- [25] Lerman S. // J. Gerontology. 1983. V. 38. N 3. P. 293-301.
- [26] Sen A.C., Ueno N., Chakrabarti B. // Photochemistry and Photobiology. 1992. V. 55. N 5. P. 753–764.
- [27] Pescosolido N., Barbato A., Giannotti R., Komaiha C., Lenarduzzi F. // Int J Ophthalmol. 2016. V. 9. N 10. P. 1506–1517.

- [28] *Heys K.R.* Changes to stiffness and water in the human lens with aging and cataract. PhD thesis. University of Wollongong, 2010. 133 p.
- [29] Heys K.R., Cram S.L., Truscott R. J. // Molecular Vision. 2004. V. 16. N 10. P. 956–963.
- [30] Tabandeh H., Thompson G. M., Heyworth P. // Eye. 1994.
 V. 8. P. 453–455.
- [31] Башкатов А.Н., Генина Э.А., Кочубей В.И., Рубцов В.С., Колесникова Е.А., Тучин В.В. // Квантовая электроника. 2014. Т. 44. № 8. С. 779–784; Bashkatov A.N., Genina E.A., Kochubey V.I., Rubtsov V.S., Kolesnikova E.A., Tuchin V.V. // Quantum Electronics. 2014. V. 44. N 8. P. 779–784.