# Упругие и кинетические свойства монокристалла La<sub>0.75</sub>Ba<sub>0.25</sub>MnO<sub>3</sub>

© Р.И. Зайнуллина, Н.Г. Бебенин, В.В. Машкауцан, В.В. Устинов, Я.М. Муковский\*, А.А. Арсенов\*

Институт физики металлов Уральского отделения Российской академии наук,

620219 Екатеринбург, Россия

\* Московский государственный институт стали и сплавов,

117936 Москва, Россия

E-mail: bebenin@imp.uran.ru

(Поступила в Редакцию 11 февраля 2003 г.)

Приведены результаты экспериментального исследования температурных зависимостей скорости продольного звука, внутреннего трения, сопротивления и термоэдс монокристалла La<sub>0.75</sub>Ba<sub>0.25</sub>MnO<sub>3</sub>. При  $T_S \approx 170$  K обнаружен структурный переход, сопровождающийся большим (18%) скачком скорости звука. В интервале 156–350 K на температурных зависимостях скорости звука и внутреннего трения наблюдается температурный гистерезис. Обнаружен пик внутреннего трения, обусловленный релаксационными процессами. Между областями металлической и полупроводниковой проводимости имеется переходная область протяженностью около 80 K, расположенная ниже температуры Кюри  $T_c = 300$  K.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (гранты № 00-02-17544 и 00-15-96745), а также УрО РАН (конкурс научных проектов молодых ученых за 2002 г.).

В манганитах лантана  $La_{1-x}D_xMnO_3$  (D = Ca, Sr, Ва) сильное взаимодействие магнитной, электронной и решеточной подсистем приводит к многообразию особенностей физических свойств. В них наблюдаются структурные превращения, магнитные переходы, концентрационные переходы металл-диэлектрик, переходы металл-диэлектрик по температуре и т.д. Фазовые диаграммы манганитов редких земель собраны в [1]. Решетка кристаллов La<sub>1-x</sub>Ca<sub>x</sub>MnO<sub>3</sub> является орторомбической при  $T < 700 \, \text{K}$ ; при более высоких температурах наблюдается переход в ромбоэдрическую фазу. Фазовая диаграмма  $La_{1-x}Sr_xMnO_3$  является более сложной; в частности, переход между орторомбической и ромбоэдрической фазами может происходить при температурах, близких к комнатной как по концентрации, так и по температуре, а при 0.2 < x < 0.7 решетка является ромбоэдрической при всех Т.

Насколько нам известно, для системы La<sub>1-x</sub>Ba<sub>x</sub>MnO<sub>3</sub> в литературе имеются сведения о свойствах лишь отдельных составов. Так, параметры решетки приведены в [2] для  $x \le 0.24$  только для комнатной температуры. Температурная зависимость параметров решетки известна лишь для монокристалла La<sub>0.80</sub>Ba<sub>0.20</sub>MnO<sub>3</sub>, в котором обнаружен переход между орторомбической *Pnma* и ромбоэдрической  $R\bar{3}c$  фазами при  $T_S \approx 190$  K [3]. Кинетические эффекты исследовались главным образом на поликристаллических образцах и тонких пленках с  $x \approx 1/3$  (см., например, [4,5]) и на упомянутом монокристалле La<sub>0.80</sub>Ba<sub>0.20</sub>MnO<sub>3</sub> [6].

Исследования упругих свойств лантан-бариевых манганитов, по-видимому, не проводились, хотя они могут быть весьма информативными. Например, измерения скорости звука и внутреннего трения в монокристаллах  $La_{1-x}Sr_xMnO_3$  позволили подробно изучить структурные переходы как между *Pnma* и  $R\bar{3}c$  фазами, так и между различными модификациями (O' и  $O^*$ ) орторомбической фазы, а обнаружение гигантского температурного гистерезиса скорости звука привело к выводу о сосуществовании орторомбической и ромбоэдрической фаз в  $La_{1-x}Sr_xMnO_3$  в широком температурном интервале [7].

В настоящей статье продолжается исследование монокристаллов системы  $La_{1-x}Ba_xMnO_3$ , начатое в наших работах [3,6]. Измерения температурных зависимостей скорости продольного звука V, внутреннего трения  $Q^{-1}$ , сопротивления  $\rho$  и термоэдс S проводились на выращенном впервые монокристалле  $La_{0.75}Ba_{0.25}MnO_3$ .

## 1. Образцы и методика измерений

Поликристаллы (La<sub>0.75</sub>Ba<sub>0.25</sub>)<sub>0.95</sub>MnO<sub>3</sub> получены спеканием смеси BaCO<sub>3</sub>, La<sub>2</sub>O<sub>3</sub> и Mn<sub>3</sub>O<sub>4</sub> при 1100°C в течение 24 часов. После измельчения и повторного прессования полученный брусок отжигали 24 часа при 1350°С. Плотность синтезированного поликристалла составляла около 80% от теоретического значения. Рост монокристалла из поликристаллической заготовки осуществлялся методом плавающей зоны с радиационным нагревом со скоростью 5 mm/h в атмосфере Ar. В результате получены монокристаллические цилиндрические стержни диаметром 4 и длиной 30-40 mm без включений других фаз. Направление роста кристаллов было близко к оси [110]. Исследование с помощью сканирующего электронного микроскопа-микроанализатора Super-Probe 733 фирмы JEOL показало, что в центральной части слитка состав близок к La<sub>0.75</sub>Ba<sub>0.25</sub>MnO<sub>3</sub>, а на концах слитка содержание бария может отличаться на 1-2%.

Для измерения скорости звука и внутреннего трения использовались стрежни длиной 20 mm. Скорость звука и внутреннее трение измерялись в интервале 5–420 К методом составного вибратора на частотах порядка 100 kHz. Этот метод основан на измерении резонансной частоты и добротности механической системы, состоящей из исследуемого образца и приклеенного к нему пьезоэлектрического преобразователя [8]. В качестве пьезопреобразователя использовался кварцевый вибратор X-среза, возбуждающий продольные колебания. Измерения упругих свойств проводились в атмосфере газообразного гелия со средней скоростью изменения температуры 20 K/h.

Образцы для исследования электросопротивления и термоэдс вырезались из средней части исходного монокристалла и имели форму пластин размером  $7 \times 2.6 \times 1.4$  mm. Электросопротивление измерялось обычным четырехконтактным методом. Измерения термоэдс осуществлялись при разности температур  $\approx 2$  K, которая создавалась нагревателем, расположенным вблизи одного края образца. Магнитное поле напряженностью до 15 кОе прикладывалось перпендикулярно пластине.

## 2. Результаты измерений

На рис. 1 приведены кривые температурной зависимости скорости звука V(T), снятые при охлаждении и нагреве. При T > 300 K скорость звука почти не зависит от Т. При Т = 297 К наблюдается слабый минимум. С понижением температуры скорость звука растет до 250 К, затем начинает уменьшаться. При достижении  $T = 165 \,\mathrm{K}$  происходит резкое уменьшение V(T), которое продолжается до T = 156 K; дальнейшее понижение температуры приводит к росту V. Значения V(T), измеренные при охлаждении и нагреве, совпадают в интервале от гелиевой температуры до 156 К. При нагреве резкий рост скорости звука начинается при 173 К и завершается при 180 К. Принимая во внимание результаты для La<sub>0.80</sub>Ba<sub>0.20</sub>MnO<sub>3</sub> [3] и La<sub>0.80</sub>Sr<sub>0.20</sub>MnO<sub>3</sub> [7], можно полагать, что в интервале 156-180 К происходит структурный переход от низкотемпературной орторомби-



**Рис. 1.** Температурные зависимости скорости продольного звука в монокристалле La<sub>0.75</sub>Ba<sub>0.25</sub>MnO<sub>3</sub>, снятые при нагреве и охлаждении.



**Рис. 2.** Температурные зависимости внутреннего трения  $Q^{-1}$  монокристалла La<sub>0.75</sub>Ba<sub>0.25</sub>MnO<sub>3</sub>, снятые при нагреве и охлаждении.

ческой *Рпта* к высокотемпературной ромбоэдрической структуре  $R\bar{3}c$ . Температурный гистерезис наблюдается в интервале от 156 до 350 К.

Следует отметить, что при  $T < T_c$  помимо основного резонанса наблюдался дополнительный резонанс на более низкой частоте. Кривые V(T), определенные из характеристик основного и дополнительного сигналов, близки друг к другу. В области структурного перехода наблюдался еще один дополнительный резонанс. Наличие дополнительного сигнала в ферромагнитной области, по-видимому, обусловлено магнитоупругим взаимодействием. Возникновение третьего резонанса в области структурного перехода обусловлено, очевидно, сосуществованием орторомбической и ромбоэдрической фаз.

На рис. 2 показаны кривые температурной зависимости внутреннего трения  $Q^{-1}$ , измеренные на образце длиной около 20 mm. Заметна тенденция к уменьшению  $Q^{-1}$  с понижением температуры. На кривой, снятой при охлаждении, наблюдаются пики внутреннего трения при 412, 302, 162 и 40 К. Положение указанных пиков не зависит от того, при охлаждении или нагреве производятся измерения, за исключением пика, связанного со структурным переходом (при охлаждении — 162 К, при нагреве — 172 К). Кривые, снятые при нагреве и охлаждении, совпадают при T < 156 и T > 350 К.

Температурные зависимости сопротивления  $\rho(T)$ при H = 0 и 10 kOe и магнитосопротивления  $\Delta \rho / \rho = [\rho(H) - \rho(0)] / \rho(0)$ , снятые при охлаждении, показаны на рис. 3. В интервале температур 80–300 K производная  $d\rho/dT > 0$ . При T > 250 K сопротивление круто растет с температурой и достигает максимума при T = 320 K, а затем поведение становится полупроводниковым  $(d\rho/dT < 0)$ . Максимум  $d\rho/dT$  имеет место при T = 294 K. Магнитное поле понижает сопротивление и смещает максимум в сторону более высоких температур.



**Рис. 3.** Температурные зависимости удельного электросопротивления  $\rho(T)$  при H = 0 и 10 kOe и магнитосопротивления  $\Delta \rho / \rho$  монокристалла La<sub>0.75</sub>Ba<sub>0.25</sub>MnO<sub>3</sub>. На вставке приведены температурные зависимости  $d\rho(0)/dT$ , снятые при нагреве и охлаждении.



Рис. 4. Температурные зависимости термоэдс *S* при H = 0 и 10 kOe и  $\Delta S = S(0) - S(H = 10 \text{ kOe})$  монокристалла La<sub>0.75</sub>Ba<sub>0.25</sub>MnO<sub>3</sub>.

Магнитосопротивление достигает максимального значения 40% при T = 297 К. Структурный переход и связанный с ним гистерезис выявляются только на температурной зависимости  $\rho/dT$  (вставка на рис. 3).

Полевые зависимости магнитосопротивления La<sub>0.75</sub>Ba<sub>0.25</sub>MnO<sub>3</sub> имеют вид, характерный для монокристаллов:  $\Delta \rho / \rho \sim H$  при  $T \ll T_c$  и  $\Delta \rho / \rho \sim H^2$  при  $T \gg T_c$ .

На рис. 4 представлены температурные зависимости термоэдс при H = 0 и 10 kOe. При низких темпера-

турах S(0) и S(H = 10 kOe) положительны, достигают максимума при T = 160 K, а при T = 234 K меняют знак. Разность  $\Delta S = S(0) - S(H = 10 \text{ kOe})$  достигает экстремума при T = 299 K.

#### 3. Обсуждение результатов измерений

Как известно, переход из парамагнитного в ферромагнитное состояние сопровождается особенностями на температурных зависимостях V(T),  $Q^{-1}(T)$ ,  $d\rho/dT$ ,  $\Delta\rho/\rho(T)$  и  $\Delta S(T)$ . Из приведенных выше данных следует, что температура Кюри  $T_c$  в нашем образце La<sub>0.75</sub>Ba<sub>0.25</sub>MnO<sub>3</sub> равна приблизительно 300 K.

Рассмотрим особенности, связанные со структурным превращением  $Pnma - R\bar{3}c$ . Прежде всего обращает на себя внимание большая — порядка 200 К — протяженность температурного гистерезиса. Ранее такой гигантский температурный гистерезиса. Ранее такой гигантский температурный гистерезиса наблюдался нами для монокристалла La<sub>0.80</sub>Sr<sub>0.20</sub>MnO<sub>3</sub> [7]. Скачок скорости звука составляет 18%, тогда как в La<sub>0.80</sub>Sr<sub>0.20</sub>MnO<sub>3</sub> при аналогичном структурном переходе скачок не превышает 5%. Это указывает на то, что перестройка кристаллической решетки при  $Pnma - R\bar{3}c$ -превращении в La-Ba-манганитах является более существенной, чем в кристаллах La<sub>1-x</sub>Sr<sub>x</sub>MnO<sub>3</sub>, что может быть связано с большей величиной радиуса иона Ba<sup>2+</sup>.

Пик на кривой  $Q^{-1}(T)$  при 412 К, по-видимому, обусловлен релаксационными процессами. Подобные максимумы обнаружены нами ранее в La<sub>0.75</sub>Sr<sub>0.25</sub>MnO<sub>3</sub> [7] и в La<sub>0.60</sub>Eu<sub>0.07</sub>Sr<sub>0.33</sub>MnO<sub>3</sub> [9].

Происхождение максимума внутреннего трения при 40 К остается неизвестным.

Перейдем к обсуждению температурных зависимостей сопротивления и термоэдс. Как известно, при T = 0 материал обладает конечной проводимостью, т.е. является металлом, если уровень Ферми Е<sub>F</sub> лежит в области делокализованных состояний [10]. Изменение концентрации примесей или иных дефектов может привести к совпадению  $E_F$  и края подвижности  $E_c$ , который разделяет области локализованных и делокализованных состояний, в этом случае происходит переход металл-диэлектрик. В манганитах существенную роль играет магнитный беспорядок, роль которого возрастает при приближении к температуре Кюри. Как следствие, возможен переход от металлической проводимости, имеющей место при  $T < T_c$ , к проводимости полупроводникового типа в парамагнитной области. Вообще говоря, край подвижности не является резким, его уширение обусловлено, во-первых, неупругим взаимодействием носителей тока с фононами и, во-вторых, электрон-электронным взаимодействием [11]. Учитывая, что с ростом Т взаимодействие с фононами растет, как и размытие электронной функции распределения, можно сделать вывод о том, что переход металл-изолятор при изменении температуры не может быть резким и должна существовать более или менее широкая переходная область — область перехода металл-диэлектрик — от чисто металлического к полупроводниковому типу проводимости.

В области металлической проводимости для манганитов характерна квадратичная зависимость сопротивления от температуры:  $\rho(T) = \rho_0 + AT^2$ . В переходной области при росте Т постепенно нарастает вклад локализованных носителей в кинетические коэффициенты, а на диэлектрической стороне перехода проводимость осуществляется активацией носителей в область делокализованных состояний (на край подвижности) и перескоками между локализованными состояниями. Проводимость можно представить в виде  $\sigma = \sigma_{
m deloc} + \sigma_{
m hop},$ где  $\sigma_{
m deloc}$  — вклад делокализованных состояний, а  $\sigma_{
m hop}$  – прыжковая проводимость. Для термоэдс можно напи-сать:  $S = S_{deloc} \frac{\sigma_{deloc}}{\sigma} + S_{hop} \frac{\sigma_{hop}}{\sigma}$ . Поскольку термоэдс дело-кализованных носителей  $S_{deloc}$  может быть существенно меньше  $S_{hop}$  (в металлах S порядка 1  $\mu$ V/K, тогда как в полупроводниках термоэдс порядка 10<sup>2</sup>-10<sup>3</sup> µV/K), вклад локализованных носителей в термоэдс может быть значительно больше, чем в проводимость.

Обратимся к анализу экспериментальной зависимости  $\rho(T)$ . При  $T < 320 \, \text{K}$  производная  $d\rho/dT > 0$ , что многими авторами рассматривается как указание на металлическую проводимость. В обзоре [12], однако, указывается, что в модели свободных электронов при типичных для манганитов значениях параметров средняя длина свободного пробега становится равной параметру решетки, когда сопротивление достигает  $10^{-3} \Omega \cdot cm$ . Это значение близко к сопротивлению монокристалла  $La_{0.83}Sr_{0.17}MnO_3$  при T = 4 K [13] (в системе  $La_{1-x}Sr_xMnO_3$  при x = 0.17 происходит концентрационный переход металл-диэлектрик). При всей условности такого рода оценок они показывают, что в нашем монокристалле La<sub>0.75</sub>Ba<sub>0.25</sub>MnO<sub>3</sub> окрестность  $T_c$ , где  $\rho$  порядка  $10 \,\mathrm{m}\Omega \cdot \mathrm{cm}$  и выше, не относится к области существования металлической фазы. Чтобы определить область температур, в которой исследуемый манганит находится в металлическом состоянии, мы построили зависимость  $\rho$  от  $T^2$  (вставка на рис. 5). Видно, что при T < 180 K сопротивление следует закону  $T^2$  с параметрами  $\rho_0 = 3.4 \cdot 10^{-4} \,\Omega \cdot \mathrm{cm}$  и  $A = 1.7 \cdot 10^{-8} \Omega \cdot \text{сm/K}^2$ . Величина A близка к значению, полученному для монокристалла La<sub>0.75</sub>Sr<sub>0.25</sub>MnO<sub>3</sub> [14]. Найденное для  $La_{0.75}Ba_{0.25}MnO_3$  значение  $\rho_0$  примерно в 4 раза превосходит сопротивление  $La_{0.75}Sr_{0.25}MnO_3$ при T = 4 K, что связано, по-видимому, с бо́льшим радиусом иона бария и обусловленным этим более сильным немагнитным беспорядком в La<sub>1-x</sub>Ba<sub>x</sub>MnO<sub>3</sub> по сравнению с  $La_{1-x}Sr_xMnO_3$  при одинаковом содержании двухвалентных ионов [15].

При температурах T > 180 К зависимость сопротивления от температуры усиливается, но какие-либо особенности, на первый взгляд, отсутствуют вплоть до окрестности  $T_c$ . Рассмотрим, однако, геометрические свойства кривой  $\rho(T)$ . Положим  $\tau = T/T_c$ ,



**Рис. 5.** Кривизна k как функция температуры T. На вставке приведена зависимость  $\rho$  от  $T^2$ .

 $\widetilde{
ho}=
ho(T)/
ho(T_c)$  и вычислим кривизну k по формуле:  $k = \tilde{
ho}'' / \left[ 1 + (\tilde{
ho}')^2 \right]^{3/2}$ , где штрих означает дифференцирование по т; результат представлен на рис. 5. При  $T \ll T_c$  кривизна мала, а особенность при  $T \approx 160 \,\mathrm{K}$ связана, очевидно, что структурным *Pnma*-*R*3*c*-превращением. Заметный рост k начинается вблизи 200 K, при  $T \approx 260 \,\mathrm{K}$  кривизна достигает выраженного максимума, а в точке перегиба (максимума  $d\rho/dt$ ) обращается в нуль. При 320 К кривизна имеет глубокий минимум, соответствующий максимуму р. Таким образом, происхождение особенностей на кривой k(T) вполне понятно, за исключением максимума кривизны при 260 К. Учитывая приведенные выше общие соображения и что  $\rho(T = 260 \,\mathrm{K}) = 2.2 \cdot 10^{-3} \,\Omega \cdot \mathrm{cm}$ , можно принять, что эта температура является верхней границей области перехода металл-диэлектрик, лежащей между областями существования металлической и полупроводниковой проводимости. За нижнюю границу переходной области можно принять T = 180 К.

В парамагнитной области при T > 320 К производная  $d\rho/dT$  отрицательна, но определить, каким образом сопротивление зависит от температуры — как  $\exp(E_{\rm activ}/T)$  или иначе — из наших данных не представляется возможным.

Температурная зависимость S(T) (рис. 4) в исследованном нами La<sub>0.75</sub>Ba<sub>0.25</sub>MnO<sub>3</sub> имеет тот же вид, что и в La<sub>0.75</sub>Sr<sub>0.25</sub>MnO<sub>3</sub> [16], но максимальное значение S ( $1.6 \,\mu$ V/K) примерно в 3 раза меньше. Ниже 160 K термоэдс мала по величине, положительна и возрастает при увеличении T, что указывает на преобладание дырочного вклада и металлическую проводимость. Уменьшение S при T > 160 K означает наличие отрицательного вклада, который обусловлен носителями тока с энергией  $E > E_F$ . Поскольку температура максимума термоэдс (160 K) лишь на 20 K ниже температуры, при которой начинается переход от металлической проводимости к полупроводниковой (180 K), можно сделать

вывод о том, что отрицательный вклад в S обусловлен локализованными носителями. При T > 234 K вклад таких носителей в термоэдс преобладает, что, однако, не означает  $\sigma_{\rm hop} \gg \sigma_{\rm deloc}$ . Абсолютная величина S не превышает  $12\,\mu$ V/K вплоть до 400 K, что указывает на сохраняющуюся конкуренцию вкладов от делокализованных ( $S_{\rm deloc} > 0$ ) и локализованных ( $S_{\rm hop} < 0$ ) носителей. К сожалению, разделить эти вклады на основе имеющихся экспериментальных данных не представляется возможным.

Таким образом, в работе впервые проведены исследования монокристалла La<sub>0.75</sub>Ba<sub>0.25</sub>MnO<sub>3</sub>. Обнаружен структурный переход между низкотемпературной орторомбической и высокотемпературной ромбоэдрической фазами при  $T_S \approx 170$  K. Скачок скорости звука при этом переходе составляет 18%. На температурных зависимостях скорости звука и внутреннего трения наблюдается гигантский по протяженности (порядка 200 K) температурный гистерезис.

При низких температурах проводимость имеет металлический характер, а в окрестности температуры Кюри  $T_c = 300 \text{ K}$  и в парамагнитной области кристалл находится в диэлектрическом состоянии. Переход металл-диэлектрик по температуре не является резким; переходная область лежит ниже температуры Кюри в интервале 180–260 К.

Показано, что температурная зависимость термоэдс при T > 160 К определяется конкуренцией вкладов от делокализованных и локализованных носителей.

#### Список литературы

- [1] В.Е. Найш. ФММ 92, 5, 16 (2001).
- [2] B. Dabrowski, K. Rogacki, X. Xiong, P.W. Klamut, R. Dybzinski, J. Shaffer, J.D. Jorgensen. Phys. Rev. B 58, 5, 2716 (1998).
- [3] V.E. Arkhipov, N.G. Bebenin, V.P. Dyakina, V.S. Gaviko, A.V. Korolev, V.V. Mashkautsan, E.A. Neifeld, R.I. Zainullina, Ya.M. Mukovskii, D.A. Shulyatev. Phys. Rev. B 61, 17, 11 229 (2000).
- [4] Н.Г. Бебенин, Р.И. Зайнуллина, В.В. Машкауцан, А.М. Бурханов, В.Г. Васильев, Б.В. Слободин, В.В. Устинов. ЖЭТФ 113, 2, 981 (1998).
- [5] R. von Helmolt, J. Wecker, B. Holzapfel, L. Schultz, K. Samwer. Phys. Rev. Lett. 71, 14, 2331 (1993).
- [6] Н.Г. Бебенин, Р.И. Зайнуллина, В.В. Машкауцан, В.С. Гавико, В.В. Устинов, Я.М. Муковский, Д.А. Шулятев. ЖЭТФ 117, 6, 1181 (2000).
- [7] R.I. Zainullina, N.G. Bebenin, A.M. Burkhanov, V.V. Ustinov, Ya.M. Mukovskii. Phys. Rev. B 66, 064 421 (2002).
- [8] H.J. McSkimin. In: Physical Acoustics. Principle and Methods / Ed. by W.P. Mason. Academic Press, N.Y.–London (1964). Vol. 1. Part A. P. 272. [Пер. Г. Мак-Скимин. В кн.: Физическая акустика. Методы и приборы ультразвуковых исследований / Под ред. У. Мэзона. Т. 1А. Мир, М. (1966). С. 327].
- [9] Р.И. Зайнуллина, Н.Г. Бебенин, В.В. Машкауцан, А.М. Бурханов, Ю.П. Сухоруков, В.В. Устинов, В.Г. Васильев, Б.В. Слободин. ФТТ 42, 2, 284 (2000).

- [10] Н. Мотт, Э. Дэвис. Электронные процессы в некристаллических веществах. Мир, М. (1982). Т. 1. 368 с.
- [11] N. Mott. J. Phys. C: Solid State Phys. 20, 3075 (1987).
- [12] M.B. Salamon, M. Jaime. Rev. of Modern Physics 73, 3, 583 (2001).
- [13] T. Okuda, A. Asamitsu, Y. Tomioka, T. Kimura, Y. Taguchi, Y. Tokura. Phys. Rev. Lett. 81, 15, 3203 (1998).
- [14] A. Urushibara, Y. Moritomo, T. Arima, A. Asamitsu, G. Kido, Y. Tokura. Phys. Rev. B 51, 20, 14103 (1995).
- [15] M.M. Savosta, A.N. Ulyanov, N.Yu. Starostyuk, M. Marysko, P. Novak. Eur. Phys. J. B12, 393 (1999).
- [16] A. Asamitsu, Y. Moritomo, Y. Tokura. Phys. Rev. B 53, 6, R2952 (1996).