12

Новые наноразмерные люминофоры, полученные испарением силикатов и германатов РЗЭ

© М.Г. Зуев¹, В.Г. Ильвес², С.Ю. Соковнин², А.А. Васин¹, И.В. Бакланова¹

¹ Институт химии твердого тела УрО РАН, Екатеринбург, Россия ² Институт электрофизики УрО РАН, Екатеринбург, Россия

E-mail: Zuev@ihim.uran.ru

Методом испарения импульсным электронным пучком мишеней из поликристаллических фосфоров состава Ca₂M₈(SiO₄)₆O₂ : Eu (M = Y, Gd) и Ca₂La₈(GeO₄)₆O₂ : Eu со структурой оксиапатита впервые получены нанофосфоры в аморфном состоянии. Обнаружено восстановление ионов Eu³⁺ \rightarrow Eu²⁺ в электронном пучке. Обнаружена модификация спектров комбинационного рассеяния света (KP) образцов при уменьшении частиц от объемного до наноразмерного состояния. Рассмотрено изменение ширины запрещенной зоны E_g образцов при переходе от объемного порошка к НП. Изучены спектрально-люминесцентные характеристики образцов в поликристаллическом и наноаморфном состояниях. Показано, что при переходе к нанообразцам поле лигандов вокруг Eu²⁺ изменяется. Это может быть обусловлено нарушением трансляционной симметрии в НП. Ослабляется связь 4f- и 5d-электронов. Возникает вырождение уровня 2e_g . Предположительно обнаружено восстановление ионов Eu³⁺ \rightarrow Eu²⁺ в электронном пучке за счет разрыва связи Si(Ge)–O в процессе испарения образцов и захвата высвободившегося электрона ионами Eu³⁺.

Авторы признательны УрО РАН за финансовую поддержку (проект № 18-10-3-32) и А.М. Мурзакаеву за микроскопический анализ НП.

DOI: 10.21883/FTT.2019.05.47610.34F

1. Введение

Исследование влияния уменьшения частиц от объемного до наноразмерного состояния на формирование свойств люминофоров является актуальным. В ряде работ рассматривается влияние наноразмерного состояния образцов на интенсивность свечения ионов РЗЭ, в частности, Tb³⁺, Eu³⁺ [1,2]. В статье [2], например, показано, что интенсивность свечения ионов Eu³⁺ в объемных люминофорах $YBO_3 : Eu^{3+}$ выше, чем в соответствующих нанолюминофорах, синтезированных методом соосаждения. В работе [3], наоборот, интенсивность свечения Eu³⁺ выше в аморфных нанолюминофорах, чем в объемных образцах $Sr_2Gd_8(SiO_4)_6O_2$: Еu. Нанолюминофоры получены испарением электронным пучком (ИЭП) мишеней из указанных силикатов. Вызывает интерес изучение зависимости спектрально-люминесцентных характеристик нанолюминофоров от способа их получения.

Силикатные и германатные матрицы, содержащие ионы РЗЭ, известны как эффективные люминофоры, перспективные, например, для конструирования LED устройств [8]. Имеется ряд статей, посвященным силикатным и германатным нано- и объемным люминофорам, полученным различными способами и содержащим ионы Eu³⁺ и Eu²⁺ [9–13,14]. Нанолюминофоры во многих случаях получают с помощью золь—гель процессов.

В работе [3] методом ИЭП из поликристаллических фосфоров $Sr_2Gd_8(SiO_4)_6O_2$: Еи со структурой оксиапатита впервые получены нанофосфоры в аморфном состоянии. Методами дифференциальной сканирующей калориметрии (DSC) и термогравиметрии (TG) изучены процессы кристаллизации аморфного образца. Изучены спектрально-люминесцентные характеристики фосфоров $Sr_2Gd_{6.4}Eu_{1.6}Si_6O_{26-\delta}$ в поликристаллическом и наноаморфном состояниях. Обнаружена модификация КР-спектров при уменьшении частиц от объемного до наноразмерного состояния. Наряду с изолированными группами SiO₄ в наноаморфных образцах возникает небольшая конденсация тетраэдров SiO₄, аналогичная эффекту полимеризации в быстрозакаленных силикатных расплавах. В книге [15] детально описан метод ИЭП для получения люминесцентных материалов, в том числе и силикатных.

Цель настоящего исследования — разработать способ получения новых сложнооксидных силикатных и германатных нанолюминофоров, содержащих ионы европия, рассмотреть механизм восстановления ионов $\mathrm{Eu}^{3+} \to \mathrm{Eu}^{2+}$ в процессе испарения поликристаллических фосфоров методом ИЭП, определить спектрально-люминесцентные характеристики полученных фосфоров. В работе методом ИЭП поликристаллических фосфоров составов $Ca_2Y(Gd)_8(SiO_4)_6O_2$: Еи и Ca₂La₈(GeO₄)₆O₂ : Еи впервые получены нанофосфоры в аморфном состоянии. Методами DSC и TG изучены процессы кристаллизации аморфных нанопорошков. Обнаружена модификация КР-спектра и изменение ширины запрещенной зоны образцов при уменьшении частиц от объемного до наноразмерного состояния. Изучены спектрально-люминесцентные характеристики в поликристаллическом и наноаморфном состояниях. Установлено, что при переходе в наноаморфное состояние люминофоры изменяют цвет фотолюминесценции с краснооранжевого (Eu^{3+}) на синий (Eu^{2+}) и белый.

2. Методика эксперимента

Синтез поликристаллических образцов осуществляли обжигом на воздухе смеси компонентов. Препаративные методы синтеза аналогичны методам, описанным в работе [3,16]. Использовали две стадии синтеза силикатов. На первой стадии в качестве исходных компонентов использовали реактивы CaCO₃, Y₂O₃, Gd₂O₃, Eu₂O₃, SiO₂ с содержанием основного вещества не менее 99.99% и синтезировали соединения $Ca_2Gd_8(SiO_4)_6O_2$, $Ca_2Y_8(SiO_4)_6O_2$ и $Ca_2Eu_8(SiO_4)_6O_2$. Стехиометрические количества исходных компонентов были смешаны в агатовой ступке. Затем порошки были и обожжены на воздухе в температурном интервале 1000–1400°С. Время обжига составило \sim 80 h. На второй стадии синтеза вводили европий. С этой целью в качестве исходных компонентов брали указанные соединения в стехиометрическом соотношении для получения твердых растворов состава $Ca_2Gd_{8(1-x)}Eu_{8x}(SiO_4)_6O_2$ и $Ca_2Y_{8(1-x)}Eu_{8x}SiO_4)_6O_2$. Вещества тщательно перемешивали и обжигали на воздухе при температуре 1450°С в течение $\sim 20\,\mathrm{h}$ с промежуточным перетиранием порошков. После чего печь произвольно охлаждалась с выключенными нагревателями.

Для синтеза Ca₂La_{8(1-x)}Eu_{8x} (GeO₄)₆O₂ в качестве исходных компонентов были использованы CaCO₃, La₂O₃, Eu₂O₃ и GeO₂. Соединения CaCO₃, La₂O₃ и Eu₂O₃, взятые в стехиометрическом соотношении, растворяли в концентрированном HNO₃. Раствор GeO₂ был приготовлен в избытке NH₄OH при температуре 80°C в течение 40 min. После того, как раствор содержащий Ca(NO₃)₂, La(NO₃)₃, Eu(NO₃)₃ был перенесен в аммиачный раствор оксида германия, полученная смесь упаривалась при температуре 120°C до образования белого осадка.

Полученный материал затем подвергали термической обработке в несколько стадий: первая стадия включала нагрев от 200 до 800°С с шагом 100°С/h, вторая — включала спекание при 1000°С в течение 14 h, а третья стадия включала отжиг при 1200°С в течение 28 h.

Полноту синтеза проверяли рентгенофазовым анализом (РФА). РФА проводили с помощью дифрактометра Shimadzu XRD-7000 (СиК_{α}-излучение) с использованием картотеки ICDD. Сканирование осуществляли при комнатной температуре. Дифрактограммы полученных образцов, снятых в интервале углов $2\theta = 5-70^{\circ}$, обработаны по методу полнопрофильного анализа Ритвельда.

Нанопорошки (НП) получали испарением керамических мишеней в вакууме и атмосфере аргона (давление 10–20 Ра) с помощью ИЭП на установке НАНОБИМ-2 [15]. Мишени в виде дисков, диаметром 20–30 mm, высотой до 20 мм, изготовленных из объемных люминофоров, получали при обжиге дисков при 1400°C в течение 40 h). Энергия электронов составляла 40 keV, энергия импульса электронного пучка 1.8 J, длительность импульса 100 μ s, частота импульсов 100–200 Hz. Время испарения мишени — 40–60 min. Скорость вращения мишени составляла 8.3 грт. НП осаждали на неохлаждаемые стеклянные подложки, размещенные вокруг мишени. Сбор НП со стеклянных подложек выполняли с помощью фольги из титана. Удельную поверхность порошков (S_{yR}) определяли методом Брунауэра–Эммета–Тейлора (ВЕТ) [17] на установке Micromeritics TriStar 3000.

Микроскопический анализ НП проводили на просвечивающем электронном микроскопе JEOL JEM 2100. КР-спектры записаны на спектрометре Renishaw ($\Delta \nu = 1000 \text{ cm}^{-1}$) с использованием аргонового лазера ($\lambda = 514.5 \text{ nm}$).

Для экспериментальной оценки ширины запрещенной зоны записаны спектры поглощения. Спектры поглощения записаны на приборе UV-2401 PC фирмы Shimadzu. Край поглощения определяли экстраполяцией кривой линейной зависимости коэффициента поглощения до пересечения ее с осью абсцисс (длин волн). Точка пересечения определяет край поглощения.

Спектры фотолюминесценции и возбуждения записаны соответственно на спектрометрах МДР-204 (дейтериевая лампа, ФЭУ R928 фирмы Hamamatsu) и Cary Eclipse Fluorescence Spectrophotometer (импульсная ксеноновая лампа (частота 80 Hz, длительность импульса $\sim 2 \mu s$, пиковая мощность 75 kW).

3. Результаты и обсуждение

1 представлена Ha рис. характерные дифрактограммы синтезированных твердых растворов $Ca_2M_{6.4}Eu_{1.6}(SiO_4)_6O_2$ (M = Y, Gd)И Са₂Lа_{6,4}Eu_{1,6}(GeO₄)₆O₂. Твердые растворы относятся к структурному типу оксиапатита [18]. Выбор этих составов обусловлен тем, что в ряду люминофоров $Ca_2M_{8(1-x)}Eu_{8x}(SiO_4)_6O_2$ и $Ca_2La_{8(1-x)}Eu_{8x}(GeO_4)_6O_2$ твердые растворы при x = 0.2 имеют максимальную интегральную интенсивность люминесценции ионов Eu^{3+} . При *x* > 0.2 наблюдается концентрационное тушение люминесценции Eu³⁺. После обработки Ритвельда получены следующие данные методом (таблица). Также в таблице даны величины плотностей соединений. Полученные на основе указанных твердых растворов НП — рентгеноаморфны.

Электронная микроскопия НП, полученного на основе Ca₂Y_{6.4}Eu_{1.6}Si₆O_{26- δ}, где δ — кислородная нестехиометрия, показала, что наночастицы достаточно сильно агломерированы, имеют неправильную форму с тенденцией к образованию квазисферических частиц. Кислородная нестехиометрия возникает из-за образования ионов Eu²⁺ (показано ниже). На (рис. 2, *a*) показаны частицы нанообразца. ТЕМ НК снимки показали, что НП состоит исключительно из аморфных частиц.

Образец, №	Состав	a, Å	b, Å	<i>V</i> , Å ³	Плотность, g/cm ³ [16,19]
1	Ca ₂ Y _{6.4} Eu _{1.6} (SiO ₄) ₆ O ₂	9.3472	6.7828	513.220	~ 4.5
2	$Ca_2Gd_{6.4}Eu_{1.6}(SiO_4)_6O_2$	9.4178	6.8969	529.76	~ 6
3	$Ca_2La_{6.4}Eu_{1.6}(GeO_4)_6O_2$	9.8213	7.1656	598.58	~ 5.7

Характеристики объемных образцов

Рис. 1. Дифрактограммы соединений: $a - Ca_2Y_{6.4}Eu_{1.6}Si_6O_{26}$, $b - Ca_2Gd_{6.4}Eu_{1.6}Si_6O_{26}$, $c - Ca_2La_{6.4}Eu_{1.6}Ge_6O_{26}$.

На электронограмме образца (рис. 2, *b*) видны сильно размытые диффузные кольца (электронограммы были сняты с 6-ти разных участков образца), которые указывают на аморфный характер НП [20]. Значение ВЕТ поверхности нанопорошка $S_{yq} = 232.25 \text{ m}^2/\text{g}$. Следовательно, средний размер частиц составляет ~ 5.7 nm.

Электронная микроскопия НП, полученного на основе Ca₂Gd_{6.4}Eu_{1.6}Si₆O_{26- δ}, показала, что наночастицы агломерированы. Агломераты в НП размером несколько сотен нанометров состоят из наночастиц неправильной формы с тенденцией к образованию квазисферических частиц. Наночастицы соединены между собой перешей-ками произвольной длины и формы. На (рис. 3, *a*) показаны частицы нанообразца. ТЕМ НR снимки показали, что НП состоит исключительно из аморфных частиц. На электронограмме НП (рис. 3, *b*) также наблюдаются сильно размытые диффузные кольца, указывающие на аморфный характер образца (электронограммы сняты с 4-х разных участков образца). Значение ВЕТ поверхности нанопорошка $S_{yq} = 172.63 \text{ m}^2/\text{g}$. Следовательно, средний размер частиц составляет ~ 5.6 nm.

Рис. 2. ТЕМ HR снимок (a) и электронограмма (b) НП на

основе Ca₂Y_{6.4}Eu_{1.6}Si₆O₂₆.

Рис. 3. ТЕМ HR снимок (a) и электронограмма (b) НП на основе Ca₂Gd_{6.4}Eu_{1.6}Si₆O₂₆.

Рис. 4. ТЕМ НК снимки (a, b) и электронограмма (вставка) НП на основе Ca₂La_{6.4}Eu_{1.6}(GeO₄)₆O₂.

Рис. 5. КР-спектры ОП (1) и НП (2): Ca₂Y_{6.4}Eu_{1.6}(SiO₄)₆O₂ (*a*)), Ca₂Gd_{6.4}Eu_{1.6}(SiO₄)₆O₂ (*b*), Ca₂La_{6.4}Eu_{1.6}(GeO₄)₆O₂ (*c*).

Как и в предыдущих двух случаях микроскопия и электронография образца, полученного на основе Ca₂La_{6.4}Eu_{1.6}(GeO₄)₆O_{2- δ}, показывают, что наночастицы порошка сильно агломерированы и аморфны (рис. 4). Значение ВЕТ поверхности наночастиц составляет $S_{sp} = 105.5 \,\mathrm{m}^2/\mathrm{g}$. Следовательно, средний размер частиц составляет ~ 9.9 nm.

Рассмотрим КР-спектры объемных порошков (ОП) образцов $Ca_2Y_{6.4}Eu_{1.6}Si_6O_{26-\delta}$, $Ca_2Gd_{6.4}Eu_{1.6}Si_6O_{26-\delta}$, $Ca_2La_{6.4}Eu_{1.6}Ge_6O_{26-\delta}$ и НП на их основе (рис. 5). Известно, что КР-спектры соединений, содержащих группы SiO₄ с сильной ковалентной связью, позволяют получать информацию об изменении структуры в процессах плавления—кристаллизации [21]. Представляет интерес проследить за изменением КР-спектров силикатов в процессах испарения—отвердевания.

В кристаллах оксиапатита (пр. гр. P63/m, Z = 1) атомов $Y(Gd,La)_1 - 4f$, Ca - 4f, site-симметрия $Y(Gd,La)_2 - 6h$, Si(Ge) - 6h, O - 6h, O - 12i, O - 2a; Z = 1. Европий, замещая атомы иттрия, гадолиния или лантана, может также занимать позиции 4f и 6h. КР-спектр реальных кристаллов, содержащих примесь европия, а также НП, может отличаться от спектра идеальных кристаллов. Это отличие может быть обусловлено наличием структурных лефектов. Обозначены частоты v1, v2, v3 и v4 внутренних колебаний изолированных тетраэдров SiO₄ и GeO₄.

Спектр аморфного НП, полученного испарением $Ca_2Y_{6.4}Eu_{1.6}Si_6O_{26-\delta}$ (рис. 5, *a*), показывает формирование структуры, несколько отличающейся от исходного поликристаллического образца. Расположение линий в спектре НП говорит о присутствии в нем в основном изолированных групп SiO₄. В то же время появление в спектре частот в области 600–700 сm⁻¹ свидетельствует в пользу формирования в образце незначительной концентрации полимеризованных кремний-кислородных фрагментов [3,22]. Появление новой частоты при 716 сm⁻¹, относящейся, вероятно, к колебаниям мостиковых связей Si–O–Si, является индикатором процессов полимеризации [21]. В процессе полимеризации,

вероятно, участвует кислород O(4) в позиции 2a, не входящий в состав тетраэдров SiO₄ [3].

Наблюдается сдвиг частоты 138 сm⁻¹ в высокочастотную область и исчезновение частот внешних колебаний изолированных комплексов SiO₄ (область 187-250 cm⁻¹). Сдвиг линии при 337 cm⁻¹ в высокочастотную область предположительно обусловлен увеличением величины силовой постоянной компоненты E_{2g} либрационного колебания комплекса SiO₄. Частоты внутренних колебаний v₂, v₁ и v₃ также сдвигаются в высокочастотную область. Частота v4, наоборот, сдвигается в низкочастотную область. Наблюдается относительное уменьшение интенсивностей линий при v1 и v2. Эти эффекты в спектре могут быть вызваны объединением в нанообразце большого числа кислородных вакансий, возникающих при испарении микрообразца и последующего его отвердевания. Объединение вакансий приводит к нарушению трансляционной симметрии. Такое нарушение симметрии может быть также причиной уменьшения интенсивности линии при v_1 [21].

Спектр аморфного НП, полученного испарением $Ca_2Gd_{6.4}Eu_{1.6}Si_6O_{26-\delta}$ (рис. 5, *b*), имеет бесструктурную форму, отсутствуют характерные линии рассеяния. Это может быть также обусловлено нарушением трансляционной симметрии в НП и, следовательно, полным снятием запрета, который налагает закон сохранения квазиимпульса. Вследствие этого разрешены фононы с любыми волновыми векторами. [22]. В тоже время этот спектр очень похож на КР- спектр расплава $Ca_2Gd_8Si_6O_{26}$ [16]].

В спектрах образцов Ca₂La_{6.4}Eu_{1.6}Ge₆O_{26- δ} и НП на его основе (рис. 5, *c*) отнесение линий проведено в соответствие с работой [23]. Линии частот внутренних колебаний тетраэдра GeO₄ по сравнению с линиями КР тетраэдра SiO₄ относительно широкие из-за большого числа кислородных вакансий вблизи GeO₄ [23]. Область частот при 268 cm⁻¹ можно отнести к колебаниям связи La – O и трансляциям тетраэдров GeO₄. Эта область частично перекрывается с линией частоты ν_2 . Полоса частот с максимумом при 144 cm⁻¹ включает трансляции и либрационные колебания групп GeO₄. При переходе

Рис. 6. Спектры поглощения ОП (1) и НП (2): Ca₂Y_{6.4}Eu_{1.6}(SiO₄)₆O₂ (a), Ca₂Gd_{6.4}Eu_{1.6}(SiO₄)₆O₂ (b), Ca₂La_{6.4}Eu_{1.6}(GeO₄)₆O₂ (c).

от поликристаллического образца к аморфному НП наблюдается сдвиг частот v_1 и v_2 в высокочастотную, а v_3 — в низкочастотную область. Частоты внешних колебаний сливаются в широкую полосу. Эти эффекты в спектре могут быть вызваны объединением в нанообразце большого числа кислородных вакансий, которые возникают при испарении поликристаллического образца [3] и большей степени разупорядочения структуры нанообразца по сравнению с ОП.

Рассмотрим изменение ширины запрещенной зоны Е. образцов при переходе от ОП к НП. На рис. 6 представлены спектры поглощения образцов ОП и НП. Для $Ca_2Y_{8(1-x)}Eu_{8x}(SiO_4)_6O_2$ край поглощения расположен при ~ 347.5 nm, а для НП, полученного испарением этого силиката — при 294.5 nm (рис. 6, *a*). Следовательно, при переходе от ОП к НП величина Е_g увеличивается от ~ 3.567 до ~ 4.209 eV. Край поглощения фосфоров обусловлен поглощением в полосе переноса заряда (состояние $4f^{7}2p^{-1}$) аналогично $Sr_2Gd_{6,4}Eu_{1,6}(SiO)_6O_2$ и наноаморфному фосфору, полученному испарением ОП [3]. На рис. 6, b представлены спектры поглощения образцов $Ca_2Gd_{8(1-x)}Eu_{8x}(SiO_4)_6O_2$ и НП на основе этого люминофора. Для объемного фосфора край поглощения расположен при ~ 365 nm, что соответствует $E_g = 3.396 \,\mathrm{eV}$. Полосу с максимумом при $\sim 256 \,\mathrm{nm}$ можно отнести к переходу ${}^{8}S \rightarrow {}^{5}D$ иона Gd^{3+} [11]. В области границы поглощения образца имеется протяженный экспоненциальный хвост, так называемый хвост Урбаха, характерный для аморфных сред [24]. Хвост Урбаха позволяет дать только оценку величины границы поглощения. Край поглощения расположен при $\sim 367 \, \text{nm} \, (\sim 3.34 \, \text{eV}).$

Рассмотрим изменение ширины запрещенной зоны E_g образцов германатов при переходе от ОП к НП. На рис. 6, в представлены спектры поглощения ОП Ca₂La_{6.4}Eu_{1.6}Ge₆O₂₆ и НП на его основе. На спектре объемного образца имеются две полосы с максимумами при ~ 246 и 300 nm. Эти полосы обусловлены переходом

в состояние с переносом заряда для двух типов оптических центров, сформированных ионами Eu³⁺, находящихся в позициях 4*f* и 6*h*. Для Ca₂La_{6.4}Eu_{1.6}Ge₆O₂₆ край поглощения расположен при ~ 343 nm, что соответствует $E_g = 3.61$ eV. В области границы поглощения НП имеется протяженный экспоненциальный хвост (хвост Урбаха), характерный для аморфных сред, который не позволяет дать оценку величины E_g .

Уровень переноса заряда в Eu³⁺ формирует потолок запрещенной зоны. Оптическое поглощение при этом включает р-состоянии кислорода, чувствительное к изменению окружения иона Eu³⁺. Из спектров возбуждения ионов Eu³⁺ видно (рис. 7), что в объемных фосфорах максимум полосы возбуждения равен 270 nm $(\lambda_{em} = 614 \text{ nm})$. Для нанофосфоров этот максимум расположен при $\lambda_{ex} < 260$ nm (рис. 8). Поэтому в объемных фосфорах уровень переноса заряда имеет меньшую энергию, чем в нанофосфорах. Край фундаментального поглощения в нанофосфорах должен быть расположен выше, чем в объемных фосфорах. Следовательно, наряду с различной стабильностью ближайших ионов кислорода О²⁻, окружающих ион Eu³⁺ в объемных и нанофосфорах, можно говорить о небольшом изменении этого окружения в нанофосфоре. Окружение ионов европия может измениться из-за незначительной конденсации тетраэдров SiO₄.

На рис. 7, *а* изображены спектры фотолюминесценции (ФЛ) люминофоров $Ca_2Y_{6.4}Eu_{1.6}Si_6O_{26-\delta}$ и $Ca_2Gd_{6.4}Eu_{1.6}Si_6O_{26-\delta}$. Наряду с узкими линиями свечения ионов Eu^{3+} имеются широкие полосы ($\lambda_{max} = 443$ нм), обусловленные свечением ионов Eu^{2+} (переход $4f^{6}5d \rightarrow 4f^{7}(^{8}S_{7/2})$). Широкие полосы имеют слабую структуру, которая, вероятно, обусловлена взаимодействием $4f^{6-}$ и 5d-электронов [25]. Поскольку ион Eu^{3+} при замещении Y(Gd) занимает в структуре силикатов две кристаллографические позиции 4f и 6h, то Eu^{3+} формирует два типа оптических центров. Спектры является суммарными спектрами люминесценции этих двух центров.

Рис. 7. Спектры ФЛ и ВФЛ $Ca_2Y_{6.4}Eu_{1.6}Si_6O_{26-\delta}$ (1) и $Ca_2Gd_{6.4}Eu_{1.6}Si_6O_{26-\delta}$ (2): спектры ФЛ образцов 1, 2 (*a*); спектры ВФЛ ($\lambda_{em} = 614 \text{ nm}$) (*b*) и ($\lambda_{em} = 443 \text{ nm}$) образцов 1, 2 (*c*).

Механизм образования ионов Eu²⁺ может быть, по-нашему мнению, аналогичен изложенному в работах [3,26–28]. При синтезе поликристаллов $Ca_2Y(Gd)_{6.4}Eu_{1.6}Si_6O_{26-\delta}$ в процессе высокотемпературного обжига смеси исходных компонентов в формируемом оксиапатите в позиции 4f происходит образование вакансий V_{Ca}^{\parallel} . Вакансии V_{Ca}^{\parallel} передают свой отрицательный заряд двум ионам Eu_Y³⁺ или Еи_{Gd}³⁺. Это приводит к образованию Eu²⁺. Поэтому химическую формулу образцов следует записывать в виде $Ca_2Y(Gd)_{6.4}Eu_{1.6}Si_6O_{26-\delta}$, где δ — кислородная нестехиометрия. В структуре апатита ионы Eu²⁺ формируют также два типа оптических центров в позициях 6h и 4f [26]. Спектры свечения этих двух центров является суммарными спектрами, образуя указанные широкие полосы.

В спектрах возбуждения (ВФЛ) объемных фосфоров (рис. 7, *b*) для $\lambda_{em} = 614 \, \text{nm}$ имеются полосы CTS и линии, обусловленные переходами ${}^7F_0 \rightarrow {}^5D_4$, 5G_2 , ${}^{5}L_{7}$. Для $\lambda_{\rm em} = 443 \, {\rm nm}$ спектры ВФЛ (Eu $^{2+}$) различаются в интервале длин волн 260-305 nm (рис. 7, *c*). Для люминофора $Ca_2Gd_{6.4}Eu_{1.6}Si_6O_{26-\delta}$ в указанном интервале длин волн наблюдается увеличение интенсивности поглощения в отличие от люминофора Са₂Y_{6.4}Eu_{1.6}Si₆O_{26-δ}. Широкие полосы в интервале $305-390\,\mathrm{nm}$ обусловлены переходом с уровня $4f^{7}(^{8}S_{7/2})$ на e_g -уровень 5*d*-состояния ионов Eu²⁺. На указанных широких полосах для обоих люминофоров имеются два максимума при ~ 351 и 369 nm, обусловленные, вероятно, снятием вырождения уровня eg. Это указывает на достаточно сильное взаимодействие между $4f^6$ -электронами и 5*d*-электроном.

На рис. 8 изображены спектры ФЛ и ВФЛ нанофосфоров, полученных испарением образцов $Ca_2Y_{6.4}Eu_{1.6}Si_6O_{26-\delta}$ и $Ca_2Gd_{6.4}Eu_{1.6}Si_6O_{26-\delta}$. Спектры ФЛ представляют собой широкие полосы, обусловленные свечением ионов Eu^{2+} . Излучение ионов Eu^{3+} почти потушено (рис. 8, a-c). Заметная интенсивность

люминесценции ионов Eu³⁺ наблюдается только для переходов ${}^{5}D_{0} \rightarrow {}^{7}F_{1,2}$. Спектр, изображенный на рис. 8, *b*, записан для нанолюминофора, полученного ИЭП образца $Ca_2Y_{6.4}Eu_{1.6}Si_6O_{26-\delta}$ в атмосфере аргона. Интенсивность переходов ${}^{5}D_{0} \rightarrow {}^{7}F_{1,2}$ в этом спектре значительно меньше, чем для аналогичного образца, но полученного испарением в вакууме (рис. 8, a), а интенсивность свечение ионов Eu²⁺ больше. Можно предположить, что дополнительно образуются ионы Eu²⁺ в нанообразцах за счет радиационного восстановления $Eu^{3+} \rightarrow Eu^{2+}$. Подобная редукция при воздействии ионизирующего излучения (α , β , γ , рентгеновское и лазерное излучение) возможна в соединениях, содержащих группы МО4 (M = Si, B, Al, P) [29,30]. Механизм этого процесса может быть следующий. Электрон высвобождается из тетраэдра SiO_4^{4-} за счет разрыва связи Si-O в процессе ИЭП. Возникает состояние $(SiO_4^{3-})^+$ [31]. Освобожденный электрон захватывается ионами Eu³⁺, являющимися электронными ловушками [32], Eu³⁺ восстанавливается до Eu²⁺. Следовательно, возможны следующие реакции:

$$\operatorname{SiO}_4^{4-} \xrightarrow{\operatorname{MOII}} (\operatorname{SiO}_4^{3-})^+ + e,$$
 (1)

$$\mathrm{Eu}^{3+} + e \to \mathrm{Eu}^{2+}.$$
 (2)

Для нанофосфора, полученного на основе $Ca_2Gd_{6.4}Eu_{1.6}Si_6O_{26-\delta}$, интенсивность переходов ${}^5D_0 \rightarrow {}^7F_{1,2}$ также низкая. В тоже время интенсивность свечения ионов Eu^{2+} увеличивается в нанофосфоре по сравнению с интенсивность ионов Eu^{2+} в объемном образце. Следовательно, в этом нанообразце также происходит восстановление ионов $Eu^{3+} \rightarrow Eu^{2+}$.

Интенсивность свечения ионов Eu^{2+} почти одинакова для $Ca_2Y_{6.4}Eu_{1.6}Si_6O_{26-\delta}$ и нанолюминофора, полученного на его основе в вакууме (рис. 7, *a* и 8, *a*). Свечение ионов Eu^{3+} в нанообразце значительно потушено. Вероятно, в образце восстановление $Eu^{3+} \rightarrow Eu^{2+}$ почти

Рис. 8. Спектры ФЛ и ВФЛ нанофосфоров, полученных на основе Ca₂Y_{6.4}Eu_{1.6}Si₆O_{26- δ} (*1*) и Ca₂Gd_{6.4}Eu_{1.6}Si₆O_{26- δ} (*2*): спектры ФЛ образцов *1*, *2* (*a*-*c*); спектры ВФЛ ($\lambda_{em} = 614 \text{ nm}$) (*d*) и ($\lambda_{em} = 443 \text{ nm}$) образцов *1*, *2* (*e*).

не происходит. Малый выход ФЛ ионов Eu³⁺ можно объяснить с помощью конфигурационной диаграммы в модели Декстера-Клика-Рассела [33]. Таким образом, восстановление ионов Eu³⁺ \rightarrow Eu²⁺ зависит не только от атмосферы, в которой происходит испарение, но и от состава исходных объемных образцов.

Сравнивая соответствующие величины λ_{max} можно заметить, что при переходе ОП — НП наблюдается небольшой красный сдвиг λ_{max} . Этот сдвиг можно объяснить увеличением ковалентности связи Eu²⁺ – О в оптических центрах нанообразцов [34].

Рассмотрим спектры ВФЛ нанофосфоров. В этих (рис. 8, d) для $\lambda_{\rm em} = 614$ nm линии, обусловленные переходами ${}^7F_0 \rightarrow {}^5D_4$, 5G_J , 5L_7 , имеют значительно меньшую интенсивность по сравнению со спектрами ВФЛ объемных фосфоров (рис. 7, b). Это подтверждает относительно небольшое число ионов Eu³⁺, участвующих в процессе люминесценции.

Для нанообразца на основе $Ca_2Y_{6.4}Eu_{1.6}Si_6O_{26-\delta}$ спектр ВФЛ Eu^{2+} ($\lambda_{em} = 443$ nm) почти такой же, как для объемного образца. Для нанообразца на основе $Ca_2Gd_{6.4}Eu_{1.6}Si_6O_{26-\delta}$ уровень 2e_g становится вырожденным и возникают дополнительные полосы возбуждения в области 260–320 nm (рис. 8, *e*). Эти полосы, вероятно, соответствуют переходам ${}^8S_{7/2} \rightarrow {}^6P_J$ иона

Еu²⁺. Следовательно, при переходе ОП → НП поле лигандов вокруг Eu²⁺ изменяется. Это может быть обусловлено (как сказано выше) нарушением трансляционной симметрии в НП. Ослабляется связь 4*f*-и 5*d*-электронов. Возникает вырождение уровня ${}^{2}e_{g}$. Ион Eu²⁺ из состояния ${}^{6}P_{J}$ безызлучательно релаксирует в состояние ${}^{2}e_{g}$, из которого и происходит люминесценция. Для нанообразца на основе Ca₂Y_{6.4}Eu_{1.6}Si₆O_{26-δ} поле лигандов вокруг Eu²⁺ почти не изменяется.

На рис. 9, *а*, *b* представлены спектры ФЛ и ВФЛ люминофора Ca₂La_{6.4}Eu_{1.6}Ge₆O_{26- δ}. Ионы Eu³⁺ образуют два типа оптических центров при $\lambda_{max} = 577.4$ и 578 nm. Для нанообразца на основе Ca₂La_{6.4}Eu_{1.6}Ge₆O_{26- δ} спектр ФЛ существенно изменяется (рис. 9, *c*). Возникает свечение в интервале 450–750 nm ($\lambda_{ex} = 394$ nm), обусловленное ионами Eu²⁺. Механизм образования ионов Eu²⁺, понашему мнению, аналогичен таковому для нанофосфоров на основе силикатных образцов (реакции 1, 2). Радиационное восстановление Eu³⁺ \rightarrow Eu²⁺ согласно реакциям (3) и (4)

$$\operatorname{GeO}_4^{4-} \xrightarrow{\operatorname{M} \ni \Pi} (\operatorname{GeO}_4^{3-})^+ + e, \qquad (3)$$

$$\mathrm{Eu}^{3+} + e \to \mathrm{Eu}^{2+}.$$
 (4)

Сравнивая рис. 8, a-c и рис. 9, c, можно заключить, что в НП, полученном испарением германата, степень вос-

Рис. 9. Спектры ФЛ $Ca_2La_{6.4}Eu_{1.6}Ge_6O_{26-\delta}$ (*a*), НП (*b*) и спектры ВФЛ ($\lambda_{em} = 614 \text{ nm}$) $Ca_2La_{6.4}Eu_{1.6}Ge_6O_{26-\delta}$ (*c*), НП ($\lambda_{em} = 443 \text{ nm}$) (*d*).

становления ионов Eu³⁺ до Eu²⁺ относительно меньше, чем в НП, полученном при ИЭП силикатов. Электрон высвобождается из тетраэдра GeO₄⁴⁻ за счет разрыва связи Ge–O в процессе ИЭП и захватывается электронными ловушками (ионы Eu³⁺). Можно предположить, что различие в степени восстановления ионов Eu³⁺ обусловлено различием высвобождения электронов при разрыве связей Si – O и Ge – O, а также характеристиками электронных ловушек в силикатных и германатных нанообразцах. В результате этого цвет свечения нанолюминофоров, полученных на основе силикатов становится синим, а полученного на основе германата — белым.

Спектр свечения ионов Eu²⁺, изображенный на рис. 9, *c*, разложен на две компоненты Гаусса (на рис. 9, *c* не изображены) с $\lambda_{max} = 455.4$ и 582.2 nm. Следовательно, ион Eu²⁺ образует два типа оптических центров, вероятно, в позициях 4*f* и 6*h*. На рис. 9, *d* изображен спектр ВФЛ нанолюминофора ($\lambda_{em} = 443$ nm). В спектре наблюдаются широкая полоса (переход 4*f*⁷-4*f*⁶5*d*¹ ионов Eu²⁺) и линии, соответствующие *f*-*f*- переходам ионов Eu³⁺. Вид спектра возбуждения указывает на резонансное взаимодействие ионов Eu²⁺ и Eu³⁺.

На спектр ФЛ Eu^{2+} накладывается излучение ионов Eu^{3+} . Для перехода ${}^5D_0 - {}^7F_2$ наиболее интенсивные

линии наблюдаются при 615 и 623 nm. Для объемного образца линии этого перехода наблюдаются при 613 и 620 nm. Известно, что электрический дипольный переход ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ является сверхчувствительным к Siteсимметрии иона Eu³⁺ в оптическом центре. Сдвиг линий перехода в НП в сторону большей энергии и перераспределение их относительных интенсивностей указывает на некоторое искажение локального окружения ионов Eu³⁺ в нанофосфоре по сравнению с ОП, вероятно, из-за объединения в нанообразце большого числа кислородных вакансий, которые возникают в процессе ИЭП. Наложение излучения ионов Eu²⁺ и Eu³⁺ дает белое свечение люминофора с цветовыми координатами x = 0.313, y = 0.320.

4. Заключение

Разработан способ получения новых сложнооксидных наноалюминофоров. Получены новые наноаморфные люминофоры путем испарения электронным пучком в вакууме или атмосфере аргона красно-оранжевых кристаллофосфоров составов $Ca_2M_8(SiO_4)_6O_2$: Еи (M = Y, Gd) и $Ca_2La_8(GeO_4)_6O_2$: Еи. Предположительно обнаружено восстановление ионов $Eu^{3+} \rightarrow Eu^{2+}$ в электронном пучке за счет разрыва связи Si(Ge)–O в тетраэдрах SiO₄ и GeO₄ в процессе испарения образцов и захвата высвободившегося электрона ионами Eu³⁺. Изучены спектрально-люминесцентные характеристики поликристаллических фосфоров Ca₂ M_8 (SiO₄)₆O₂ : Eu (M = Y, Gd), Ca₂La₈(GeO₄)₆O₂ : Eu и полученных на их основе наноаморфных фосфоров. Установлено, что при переходе от объемного образца Ca₂Y_{8(1-x)}Eu_{8x}(SiO₄)₆O₂ к НП величина E_g увеличивается. Обнаружена модификация КР-спектров при уменьшении частиц образцов от объемного до наноразмерного состояния. Полученные нанофосфоры при ИЭП силикатов РЗЭ имеют синее свечение, а на основе германата — белое.

Список литературы

- S.Y. Raghvendra, K.D. Ranu, M. Kumar, A.C. Pande. J. Lumin. 129, 1078 (2009).
- [2] R.N. Bhargava, V. Chhabra, B. Kulkarni, J.V. Veliadis. Phys. Status Solidi b 210, 621 (1998).
- [3] M.G. Zuev, S.Yu. Sokovnin, V.G. Il'ves, I.V. Baklanova, A.A. Vasin. J. Solid State Chem. 218, 164 (2014).
- [4] C. Li, A. Lagriffoul, R. Moncorge, J.C. Souriau, C. Borel, Ch. Wyon. J. Lumin. 62, 157 (1994).
- [5] M.D. Chambers, P.A. Rousseve, D.R. Clarke. J. Lumin. 129, 263 (2009).
- [6] N. Xiumei, L. Jun, L. Zhe, Q. Xiwei, L. Mingua, W. Xiaoqiang. J. Rare Earths 26, 904 (2008).
- [7] G.S. Rama Raju, H.C. Jung, J.Y. Park, B.K. Moon, R. Balakrishnaiah, J.H. Jeong, J.H. Kim. Sensors Actuators B 146, 395 (2010).
- [8] Meidan Que, Zhipeng Ci, Yuhua Wang, Ge Zhu, Yurong Shi, Shuangyu Xin. J. Lumin. 144, 64 (2013).
- [9] S. Qi, Y. Huang, T. Tsuboi, W. Huang, H.J. Seo. Opt. Mater. Express 4, 396 (2014).
- [10] J.K. Han, M.E. Hannah, A. Piquette, J. Micone, G.A. Hirata, J.B. Talbot, K.C. Mishra, J. McKittrick. J. Lumin. 133, 184 (2013).
- [11] B. Chu, C. Guo, Q. Su. Materials Chem. Phys. 84, 279 (2004).
- [12] C. Peng, G. Li, Z. Hou, M. Shang, J. Lin. Mater. Chem. Phys. 136, 1008 (2012).
- [13] K.-Y. Yeh, C.-C. Yang, W.-R. Liu, M.G. Brik. Opt. Mater. Express 6, 418 (2016).
- [14] Yu-Chun Li, Yen-Hwei Chang, Bin-Siang Tsai, Yu-Chung Chen, Yu-Feng Lin. J. Alloys Comp. 416, 199 (2006).
- [15] S.Yu. Sokovnin, V.G. Il'ves, M.G. Zuev. Production of complex metal oxide nanopouders using pulsed electron beam in low-pressure gas for biomaieriats application. Ch. 2. In: Engineering of Nanobiomaterials Applications of Nanobiomaterials. V. 2. / Ed. A. Grumezescu. Elsevier (2016).
- [16] S. Thomas. Silicate and Aluminate Based Dielectric Ceramics for Microwave Communication / Under the guidance and supervision of Dr. M.T. Sebastian (Supervisor). National Institute for Interdisciplinary Science and Technology (CSIR), Thiruvananthapuram (2010).
- [17] С. Брунауэр. Адсорбция газов и паров. Физическая адсорбция. ГИИЛ, М. (1948). Т. 1. 784 с.

- [18] Powder Diffraction File ICDD PDF-4 PDF2007 card 00-029-0320 Smith, McCarthy.
 Penn State University, University Park, (1976) Pennsylvania, USA, ICDD Grant-in-Aid.
- [19] Landolt-Börnstein. Group III Condensed Matter Vol. 7G / Eds: K.-H. Hellwege, A.M. Hellwege. Springer-Verlag, Berlin Heidelberg (1974).
- [20] L.-M. Peng, S.L. Dudarev, M.J. Whelan. High Energy Electron Diffraction and Microscopy. Oxford University Press (2004).
- [21] Ю.К. Воронько, А.А. Соболь, В.Е. Шукшин, А.И. Загуменный, Ю.Д. Заварцев, С.А. Кутовой. ФТТ 54, 8, 1533 (2012).
- [22] А.Н. Лазарев, А.П. Миргородский, И.С. Игнатьев. Колебательные спектры сложных окислов. Наука, Л. (1975). 296 с.
- [23] Evelyn Rodríguez-Reyna, Antonio F. Fuentes, Miroslaw Maczka, Jerzy Hanuza, Khalid Boulahya, Ulises Amador. Solid State Sci. 8, 168 (2006).
- [24] И.А. Вайнштейн, А.Ф. Зацепин, В.С. Кортов, Ю.В. Щапова. ФТТ 42, 2, 224 (2000).
- [25] F.M. Ryan, W. Lehmann, D.W. Feldman, J. Murphy, J. Electrochem. Sac.: Solid-State Sci. Technol. 121, 1475 (1974).
- [26] M.G. Zuev, A.M. Karpov, A.S. Shkvarin. J. Solid State Chem. 184, 52 (2011).
- [27] Cuimiao Zhang, Jun Yang, Cuikun Lin, Chunxia Li, Jun Lin. J. Solid State Chem. 182, 1673 (2009).
- [28] Jian Chen, Yan-gai Liu, Haikun Liu, Dexin Yang, Hao Ding, Minghao Fang, Zhaohui Huang. Cite this: RSC Adv. 4, 18234 (2014).
- [29] Manveer Singh, P.D. Sahare, Pratik Kumar, Shaila Bahl. Columbia International Publishing. J. Lumin. Appl. 3, 1 (2016).
- [30] E. Malchukova, B. Boizot. Mater. Res. Bull. 45, 1299 (2010).
- [31] А.Ф. Зацепин, А.И. Кухаренко, В.А. Пустоваров, В.Ю. Яковлев, С.О. Чолах. ФТТ 51, 3, 437 (2009).
- [32] Ryosuke Yokota. J. Phys. Soc. Jpn. 23 129 (1967).
- [33] G. Blasse, A. Bril. Philips Techn. Rev. 31, 304 (1970).
- [34] P. Dorenbos. J. Lumin. 104, 239 (2003).

Редактор Д.В. Жуманов