09,08

Кинетика нарастания ап-конверсионной люминесценции кристалла LiY_{0.8}Yb_{0.2}F₄:Tm³⁺ (0.2 at.%) при импульсном возбуждении

© А.В. Михеев¹, Б.Н. Казаков²

 ¹ Казанский национальный исследовательский технологический университет, Казань, Россия
 ² Казанский федеральный университет, Казань, Россия

E-mail: veehima@gmail.com

Проводится регрессионный анализ кинетики нарастания ап-конверсионной люминесценции кристалла LiY_{0.8}Yb_{0.2}F₄: Tm³⁺ (0.2 at.%). Кинетика получена при прямоугольном импульсном возбуждении излучением лазерного диода (ИК ЛД) с длиной волны $\lambda_p = 933$ nm. Установлены наиболее важные, при данных экспериментальных условиях, механизмы передачи энергии от ионов Yb³⁺ к ионам Tm³⁺, ответственные за переходы между основным ³H₆ и возбужденными ³F₄, ³H₄, ¹G₄, ¹D₂, ¹I₆ термами ионов Tm³⁺. Определены длительности соответствующих процессов передачи энергии. Показано, что передача энергии между редкоземельными ионами в кристалле LiY_{0.8}Yb_{0.2}F₄: Tm³⁺ (0.2 at.%) происходит за счет диполь-дипольного взаимодействия.

Работа поддержана средствами субсидии выделенной Казанскому федеральному университету для выполнения государственного задания в сфере научной деятельности (проект № 3.1156.2017/4.6).

DOI: 10.21883/FTT.2019.05.47601.07F

1. Введение

Ап-конверсионная передача энергии в кристаллах, стеклах, органических соединениях, активированных редкоземельными ионами, представляет большой практический интерес, так как позволяет преобразовать энергию ИК-излучения в энергию видимого и ультрафиолетового излучения [1,2]. Традиционным методом исследования механизмов ап-конверсионного преобразования энергии в таких системах является изучение зависимости интенсивности спектральных линий от мощности излучения стационарной накачки [3–5]. Как показано в [6], этот метод не дает полной картины процессов ап-конверсионной передачи энергии, так как позволяет выявить процессы передачи энергии, доминирующие спустя длительное время после начала действия излучения накачки на исследуемую систему.

В работе [6] мы предложили метод исследования процессов ап-конверсионного преобразования энергии с помощью регрессионного анализа стадии нарастания кинетики люминесценции, позволяющий устанавливать процессы передачи энергии, доминирующие на этой стадии. Основой метода является разработанная нами в [6] вероятностная модель временной зависимости спектральной плотности потока излучения системы взаимодействующих редкоземельных ионов при импульсном возбуждении. Из нее следует, что начальная стадия кинетики нарастания ап-конверсионной люминесценции является степенной функцией времени. Показатель степени определяется количеством последовательных процессов передачи энергии от излучения накачки к редкоземельному иону, испускающему фотон.

Кроме того, в [6], применительно к кристаллическим системам, подобным YF₃ и LiYF₄, активированным ионами Yb³⁺ и Tm³⁺, мы определили временную структуру следующих механизмов передачи энергии: 1) одноквантовой передачи энергии, 2) механизма АРТЕ — многокаскадной одноквантовой передачи энергии [1], 3) кооперативной сенсибилизации люминесценции [7], 4) многоквантового механизма передачи энергии посредством вынужденного изучения [8]. При этом предполагалось, что с излучением накачки, имеющим прямоугольную или дельта-импульсную модуляцию, взаимодействуют только ионы Yb³⁺ (доноры), а ионы Tm³⁺ (акцепторы) получают энергию от ионов Yb³⁺. Было установлено количество последовательных процессов передачи энергии, из которых состоят эти механизмы. В работе [6] мы успешно применили предложенную модель к анализу кинетики нарастания ап-конверсионной люминесценции кристалла $Y_{0.8}Yb_{0.2}F_3$: Tm³⁺(1 at.%) при прямоугольной модуляции излучения ИК ЛД. Были определены основные механизмы передачи энергии от излучения накачки к ионам Yb³⁺ и Tm³⁺.

В настоящей работе теоретические и экспериментальные результаты, полученные в [6], сравниваются с кинетикой люминесценции кристалла $LiY_{0.8}Yb_{0.2}F_4$: $Tm^{3+}(0.2 at.\%)$. Наша цель — установление наиболее быстрых процессов заселения возбужденных состояний ионов Tm^{3+} за счет передачи энергии от ионов Yb^{3+} . В частности, мы попытаемся выяснить роль, которую играет в этих процессах вынужденное излучение ионов Yb^{3+} .

2. Описание образцов и методики проведения эксперимента

Кинетика ап-конверсионной люминесценции исследовалась в монокристаллах LiYF₄ (пространственная группа $I4_1/a$), активированных ионами Yb³⁺ и Tm³⁺. Кристаллы были выращены в Казанском федеральном университете С.Л. Кораблевой методом Бриджмена–Стокбаргера. Содержание ионов Yb³⁺ и Tm³⁺ в кристалле LiYF₄ составляло 20 и 0.2 at.% соответственно. Образцы LiYF₄ имели форму параллелепипеда с размерами $\sim 3 \times 4 \times 10$ mm. Ось симметрии с была направлена вдоль кратчайшей стороны. Методика и условия регистрации флуоресценции этих монокристаллов были такими же, как и в [6,9–12]).

3. Регрессионная модель

Уравнения (3), (5) из статьи [6] можно объединить в одну регрессионную модель, пригодную для аппроксимации асимптотики временной зависимости спектральной плотности потока излучения $\tilde{\Phi}_{e,v}(t)$ ионов Yb³⁺ и Tm³⁺ при $t \to +0$

$$\tilde{\Phi}_{e,v}(t) \sim b_1(b_0 + t^{n+1}).$$
 (1)

Здесь $t \in [0, t_{\max}]$ — интервал времени, используемый для аппроксимации; n — количество элементарных последовательных процессов передачи энергии, предшествующих переходу ионов Yb³⁺ и Tm³⁺ в возбужденное состояние. Слагаемое b_0 учитывает возможность наличия в экспериментальных данных неинформативной постоянной составляющей. Параметр b_1 — аппаратный масштабный множитель.

Отметим, что при выводе (1) в [6] предполагалось, что весь процесс передачи энергии от излучения накачки ионам Yb³⁺ и Tm³⁺ состоит из *n* последовательных элементарных процессов, длительности которых являются независимыми случайными величинами. Какова физическая природа этих процессов и каковы функции плотности распределения вероятностей их длительностей для справедливости формулы (1) значения не имеет.

Уравнения (10), (11) из статьи [6] можно использовать для аппроксимации временной зависимости $\tilde{\Phi}_{e,v}(t)$, не только при $t \to +0$, но и на всей стадии нарастания. Соответствующая регрессионная модель имеет вид [6]:

$$\tilde{\Phi}_{e,\nu}(t) \sim b_1 \left(b_0 + \gamma(n, t/b_2) - \left(\frac{b_3}{b_3 - b_2}\right)^n \times \exp(-t/b_3)\gamma(n, (1/b_2 - 1/b_3)t) \right), \quad (2)$$

где $\gamma(n, t) = \int_{0}^{t} x^{n-1} \exp(-x) dx$ — неполная гамма-функция; $t \in [0, t_{\max}], t_{\max} \leq \Delta t_p; \Delta t_p$ — длительность им-

ция; $t \in [0, t_{max}]$, $t_{max} \leq \Delta t_p$; Δt_p — длительность импульса накачки; b_2 — средняя длительность одного последовательного процесса передачи энергии; b_3 средний промежуток времени между переходом иона в возбужденное состояние и последующим излучательным возвратом в основное состояние. Среднее время передачи энергии равно $\tilde{\tau} = nb_2$. В отличии от (1), при выводе (2) в [6] предельный переход $t \to +0$ не совершался, но было сделано предположение, что длительности всех *n* последовательных элементарных процессов передачи энергии имеют один и тот же показательный закон распределения.

Регрессионный анализ стадии нарастания кинетики люминесценции

В табл. 1, 2 приведены результаты аппроксимации функциональными зависимостями (1), (2) стадии нарастания интенсивности нескольких спектральных линий кристалла LiY_{0.8}Yb_{0.2}F₄: Tm³⁺(0.2 at.%). Параметры регрессионных моделей подбирались методом наибольшего косинуса [13]. В качестве меры точности описания экспериментальных данных регрессионными моделями (1) и (2), как и в [6], использовалось выраженное в процентах отношение ε длины вектора остатков к длине вектора экспериментальных данных. В отличии от [6], положение перетяжки лазерного луча относительно кристалла LiY_{0.8}Yb_{0.2}F₄: Tm³⁺(0.2 at.%) не менялось и соответствовало максимальной объемной плотности излучения накачки в этом кристалле. Изменялась мощность *P* излучения лазерного диода.

На рис. 1 показан типичный для всех спектральных линий, приведенных в табл. 1 и 2, результат аппроксимации кинетики нарастания люминесценции регрессионными моделями (1) и (2). Малая абсолютная величина остатков, а также их случайный разброс вокруг нуле-

Таблица 1. Параметр *п* регрессионной модели (1) для некоторых длин волн λ_e излучения кристалла LiY_{0.8}Yb_{0.2}F₄:Tm³⁺(0.2 at.%)

Спектральная линия (λ_e, nm)	P, mW	$t_{\max} (\Delta t_p)$, ms	п	ε, %
$Yb^{3+}: {}^{2}F_{5/2} \to {}^{2}F_{7/2} $ (1030)	1774	0.1 (10)	0.13	0.8
	1108	0.1 (10)	0.37	1.2
$\mathrm{Tm}^{3+}: {}^{3}F_{4} \to {}^{3}H_{6} \ (1700)$	1774	0.35 (16)	1.62	6.4
	1108	0.41 (16)	1.94	8.5
$Tm^{3+}: {}^{3}H_{4} \to {}^{3}H_{6}$ (790)	1774	0.15 (14)	0.94	0.3
	1108	0.15 (14)	1.34	0.5
${\rm Tm}^{3+}: {}^1G_4 \to {}^3H_6$ (484)	1774	0.13 (9)	1.72	0.8
	1108	0.13 (9)	2.48	2.0
	1108*	0.13 (9)	2.32	8.8
$Tm^{3+}: {}^{1}D_{2} \to {}^{3}H_{6}$ (363)	1774	0.19 (15)	2.80	2.1
	1108	0.19 (15)	3.37	2.5
$\mathrm{Tm}^{3+}: {}^{1}I_{6} \to {}^{3}H_{6}$ (290)	1774	0.15 (8)	3.93	5.3
	1108	0.23 (8)	4.33	4.1

Примечание. * Объемная плотность излучения накачки в кристалле меньше, чем в остальных случаях.

Спектральная линия (λ_e, nm)	P, mW	$t_{\max} (\Delta t_p)$, ms	b_2 , ms	<i>b</i> ₃ , ms	п	$ ilde{ au}$, ms	ε, %
$Yb^{3+}: {}^{2}F_{5/2} \to {}^{2}F_{7/2}$ (1030)	1774	1.13 (10)	0.036	0.183	0.61	0.022	0.1
	1108	1.13 (10)	0.026	0.197	1.39	0.036	0.1
$\mathrm{Tm}^{3+}:{}^{3}F_{4} \to {}^{3}H_{6}$ (1700)	1774	2.0 (16)	0.102	1.995	3.37	0.344	0.5
	1108	2.0 (16)	0.078	2.198	4.70	0.367	0.9
${\rm Tm}^{3+}$: ${}^{3}H_{4} \to {}^{3}H_{6}$ (790)	1774	2.13 (14)	0.117	0.699	1.89	0.221	0.2
	1108	2.73 (14)	0.100	0.841	2.36	0.236	0.3
${\rm Tm}^{3+}$: ${}^{1}G_{4} \to {}^{3}H_{6}$ (484)	1774	1.9 (9)	0.120	0.628	2.77	0.331	0.03
	1108	1.9 (9)	0.122	0.669	3.06	0.375	0.04
	1108*	1.9 (9)	0.207	0.726	3.18	0.658	0.1
$Tm^{3+}: {}^{1}D_{2} \rightarrow {}^{3}H_{6}$ (363)	1774	2.52 (15)	0.091	0.553	4.09	0.371	0.1
	1108	2.52 (15)	0.106	0.647	4.13	0.439	0.3
$Tm^{3+}: {}^{1}I_{6} \to {}^{3}H_{6}$ (290)	1774	1.32 (8)	0.095	0.531	4.51	0.430	0.2
	1108	1.32 (8)	0.096	0.546	5.08	0.488	0.3

Таблица 2. Параметр *n* регрессионной модели (2) для некоторых длин волн λ_e излучения кристалла LiY_{0.8}Yb_{0.2}F₄: Tm³⁺(0.2 at.%)

Примечание. * Объемная плотность излучения накачки в кристалле меньше, чем в остальных случаях.

Рис. 1. Аппроксимация регрессионными моделями (1) нарастания кинетики люминесценции и (2)стадии Tm^{3+} : $^{1}G_{4} \rightarrow ^{3}H_{6}; \quad \lambda_{e} = 484 \,\mathrm{nm})$ (перехол кристалла LiY_{0.8}Yb_{0.2}F₄:Tm³⁺(0.2 at.%) при прямоугольной модуляции излучения накачки с периодом $T = 30 \,\mathrm{ms}$ и длительностью импульса $\Delta t_p = 9 \,\mathrm{ms}$. Мощность излучения накачки составляла P = 1774 mW. Аппроксимация проводилась в интервале времени $t \in [0, t_{max}]$: $t_{max} \approx 0.13$ ms для модели (1) и $t_{max} \approx 1.9$ ms для модели (2). Кружки — экспериментальные данные. Сплошные линии 1 и 2 — теоретические зависимости (1) и (2), соответственно, с параметрами, подобранными методом наибольшего косинуса (см. табл. 1, 2). На вставках 1,2 представлены разности между экспериментальными данными и теоретическими зависимостями (1) и (2) в области аппроксимации.

вого значения, свидетельствуют о хорошем согласии теории и эксперимента. Из рис. 1 видно, что регрессионная модель (2) хорошо описывает всю стадию нарастания экспериментальной кинетики люминесценции ($t \le 9$ ms), несмотря на то, что параметры этой модели подбирались по значительно меньшей временной области ($t \le 1.9$ ms). Это говорит о корректности исходных положений вероятностной модели, с помощью которой в [6] была получена зависимость (2), а сама модель пригодна для описания в среднем всей стадии нарастания кинетики люминесценции независимо от того, какие процессы передачи энергии ее формируют.

Сравнивая данные табл. 1, 2 с экспериментальными результатами, полученными в [6] для кристалла $Y_{0.8}Yb_{0.2}F_3:Tm^{3+}(1 at.\%)$, видим, что значения параметра *n*, относящиеся к одной и той же спектральной линии, примерно одинаковы для обоих кристаллов. Следовательно, механизмы заселения возбужденных состояний ионов Yb^{3+} и Tm^{3+} в кристалле $LiY_{0.8}Yb_{0.2}F_4:Tm^{3+}(0.2 at.\%)$ такие же, как и в кристалле $Y_{0.8}Yb_{0.2}F_3:Tm^{3+}(1 at.\%)$.

Значение $n \approx 0$ для спектральной линии ${
m Yb^{3+}}:{}^2F_{5/2} \to {}^2F_{7/2}$ при $t_{\rm max} \rightarrow +0$, говорит 0 непосредственном взаимодействии невозбужденных ионов Yb³⁺ с излучением накачки. Рост *t*_{max} до значений $t_{\max} \approx (0.1 - 0.2) \Delta t_p$ увеличивает параметр *n* до $n \approx 1$. Это объясняется тем, что перед излучательным переходом ${}^2F_{5/2} \rightarrow {}^2F_{7/2}$ за время $(0.1-0.2)\Delta t_p$ происходит в среднем один процесс безызлучательной передачи энергии от возбужденного иона Yb³⁺ к невозбужденному [6].

Для иона Tm^{3+} минимальным является значение $n \approx 1$. Им обладает спектральная линия перехода ${}^{3}H_{4} \rightarrow {}^{3}H_{6}$. Таким образом, наибыстрейшим процессом,

Рис. 2. Наиболее важные одноквантовые (1 ph), двухквантовые (2 ph) и ИК-переходы ионов Yb³⁺ и Tm³⁺ в кристалле LiY_{0.8}Yb_{0.2}F₄:Tm³⁺(0.2 at.%), вызываемые излучением накачки ($\lambda_p = 933$ nm). DD(2) — два иона Yb³⁺ (доноры), связанных взаимодействием и находящихся в двухквантовом кооперативном состоянии.

переводящим ионы Tm³⁺ в возбужденное состояние, является одноквантовая безызлучательная передача энергии (см. [6] и рис. 2):

$$Yb(^{2}F_{5/2}) + Tm(^{3}H_{6}) \rightarrow Yb(^{2}F_{7/2}) + Tm(^{3}H_{4}).$$

Линия излучения ${}^{3}F_{4} \rightarrow {}^{3}H_{6}$ ионов Tm³⁺ характеризуется значением $n \approx 2$. Поэтому в первые моменты времени после прихода очередного прямоугольного импульса накачки состояние ${}^{3}F_{4}$ заселяется в два этапа: вначале происходит процесс (3), а затем следует сопровождающийся ИК-излучением переход (см. [6] и рис. 2):

$$\operatorname{Tm}(^{3}H_{4}) \to \operatorname{Tm}(^{3}F_{4}) + h\nu_{\mathrm{IR}}.$$
 (4)

При увеличении области аппроксимации до значений $t_{\max} \approx (0.1-0.2)\Delta t_p$ параметр n возрастает от $n \approx 1$ до $n \approx 2$ для терма ${}^{3}H_{4}$ и от $n \approx 2$ до $n \approx 3-5$ для терма ${}^{3}F_{4}$. Как и в случае спектральной линии Yb³⁺: ${}^{2}F_{5/2} \rightarrow {}^{2}F_{7/2}$, это связано с миграцией энергии в подсистеме ионов Yb³⁺, предшествующей процессам (3), (4) [6]. Кроме того, значение n для уровня энергии ${}^{3}F_{4}$ дополнительно увеличивается за счет переходов Tm(${}^{1}G_{4}$, ${}^{1}D_{2}$, ${}^{1}I_{6}$) \rightarrow Tm(${}^{3}F_{4}$) + $h\nu$, для которых $n \approx 3$, $n \approx 4$ и $n \approx 5$ соответственно.

Переход Tm³⁺: ${}^{1}G_{4} \rightarrow {}^{3}H_{6}$ характеризуется значением $n \approx 2$. Следовательно, невозбужденные ионы Tm³⁺ переходят в состояние ${}^{1}G_{4}$ в результате двухквантовой передачи энергии, вызываемой вынужденным излучением (см. [6] и рис. 2):

Ì

$$Yb(^{2}F_{5/2}) + Tm(^{3}H_{6}) \xrightarrow{1} Yb - Tm(1),$$

$$hv + Yb - Tm(1) \xrightarrow{2} Yb(^{2}F_{7/2}) + Tm(^{1}G_{4}); \qquad (5)$$

$$h\nu + \operatorname{Yb}({}^{2}F_{5/2}) \xrightarrow{1} \operatorname{Yb}({}^{2}F_{7/2}) + 2h\nu_{d},$$
$$2h\nu_{d} + \operatorname{Tm}({}^{3}H_{6}) \xrightarrow{2} \operatorname{Tm}({}^{1}G_{4}).$$
(6)

Здесь Yb-Tm(1) — связанные взаимодействием ионы Yb³⁺ и Tm³⁺, находящиеся в общем кооперативном одноквантовом состоянии с энергией, примерно равной энергии перехода Yb³⁺: ${}^{2}F_{5/2} \rightarrow {}^{2}F_{7/2}$. Как показано в [6], других, отличных от (5) и (6), процессов двухквантовой передачи энергии с таким значением *n* не существует при прямоугольной модуляции излучения накачки.

Во многих работах заселение уровня ${}^{1}G_{4}$ ионов Tm³⁺ в кристаллах YF₃, LiYF₄ и им подобных, в диапазоне длин волн накачки 930-980 nm, рассматривают как пятиступенчатый процесс [1,3,4,14-17]: выделяемая при переходе $Yb^{3+}: {}^2F_{5/2} \to {}^2F_{7/2}$ энергия поглощается в трех процессах (механизм АРТЕ) Tm³⁺: ${}^{3}H_{6} \rightarrow {}^{3}H_{5}, \; {}^{3}F_{4} \rightarrow {}^{3}F_{2,3}, \; {}^{3}H_{4} \rightarrow {}^{1}G_{4},$ сопровождающихся безызлучательными переходами $Tm^{3+}: {}^{3}H_{5} \rightarrow {}^{3}F_{4}$, ${}^{3}F_{2,3} \rightarrow {}^{3}H_{4}$. В зависимости от вида импульсной модуляции излучения накачки для такого процесса n = 5или n = 7 [6]. Из табл. 1 и 2 видно, что в кристалле $LiY_{0.8}Yb_{0.2}F_4$: Tm³⁺(0.2 at.%) для перехода Tm³⁺: ${}^{1}G_{4} \rightarrow {}^{3}H_{6}$ такое большое значение *n* не наблюдается. Таким образом, данный пятиступенчатый процесс если и реализуется, то существенного влияния на кинетику нарастания ап-конверсионной люминесценции кристалла $LiY_{0.8}Yb_{0.2}F_4$: Tm³⁺(0.2 at.%) не оказывает.

Этот результат не противоречит работам [1,3,4,14-17], так как в этих работах вывод о существовании данного пятиступенчатого процесса делался на основе исследования зависимости интенсивности люминесценции от мощности P стационарного излучения накачки. При использовании этой методики кинетика люминесценции находится в установившемся режиме: $t \to +\infty$, а интенсивность люминесценции не меняется со временем. В таком временном режиме заселение уровня ${}^{1}G_{4}$ может происходить не только в ходе процессов (5), (6), но и в ходе других, более сложных и более длительных процессов, характеризующихся большим значением *n*. В частности, может реализоваться и пятиступенчатый процесс, описанный в [1,3,4,14–17]. В отличии от [1,3,4,14–17], мы исследуем кинетику люминесценции в совершенно другом временном режиме — $t \to +0$, то есть стадию нарастания кинетики люминесценции, где определяющими являются наиболее быстрые процессы заселения возбужденных состояний ионов, характеризующиеся минимально возможными значениями параметра *n*.

Фотон с энергией $hv_{\rm IR}$, входящий в (4), имеет длину волны $\approx 1400-1500$ nm. В этом диапазоне длин волн спектр излучения, образующегося в процессе (4), перекрывается со спектрами поглощения ионов Tm³⁺ на переходах ${}^{1}G_{4} \rightarrow {}^{1}D_{2}$ ($\approx 1400-1600$ nm) и ${}^{1}D_{2} \rightarrow {}^{1}I_{6}$ ($\approx 1300-1500$ nm). Это вызывает ап-конверсионную передачу энергии по механизму АРТЕ между ионами Tm³⁺ (см. [6] и рис. 2):

$$\operatorname{Tm}_{1}(^{3}H_{4}) + \operatorname{Tm}_{2}(^{1}G_{4}) \to \operatorname{Tm}_{1}(^{3}F_{4}) + \operatorname{Tm}_{2}(^{1}D_{2}),$$
 (7)

$$\operatorname{Tm}_{1}({}^{3}H_{4}) + \operatorname{Tm}_{2}({}^{1}D_{2}) \to \operatorname{Tm}_{1}({}^{3}F_{4}) + \operatorname{Tm}_{2}({}^{1}I_{6}), \quad (8)$$

Процессы (5)-(8) вызывают заселение уровней энергии ${}^{1}D_{2}$ и ${}^{1}I_{6}$ ионов Tm³⁺ и объясняют значения $n \approx 3$ и $n \approx 4$ для этих уровней (см. [6] и табл. 1).

Увеличение t_{\max} до значений $t_{\max} \approx (0.15 - 0.25) \Delta t_p$ вызывает увеличение параметра *n* примерно на единицу для всех трех уровней ${}^{1}G_{4}$, ${}^{1}D_{2}$ и ${}^{1}I_{6}$ (см. табл. 2). Как и в случае кристалла $Y_{0.8}Yb_{0.2}F_3$: Tm³⁺(1 at.%), это увеличение может быть связано с тем, что при заселении уровня ${}^{1}G_{4}$, возрастает роль процессов передачи энергии от ионов Yb³⁺ к ионам Tm³⁺ по механизмам АРТЕ и кооперативной сенсибилизации люминесценции (см. формулы (25)-(27) в [6]). Для процессов, определяемых этими механизмами n = 3 [6]. Если уровень ${}^{1}G_{4}$ заселяется не только за счет процессов (5), (6), но и в соответствии со схемами (25)-(27) из [6], то для спектральной линии $\mathrm{Tm}^{3+}: {}^1G_4 \to {}^3H_6$ должно наблюдаться значение $n \approx 3$. В этом случае, с учетом процессов (7), (8), наблюдаемое значение параметра *n* для уровней 1D_2 и 1I_6 должно составлять $n \approx 4$ и $n \approx 5$ соответственно. Все это находится в полном согласии с данными табл. 2.

Другой возможной причиной увеличения n с ростом t_{\max} для уровней ${}^{1}G_{4}$, ${}^{1}D_{2}$ и ${}^{1}I_{6}$ является миграция энергии в подсистеме ионов Yb³⁺, предшествующая процессам (5), (6). Приведенные в табл. 2 значения параметра n для этих уровней, можно также объяснить тем, что процессам (5) и (6) предшествует, в среднем, один процесс безызлучательной передачи энергии от возбужденного иона Yb³⁺ к невозбужденному.

Интересен характер зависимости параметра *n* от мощности Р излучения накачки. Из табл. 2 следует, что, при одном и том же положении перетяжки лазерного луча относительно кристалла $LiY_{0.8}Yb_{0.2}F_4:Tm^{3+}(0.2 at.\%)$, уменьшение мощности Р увеличивает значение параметра *п* для всех исследованных спектральных линий. Это объясняется тем, что с уменьшением Р увеличивается средний интервал времени между фотонами в потоке накачки. При этом уменьшается вероятность взаимодействия возбужденных ионов Yb³⁺ с фотонами накачки, а вероятность безызлучательной передачи энергии невозбужденным ионам Yb³⁺ увеличивается. В следствие этого, количество элементарных процессов безызлучательной миграции энергии в подсистеме ионов Yb³⁺ возрастает, что и увеличивает значение параметра *n* для всех последующих излучательных процессов. Например, для излучения самих ионов Yb^{3+} $n \to 2$ при уменьшении мощности накачки (см. табл. 2).

Как и в случае кристалла Y_{0.8}Yb_{0.2}F₃: Tm³⁺(1 at.%) [6], значения параметра b₂, приведенные в табл. 2, указывают на существование в кристалле LiY_{0.8}Yb_{0.2}F₄: Tm³⁺(0.2 at.%) двух конкурирующих каналов передачи энергии от ионов Yb³⁺ к ионам Tm³⁺. Излучение на длинах волн 1030 nm, 1700 nm и 790 nm порождается одноквантовым каналом передачи энергии (3). Для этих трех спектральных линий длительность одного последовательного акта передачи энергии (параметр b_2) уменьшается с уменьшением мощности накачки Р. В то же время, на длинах волн 484 nm, 363 nm и 290 nm, порождаемых двухквантовым каналом передачи энергии (5), (6), параметр b_2 , наоборот, увеличивается с уменьшением Р. Кроме того, смещение перетяжки лазерного луча, вызывающее при неизменной мощности накачки Р уменьшение ее объемной плотности, приводит к почти двукратному увеличению параметра b_2 на переходе ${}^{1}G_{4} \rightarrow {}^{3}H_{6}$ иона Tm³⁺ (см. табл. 2).

Эти экспериментальные факты объясняются также, как и в [6]. Увеличение мощности (объемной плотности мощности) излучения накачки увеличивает интенсивность вынужденного излучения ионов Yb³⁺. В результате процессы (5) и (6), вызываемые этим излучением, происходят чаще, а их длительности уменьшаются, что и приводит к уменьшению b_2 для уровней энергии иона Tm³⁺, заселяющихся через процессы (5) и (6). При этом, концентрация возбужденных ионов Yb³⁺ в канале (3) снижается, что, в свою очередь, увеличивает длительность процесса (3) и приводит к росту параметра b_2 для всех уровней энергии, заселяющихся через канал (3).

Отметим, что среднее значение параметра b_2 , вычисленное по всем спектральным линиям излучения ионов Tm³⁺, как в Y_{0.8}Yb_{0.2}F₃:Tm³⁺(1 at.%), так и в LiY_{0.8}Yb_{0.2}F₄: Tm³⁺(0.2 at.%), примерно одинаково и не зависит ни от мощности накачки, ни от объемной плотности мощности излучения накачки в кристалле: $\tilde{b}_2 \approx 0.1 \text{ ms}$ (см. [6] и табл. 2). Длительность одного последовательного процесса передачи энергии зависит от расстояния между ионами, участвующими в передаче энергии: чем больше расстояние, на которое передается энергия, тем больше длительность этой передачи. Используя модель координационных сфер и простые вероятностные соображения, легко показать, что среднее расстояние до ближайшего иона Tm^{3+} от любой катионной позиции, которую могут занимать в кристаллической решетке ионы Yb^{3+} и Tm^{3+} (позиция иона иттрия), вычисляется по формуле

$$\tilde{R}(c) = \sum_{j=1}^{\infty} R_j \left((1-c)^{N_{j-1}} - (1-c)^{N_j} \right), \tag{9}$$

где c — доля узлов катионной подрешетки, занятых ионами Tm^{3+} ; R_j — радиус j-й координационной сферы; $N_j = n_1 + n_2 + \ldots + n_j$ ($N_0 \equiv 0$); n_j — j-е координационное число. Группа симметрии и параметры кристаллических решеток кристаллов YF₃ и LiYF₄ хорошо известны [18–20]. Это позволило нам найти последовательности координационных чисел и радиусов, а затем, с помощью уравнения (9), оценить расстояние $\tilde{R}(c)$. Оказалось, что в кристалле LiY_{0.8}Yb_{0.2}F₄: Tm³⁺(0.2 at.%): $\tilde{R}(0.002) \approx 1.83$ nm, а в кристалле Y_{0.8}Yb_{0.2}F₃: Tm³⁺(1 at.%): $\tilde{R}(0.01) \approx 0.94$ nm.

Если межионные взаимодействия являются мультипольными, то средняя длительность одного процесса передачи энергии иону Tm^{3+} , равная длительности процесса передачи энергии на расстояние $\sim R(c)$, вычисляется по формуле

$$\tilde{b}_2 = \tilde{\tau}_1 (\tilde{R}(c)/R_1)^{\theta}.$$
(10)

Здесь $\theta = 6, 8, 10$ — мультипольность взаимодействия, а $\tilde{\tau}_1$ — длительность процесса передачи энергии в первую координационную сферу. Радиусы первой координационной сферы в $Y_{0.8}$ Yb_{0.2}F₃:Tm³⁺(1 at.%) и LiY_{0.8}Yb_{0.2}F₄:Tm³⁺(0.2 at.%) равны $R_1^{(1)} \approx 0.3584$ nm, $R_1^{(2)} \approx 0.3725$ nm, соответственно, и мало отличаются друг от друга. Поэтому, в этих кристаллах должно иметь место приближенное равенство: $\tilde{\tau}_1^{(1)} \approx \tilde{\tau}_1^{(2)}$. Учитывая, что значения параметра \tilde{b}_2 в исследуемых кристаллах оказались примерно одинаковыми, из уравнения (10) находим

$$\frac{\theta^{(2)}}{\theta^{(1)}} \approx \ln\left(\frac{\tilde{R}(0.01)}{R_1^{(1)}}\right) / \ln\left(\frac{\tilde{R}(0.002)}{R_1^{(2)}}\right) \approx 0.6.$$
(11)

Из (11) следует, что $\theta^{(2)}=6,$ а $\theta^{(1)}=10.$ Таким образом, взаимодействие ионов Tm^{3+} друг с другом и с ионами Yb^{3+} в кристалле $LiY_{0.8}Yb_{0.2}F_4:Tm^{3+}(0.2 at.\%),$ по-видимому, является диполь-дипольным, а в кристалле $Y_{0.8}Yb_{0.2}F_3:Tm^{3+}(1 at.\%)$ — квадруполь-квадрупольным. При этом, для обоих кристаллов: $\tilde{\tau}_1\approx7$ ns.

5. Заключение

Сопоставление регрессионных моделей (1), (2) с экспериментальными данными позволяет сделать следующий вывод: в первые моменты времени, когда только начинается рост интенсивности люминесценции, заселение возбужденных состояний ионов Tm^{3+} происходит в результате таких процессов передачи энергии из подсистемы ионов Yb^{3+} , которые характеризуются наименьшим возможным количеством *n* промежуточных последовательных этапов.

Как и в [6], мы обнаружили, что при импульсном прямоугольном возбуждении с длиной волны 933 nm в кристалле $LiY_{0.8}Yb_{0.2}F_4:Tm^{3+}(0.2 at.\%)$ такими процессами являются два конкурирующих канала передачи энергии от ионов Yb^{3+} к ионам Tm^{3+} :

1) одноквантовая передача энергии, вызывающая переход невозбужденного иона Tm^{3+} в состояние ${}^{3}H_{4}$;

2) двухквантовая ап-конверсионная передача энергии за счет вынужденного излучения, приводящая к прямому переходу $Tm^{3+}: {}^{3}H_{6} \rightarrow {}^{1}G_{4}.$

Сравнение определенных нами средних длительностей этих двух процессов с соответствующими длительностями, найденными в [6] для кристалла $Y_{0.8}Yb_{0.2}F_3:Tm^{3+}(1 at.\%)$, позволило нам установить, что наиболее вероятным типом взаимодействия ионов Tm^{3+} друг с другом и с ионами Yb^{3+} в кристалле $Y_{0.8}Yb_{0.2}F_3:Tm^{3+}(1 at.\%)$ является квадруполь-квадрупольное взаимодействие, а в кристалле $LiY_{0.8}Yb_{0.2}F_4:Tm^{3+}(0.2 at.\%)$ — диполь-дипольное. Обсуждается роль перехода $Tm^{3+}: {}^{3}H_4 \rightarrow {}^{3}F_4$ в заселении возбужденных состояний ${}^{1}D_2$ и ${}^{1}I_6$ ионов Tm^{3+} .

Список литературы

- [1] F. Auzel. Chem. Rev. **104**, *1*, 139 (2004).
- [2] R. Scheps. Prog. Quant. Electr. 20, 4, 271 (1996).
- [3] G. Wang, W. Qin, L. Wang, G. Wei, P. Zhu, R. Kim. Opt. Express 16, 16, 11907 (2008).
- [4] G. Wang, W. Qin, L. Wang, G. Wei, P. Zhu, D. Zhang, F. Ding. J. Rare Earths 27, 2, 330 (2009).
- [5] M. Pollnau, D.R. Gamelin, S.R. Lüthi, H.U. Güdel, M.P. Hehlen. Phys. Rev. B 61, 5, 3337 (2000).
- [6] A.V. Mikheev, B.N. Kazakov. J. Lumin. 205, 167 (2019).
- [7] В.В. Овсянкин, П.П. Феофилов, Письма в ЖЭТФ 4, 11, 471 (1966). [V.V. Ovsyankin, P.P. Feofilov. JETP Lett. 4, 11, 317 (1966).]
- [8] А.В. Михеев, Б.Н. Казаков. Письма в ЖЭТФ 102, 5, 311 (2015). [A.V. Mikheev, B.N. Kazakov. JETP Lett. 102, 5, 279 (2015).]
- [9] Б.Н. Казаков, А.В. Михеев, О.Г. Гориев, С.Л. Кораблева, В.В. Семашко. Оптика и спектроскопия **121**, *4*, 574 (2016).
 [B.N. Kazakov, A.V. Mikheev, O.G. Goriev, S.L. Korableva, V.V. Semashko. Opt. Spectrosc. **121**, *4*, 523 (2016).]
- [10] B.N. Kazakov, S.L. Korableva, V.V. Semashko, O.G. Goriev, A.R. Khadiev. J. Lumin. 187, 410 (2017).
- [11] V.V. Pavlov, B.N. Kazakov, A.V. Lovchev. Письма в ЖЭТФ
 100, *I*, 13 (2014). [V.V. Pavlov, B.N. Kazakov, A.V. Lovchev. JETP Lett. 100, *I*, 11 (2014).]
- [12] B.N. Kazakov, V.V. Semashko, A.V. Lovchev, A.K. Naumov. J. Phys.: Conf. Ser. 560, 012003 (2014).
- [13] А.В. Михеев, Б.Н. Казаков. Компьютерные исследования и моделирование 6, 1, 57 (2014). [А.V. Mikheev, B.N. Kazakov. Comp. Res. Mod. 6, 1, 57 (2014).]

- [14] A. Nadort, J. Zhao, E.M. Goldys. Nanoscale 8, 27, 13099 (2016).
- [15] A. Knupfer, V. Ostroumov, E. Heumann, G. Huber, V. Lupei. J. Phys. France 4 (C4), 501 (1994).
- [16] J.F. Suyver, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K.W. Krämer, C. Reinhard, H.U. Güdel. Opt. Mater. 27, 6, 1111 (2005).
- [17] J. Zhang, C. Cao, S. Lu, W. Qin. Phys. Procedia 13, 9 (2011).
- [18] A.K. Cheetham, N. Norman. Acta Chem. Scand. A 28, 1, 55 (1974).
- [19] R.E. Thoma, C.F. Weaver, H.A. Friedman, H. Insley, L.A. Harris, H.A. Yakel Jr. J. Phys. Chem. 65, 7, 1096 (1961).
- [20] L. Misiak, P. Mikolajczak, M. Subotowicz. Phys. Status. Solidi A 97, 2, 353 (1986).

Редактор Д.В. Жуманов