08

Статический и динамический вклады в расщепление основного состояния Eu²⁺ в SrMoO₄

© А.Д. Горлов

Уральский федеральный университет, научно-исследовательский институт физики и прикладной математики, Екатеринбург, Россия

E-mail: Anatoliy.Gorlov@urfu.ru

Исследован спектр ЭПР примесного центра Eu^{2+} в монокристалле SrMoO₄ в области температур T = 1.8, 111-300 К и определены температурные изменения параметров спинового гамильтониана, описывающих спектр ЭПР нечетных изотопов европия. Показано, что малые температурные изменения диагональных параметров спинового гамильтониана (для нечетных изотопов Eu^{2+}) $b_2^0(T) = b_2(F) + b_2(L)$ и $P_2^0(T) = P_2(F) + P_2(L)$, объясняются компенсацией спин-фононных вкладов $b_2(F)$ и $P_2(F)$ вкладами от термического расширения решетки $b_2(L)$, $P_2(L)$. Величины $b_2(L)$ и $P_2(L)$, зависящие от параметров статической решетки при данной температуре, оценены в рамках суперпозиционной модели Ньюмена. Затем выделены спин-фононные вклады $b_2(F)$ и $P_2(F)$, определяемые колебаниями ионов решетки. Анализ показал, что $b_2^0(F)$ и $P_2^0(F) > 0$, $b_2(L)$ и $P_2(L) < 0$, а температурное поведение спин-фононного вклада хорошо описывается моделью локальных колебаний Г. Пфистера.

Работа выполнена в рамках государственного задания Минобрнауки России для Уральского федерального университета (3.6115.2017/8.9) на оборудовании Центра коллективного пользования "Современные нанотехнологии" УрФУ.

DOI: 10.21883/FTT.2019.05.47590.25F

1. Введение

Хорошие оптические свойства и химическая инертность обусловили применение кристаллов со структурой шеелита в качестве люминофоров, лазерных сред, криогенных сцинтилляторов [1–4], поэтому исследования таких кристаллов с примесью редкоземельных металлов (P3M) связаны с широким использованием их в технике. Эффективность устройств на основе этих материалов существенно зависит от фононного спектра, влияющего как на релаксационные характеристики, так и на положения энергетических уровней примеси [5].

Ранее мы исследовали температурные изменения параметров второго ранга $b_2^0(T)$ и $P_{20}(T)$ спинового гамильтониана (СГ) для примесных центров (ПЦ) Gd^{3+} в кристаллах со структурой CaWO₄ [6–8]. Здесь $b_2^0(T)$ наибольший параметр начального расщепления, а $P_2^0(T)$ квадрупольное взаимодействие (КВ) для ^{151,153}Eu, зависящее от градиента электрического поля лигандов. Изменения $b_2^0(T)$ и $P_2^0(T)$ определяют зависимость начального расщепления $\Delta E(T)$ основного состояния за счет изменения координат лигандов (implicit effect) и действия решеточных колебаний, или спин-фононного взаимодействия (СФВ) (explicit effect) [5,9]. Интересно было сравнить такие вклады в $\Delta E(T)$ для Eu²⁺ и Gd³⁺ (оба иона в *S*-состоянии) в изоструктурных кристаллах.

Выбор для анализа параметров $b_2^0(T)$ и $P_2^0(T)$ связан с тем, что implicit effect мы можем рассчитать с помощью суперпозиционной модели Ньюмена [10] в виде, представленном в работе [11], учитывая температурные изменения параметров решетки. Затем можно выделить спин-фононные вклады $b_2(F)$ и $P_2(F)$, зависящие от температуры *T*. Включение в анализ КВ обусловлено тем, что величина P_2^0 пропорциональна градиенту электрического кристаллического поля (КП) лигандов на ПЦ и зависит от величины параметра этого поля A_2^0 [12,13]. Оценка величины P_2^0 для гадолиния, определяемая A_2^0 за счет точечных зарядов лигандов, приведена в [11]. Между тем b_2^0 связано с A_2^0 [10–13]. Следует ожидать, что при правильном описании спин-фононного взаимодействия некоторые модельные параметры зависимостей $b_2(F)$ и $P_2(F)$ от температуры должны быть одинаковы.

Экспериментальные результаты и модельные расчеты

Кристалл SrMoO₄: Eu²⁺ выращен методом Чохральского из шихты с примесью ~ 0.1% по весу EuO (с природным содержанием изотопов). Спектры ЭПР были зарегистрированы на спектрометре Bruker EMX plus в трехсантиметровом диапазоне при разных температурах и ориентациях внешнего магнитного поля **H** относительно кристаллографических направлений. Разрешенная сверхтонкая структура (СТС), обязанная своим появлением нечетным изотопам ^{151,153}Eu (электронный спин S = 7/2, ядерный спин I = 5/2), наблюдалась на всех сигналах ЭПР в главных ориентациях (**H** || **S**₄ главной оси кристалла и **H** \perp **S**₄).

Спектр ЭПР от изотопов прекрасно описывается спиновым гамильтонианом, соответствующим локальной симметрии ПЦ D_{2d} [14], то есть Eu²⁺, как и ионы других РЗМ, замещает Sr²⁺ [13–15]. Использование СГ для реальной локальной симметрии ПЦ S₄ не приводило к уменьшению ошибок в определении параметров. В [14] приведены их значения для Eu^{2+} в SrMoO₄.

2.1. Модельные расчеты параметров $b_2(L)$ и $P_2(L)$

Для оценки величин $b_2(L)$ и $P_2(L)$ нам необходимо знать параметры решетки SrMoO₄ в широком диапазоне температур для определения координат R_i , θ_i , φ_i ближайших к ПЦ лигандов. Такие данные в нужном температурном диапазоне приведены в работе [8], посвященной ЭПР Gd³⁺ : SrMoO₄, и мы их используем.

Определим измеренные константы СГ как $Z_2^0(T) = b_2^0(T)$ (либо $P_2^0(T)$), а вклад СФВ, как $Z_2(F) = b_2(F)$ (либо $P_2(F)$). Вклад статической решетки обозначим как $Z_2(L) = b_2(L)$ (либо $P_2(L)$) при данной температуре, а $\Delta Z_2(L) = Z_2(L) - Z_2^0(0)$ — добавка за счет изменения статического вклада. Тогда

$$Z_2^0(T) = Z_2(F) + Z_2(L).$$
(1)

Величины $Z_2(L)$ при разных T рассчитаем с помощью суперпозионной модели Ньюмена [10] в виде, представленном в работе [11]. Процедура расчета параметров $Z_2(L)$ аналогична описанной в [6–8].

$$Z_2(L) = \sum_i k_i(\theta) \Big[Z_{2p} \cdot (R_0/R_i)^3 + Z_{2s} \cdot (R_0/R_i)^{10} \Big] \quad (2)$$

Здесь "intrinsic" параметр $Z_{2p} = b_{2p} =$ = -1.155 · 10⁴ MHz [16] (либо $P_{2p} = -110$ MHz для ¹⁵¹Eu и $P_{2p} = -278$ MHz для ¹⁵³Eu) есть вклад от точечного заряда O²⁻ на расстоянии $R_0 = 0.25$ nm. Параметры $Z_{2s} = b_{2s} = 1.393 \cdot 10^4$ MHz ($P_{2s} = 95$ MHz для ¹⁵¹Eu, $P_{2s} = 240$ MHz для ¹⁵³Eu) были определены феноменологически при T = 1.8 K, как в [16]. Координационные факторы $k_i(\theta) = n(3\cos^2\theta_i - 1)/2$. Поскольку ближайшие к Eu²⁺ ионы кислорода разбиваются на две четверки, эквивалентные по вкладам в b_2^0 и P_2^0 , то i = 1, 2, а n = 4. Расстояния Eu²⁺-O²⁻ рассчитано по формуле $R_i = R + (r - r_h)/2$ [17], где r, r_h — ионные радиусы примесного и замещаемого иона, взятые из таблиц Шеннона [18].

Параметры P_{2p} , P_{2s} то есть вклады от перекрывания и ковалентности в КВ на расстоянии $R_0 = 0.25$ nm определены для нечетных изотопов Eu²⁺ в SrMoO₄ следующим образом. Мы предположили, что фактор антиэкранирования Штернхеймера $\gamma_{\infty}(\text{Eu}) = \gamma_{\infty}(\text{Gd})$. Взяв отношения квадрупольных моментов для ¹⁵⁷Gd и ^{151,153}Eu [19], учитывая ядерные спины этих изотопов и величины A_2^0 для точечного вклада в КП [11,16], мы получили коэффициенты пересчета $P_{2p}(\text{Gd}^{3+})/P_{2p}(\text{Eu}^{2+})$. Затем из известных экспериментальных величин P_2^0 для ^{151,153}Eu, измеренных при T = 1.8 K, были определены P_{2s} , поскольку в этой области температур имеется лишь вклад от нулевых колебаний решетки в ее параметры, а фононный вклад очень мал [5–9,13,15,20–23], то есть $b_2^0(0) = b_2(L)$ и $P_2^0(0) = P_2(L)$.

Температурные зависимости $b_2(F)$ (штриховая линия, квадраты) и $P_2(F)$ для ¹⁵¹Eu (кривая *I*, кружки) и ¹⁵³Eu (кривая *2*, звездочки). Символы — значения, определенные из выражения (1), линии — зависимости (3) с параметрами из таблицы. Показаны экспериментальные ошибки в значениях $b_2^0(T)$ и $P_2^0(T)$.

2.2. Температурная зависимость спин-фотонного взаимодействия

Рассчитаем $Z_2(L)$ для температур, при которых проведены экспериментальные измерения, используя выражение (2). Затем определим $Z_2(F)$ из экспериментальных величин Z_2^0 (выражение (1)) для этих значений T. Получаем, что СФВ больше нуля и растет с ростом T, то есть поведение $Z_2(F)$ подобно наблюдаемому для нечетных изотопов Gd⁺³ в кристаллах со структурой шеелита [6–8]. На рисунке точками показаны значения $Z_2(F)$, полученные из расчетов.

Для описания температурного поведения $Z_2(F)$ имеются три наиболее известные теоретические модели [21–23]. В работе [21] предполагалось, что основную роль в фононно-индуцированном вкладе (или в СФВ) играют оптические фононы, в [22] — акустические, а в [23] показано, что локальные оптические колебания примесного кластера определяют $Z_2(F)$.

Модельные параметры температурных зависимосте
й $Z_2(F)$ для Eu^{2+} в SrMoO4

Зависимость	Параметры модели	
	$Z_2(0), MHz$	$\omega \cdot 10^{-13}$, rad/s
$b_2(F) \ P_2(F) \ (^{151}{ m Eu}) \ P_2(F) \ (^{153}{ m Eu})$	$126.1(79) \\ 0.9(1) \\ 2.2(2)$	3.43(15) 3.6(2) 3.41(15)

Примечание. Ошибки в параметрах соответствуют 3σ

Каждой модели соответствует своя функциональная температурная зависимость для $Z_2(F)$, но в области T > 200 К все они дают практически линейную зависимость от T. Наш анализ показал, что в моделях [21] и [22] зависимость фононно-индуцированного вклада $Z_2(F)$ от T можно описать только тремя подгоночными параметрами, один из которых не имеет теоретического обоснования. С другой стороны, модель локальных колебаний [23] с двумя параметрами очень хорошо описывает зависимость $b_2(F)$ от T выражением

$$Z_2(F) = Z_2(0)[\coth(\omega/2kT) - 1],$$
(3)

где $Z_2(0) = b_2(0)$ — вклад за счет "нулевых колебаний" решетки, ω — частота локальных колебаний примесного кластера, k — постоянная Больцмана. На рисунке показана зависимость $b_2(F)$ от T, полученная в процедуре genfit. Точки на кривой определены, согласно выражению (1), а в таблице приведены модельные параметры, причем в скобках приведены их отклонения при 3σ .

2.3. Температурная зависимость $P_2(F)$ для нечетных изотопов примесных центров

Хотя эксперименты [14] не обнаруживают температурного изменения P_2^0 для ^{151,153}Eu, тем не менее, рассчитав $P_2(L)$ согласно (1), получаем, что фононноиндуцированные вклады для двухт изотопов при 300 К составляют 1.2 и 3.2 MHz (рисунок), что больше экспериментальной ошибки. Как и для $b_2(F)$ в моделях [21] и [22], для температурной зависимости $P_2(F)$ требуются три подгоночных параметра в процедуре genfit, а модель локальных колебаний [23] хорошо описывает $P_2(F)$ выражением (3). Полученные в этой модели параметры даны в таблице, приведенные ошибки определены при 3 σ .

Отношение изменений решеточного вклада $|\Delta Z_2(L)|$ к $Z_2(F) \sim 1$ при любой температуре как для b_2^0 , так и для P_2^0 , а это означает, что два механизма (фононноиндуцированный и решеточный), дающие вклады разного знака в $Z_2^0(T)$, приводят к отсутствию заметной температурной зависимости этих параметров СГ.

Температурные зависимости $b_2(F)$ и $P_2(F)$, описываются выражением (3) с частотами ω , совпадающими в пределах ошибок, что указывает на правомерность использования модели Пфистера [23], предполагающей доминирующую роль локальных колебаний примесного кластера в фононно-индуцированном вкладе.

3. Заключение

Анализ экспериментальных зависимостей параметров СГ $b_2^0(T)$ и $P_2^0(T)$ для ПЦ (нечетные изотопы) Eu²⁺ в SrMoO₄ показал, что спин-фононный вклад ($Z_2(F) > 0$) и добавка за счет решеточного вклада ($\Delta Z_2(L) < 0$) близки по величине при любой T. Отношение спин-фононного вклада к температурным изменениям решеточного вклада ~ 1 для $b_2^0(T)$ и для $P_2^0(T)$ при любом

значении *T*. Компенсируя друг друга в широкой области температур, они приводят к отсутствию температурной зависимости $Z_2^0(T)$. Из трех моделей СФВ наиболее подходящей оказалась модель локальных колебаний примесного кластера Пфистера [23] с минимальным числом модельных параметров. Определенные частоты ω локальных колебаний для $b_2(F)$ и $P_2(F)$ (в пределах ошибок) совпадают, что указывает на правомерность использования этой модели. Отметим также, что $\Delta Z_2(L)$ и $\Delta Z_2(F)$ близки к тем же величинам, полученным для Gd³⁺ и Eu²⁺ в CaWO₄ и CaMoO₄.

Список литературы

- [1] Th.P.J. Botden. Philips Res. Rep. 6, 425 (1951).
- [2] A. Kaminskii, H.J. Eichler, K. Ueda, N.V. Klassen, B.S. Redkin, L.E. Li, J. Findeisen, D. Jaque, J. Garcia-Sole, J. Fernandez, R. Balda. Appl. Opt. 38, 4533 (1999).
- [3] В. Осико, И. Щербаков. Фотоника 39, 14 (2013).
- [4] P. Meunier, M. Bravin, M. Bruckmayer, S. Giordano, M. Loidl, O. Meier, F. Pröbst, W. Seidel, M. Sisti, L. Stodolsky, S. Uchaikin, L. Zerle. Appl. Phys. Lett. 75, 1335 (1999).
- [5] W.M. Walsh, Jr. Phys. Rev. 114, 1473 (1959).
- [6] А.Д. Горлов. ФТТ 57, 1371 (2015).
- [7] А.Д. Горлов. ФТТ **59**, 559 (2017).
- [8] А.Д. Горлов. ФТТ 60, 329 (2018).
- [9] W.M. Walsh, Jr.J. Jeener, N. Bloembergen. Phys. Rev. 139, A1338 (1965).
- [10] D.J. Newman. J. Phys. C 8, 1862 (1975).
- [11] L.I. Levin, A.D. Gorlov. J. Phys.: Condens. Matter 4, 1981 (1992).
- [12] Б. Блини. В сб.: Сверхтоникие взаимодействия в твердых телах / Под ред. Е.А. Турова. Мир, М. (1970). С. 15
- [13] А. Абрагам, Б. Блини. Электронный парамагнитный резонанс переходных ионов. Мир, М. (1972). Т. 1. 651 с.
- [14] А.Д. Горлов. ФТТ 56, 2115 (2014).
- [15] С.А. Альтшулер. Б.М. Козырев. Электронный парамагнитный резонанс соединений элементов промежуточных групп. Наука, М. (1972). 672 с.
- [16] В.А. Важенин, А.Д. Горлов, Л.И. Левин, К.М. Стариченко, С.А. Чикин, К.М. Эриксонас. ФТТ 29, 3035 (1987).
- [17] W.C. Zheng, S.Y. Wu. Physica B 304, 137 (2001).
- [18] R.D. Shannon. Acta. Crystallogr. A. 32, 751 (1976).
- [19] G. Guthohrlein. Physik **214**, 332 (1968).
- [20] T. Rewajt, J. Kuriata, J. Typek, J.Y. Buzare. Acta Phys. Pol. A 84, 1143 (1993).
- [21] C.Y. Huang. Phys. Rev. 159, 683 (1967).
- [22] K.N. Shrivastava. Phys. Rev. 187, 446 (1969).
- [23] G. Pfister, W. Draybrodt, W. Assmus. Phys. Status Solidi B 36, 351 (1969).

Редактор Е.Ю. Флегонтова