08,09

Кинетика импульсной катодолюминесценции кристаллов ортобората лития-гадолиния, легированного примесью церия

© М.С. Киселева¹, И.Н. Огородников¹, В.Ю. Яковлев²

¹ Уральский федеральный университет,

Екатеринбург, Россия

² Национальный исследовательский Томский политехнический университет,

Томск, Россия

E-mail: Kiseleva.Marija@gmail.com

С применением времяразрешенных методов импульсной абсорбционной спектроскопии и импульсной катодолюминесценции при возбуждении электронным пучком наносекундной длительности выполнено исследование кинетики релаксации электронных возбуждений в монокристаллических и кристалловолоконных образцах Li₆GdB₃O₉ при 293 K. На основании результатов численного моделирования рекомбинационных процессов предложен механизм возбуждения импульсной катодолюминесценции.

DOI: 10.21883/FTT.2019.05.47585.15F

1. Введение

Оптические кристаллы двойных боратов лития с общей формулой $Li_6MeB_3O_9$ (Me = Gd, Eu, Y) имеют потенциально широкую область практических применений. Во-первых, они обладают широкой полосой оптической прозрачности, простирающейся в ультрафиолетовую (УФ) область спектра. Так, коротковолновая граница оптического пропускания Li₆GdB₃O₉ (LGBO) определяется пороговой энергией оптических переходов в матричных ионах Gd^{3+} (около 4.0 eV), тогда как пороговая энергия оптических переходов в анионной подрешетке составляет $E_g = 9.3 \, \text{eV}$ [1]. Значительную роль в спектре низкоэнергетических электронных переходов LGBO играют переходы с переносом заряда O-Gd, максимальное проявление которых наблюдается в области 7-8 eV [2]. Во-вторых, эти кристаллы обладают высокой изоморфной емкостью по отношению к трехвалентным примесным ионам, которые замещают матричные ионы Gd³⁺. Миграция электронных возбуждений в кристалле LGBO происходит по цепочкам ионов Gd³⁺, что обеспечивает эффективный перенос энергии электронных возбуждений от матрицы к трехвалентным примесным ионам. Имеют место все условия для эффективного легирования LGBO трехвалентными примесными ионами редкоземельных металлов, что является важным для практического применения LGBO в качестве излучающих сред, люминофоров или генерирующих сред в силовой коротковолновой лазерной технике и интегральной оптике. В-третьих, в формульный состав материала входят химические элементы, имеющие изотопы с экстремально высокими сечениями реакций взаимодействия с тепловыми нейтронами. Это позволило обсуждать LGBO как потенциальное рабочее вещество для сцинтилляционного детектора тепловых нейтронов [3,4].

При возбуждении наносекундным пучком электронов с энергией 200–250 keV в LGBO : Се наблюдается интенсивная импульсная катодолюминесценция (ИКЛ), спектр которой сосредоточен в d-f полосе люминесценции Ce³⁺ (2.5-3.4 eV) [5,6]. Однако высокая интенсивность ИКЛ и особенности кинетики ее затухания существенно отличаются от таковых для случая прямого фотовозбуждения люминесценции Се³⁺ или возбуждения этой люминесценции фотонным излучением в области межзонных переходов. Это заставляет предположить существование альтернативного механизма возбуждения ИКЛ LGBO: Се. Действительно, предыдущие исследования выявили два важных факта. Вопервых, примесные ионы церия в LGBO : Се могут быть в двух основных зарядовых состояниях: Ce³⁺ и Ce⁴⁺. Относительное содержание четырехвалентных ионов может в отдельных случаях достигать 3/4 от общего содержания примеси церия [7,8]. Во-вторых, воздействие наносекундного электронного пучка указанной энергии приводит к формированию при комнатной температуре короткоживущих пар антиморфных дефектов литиевой подрешетки [9,10]. Из общих соображений очевидно, что эти две причины могут привести к появлению альтернативного механизма возбуждения ИКЛ.

Результаты изучения этого механизма в монокристаллах и кристалловолоконных образцах LGBO:Се представлены в настоящей работе, в которой экспериментально исследовали спектры и кинетику ИКЛ и короткоживущего оптического поглощения (КОП) при возбуждении электронным пучком наносекундной длительности, а также проводили численное моделирование рекомбинационных процессов.

2. Объекты и методы исследования

В работе исследованы образцы ортобората литиягадолиния двух видов. Монокристаллы LGBO : Се оптического качества были выращены в Институте геологии и минералогии СО РАН (г. Новосибирск). Образцы LGBO : Се (0.5 аt.% Се) были приготовлены в виде полированных плоскопараллельных пластин 7 × 7 × 2 mm. Детали выращивания и спектроскопические свойства монокристаллов представлены в [11]. Кристалловолоконные образцы LGBO : Се (1 ат.% Се, \emptyset 800 μ m, длина 30 mm) были синтезированы И.Н. Седуновой совместно с К. Лебу (К. Lebbou), К. Педрини (Ch. Pedrini), А.В. Ищенко и Т.С. Королевой в Лионском университете (г. Лион) методом микровытягивания (Micro Pulling Down) в воздушной атмосфере [12,13]. После синтеза все кристалловолоконные образцы были подвергнуты термообработке (600°C, 15 h, атмосфера аргона).

Подробное описание экспериментальной установки и особенностей методов люминесцентной и абсорбционной спектроскопии с наносекундным временным разрешением приведено в работах [14,15].

3. Результаты эксперимента

На рис. 1, *а* приведены времяразрешенные спектры КОП монокристалла LGBO : Се (T = 293 K). Все эти спектры при E > 1.2 eV имеют вид круто нарастающей кривой, которая достигает максимума около E = 2 eV и далее плавно спадает к 3 eV. В области E = 3.4-3.8 eV наблюдается менее интенсивный широкий максимум.

а

D(0) $D(10 \ \mu s)$ 0.2 00 Absorbance D0 b 0.6 D(0) $D(0.5 \ \mu s)$ 0.4 D(10 µs) 0.2 0 3 4 2 Photon energy, eV

Рис. 1. Спектры КОП LGBO : Се при T = 293 К, зарегистрированные для монокристалла (*a*) и кристалловолокна (*b*) сразу после окончания импульса возбуждения (D(0)) и с задержкой на указанное время ΔT ($D(\Delta T)$).

Рис. 2. Кривые кинетики затухания КОП LGBO : Се при T = 293 K, зарегистрированные для монокристалла (*a*) и кристалловолокна (*b*) в полосе при E = 1.8 (*I*, 4) и 2.10 eV (*2*). Сплошные гладкие линии (*3*, *5*) — результаты аппроксимации, штриховыми линиями показаны выделенные компоненты: туннельный (*6*) и термоактивационный (*7*).

Интенсивность сигнала D(t) затухает достаточно однородно по спектру. Затухание происходит сравнительно медленно: через $10\,\mu s$ после возбуждения интенсивность сигнала затухает примерно в два раза.

Спектры КОП кристалловолоконных образцов (рис. 1, b) измерены только в ограниченных областях $E = 1.4 - 2.0 \,\mathrm{eV}$ для мгновенного спектра D(0)и 1.4-2.8 eV для времяразрешенных спектров. Это обусловлено тем, что в области 2.5-3.5 eV наблюдается ИКЛ, интенсивность которой соизмерима с интенсивностью зондирующего света при изучении КОП. Кроме того, в окрестности $E = 1.8 \, \text{eV}$ величина регистрируемой оптической плотности более чем в три раза превосходит таковую для монокристалла, что затрудняет процесс регистрации в выбранной геометрии измерений. Основное отличие спектров КОП кристалловолоконных образцов (рис. 1, b) — это наличие быстрого компонента затухания: в первые 500 ns времени затухания оптическая плотность D(t) при $E = 1.8 \, \text{eV}$ уменьшается на порядок

Рис. 3. Спектры ИКЛ кристалловолокна LGBO, зарегистрированные при T = 293 (*a*) и 80 K (*b*) сразу после окончания импульса возбуждения (I(0)) и с задержкой на указанное время ΔT ($I(\Delta T)$).

величины. При больших временах затухания скорость спада D(t) соизмерима с таковой для монокристалла.

На рис. 2, *а* представлены две кривые кинетики затухания КОП монокристалла LGBO : Се (T = 293 K), зарегистрированные при E = 1.8 и 2.1 eV. В двойных логарифмических координатах эти кинетики имеют вид плавно спадающих кривых. В области времени затухания 10 ns – 5 μ s профили обеих кривых практически совпадают, различаясь лишь интенсивностью: величина D(t)уменьшается с 0.36 до 0.18 при E = 1.8 eV, с 0.42 до 0.22 при E = 2.1 eV. Кинетика затухания КОП монокристалла была также измерена при E = 1.65 eV, но на рис. 2, *а* она не приведена, поскольку совпадает с таковой для E = 1.8 eV.

Для измерения кинетики затухания КОП кристалловолокна были подобраны условия измерения, при которых величина сигнала D(0) практически совпадала с таковой для монокристалла, рис. 2, *b*. Из рис. 2, *b* видно, что основная доля оптической плотности затухает в интервале времени до 300 пs. Далее имеет место медленное затухание, сопоставимое с таковым для монокристалла. Это свидетельствует о наличии в кинетике затухания КОП кристалловолокна мощного компонента затухания с постоянной временем от нескольких десятков до сотни наносекунд.

На рис. 3 представлены времяразрешенные спектры ИКЛ кристалловолоконных образцов LGBO : Се, зарегистрированные при T = 80 и 293 К. Люминесценция в области 2.5–3.4 eV отнесена к интерконфигурационным 5d-4f переходам в примесных ионах Ce³⁺. Из сопоставления времяразрешенных спектров при комнатной температуре (рис. 3, *a*) видно, что основная доля светосуммы затухает за время короче 250 пs. При T = 80 К затухание происходит сравнительно медленно.

Во всех случаях затухание происходит однородно по спектру, поэтому кривые кинетики затухания ИКЛ

Рис. 4. Кинетика затухания ИКЛ кристалловолокна LGBO : Се, зарегистрированная при E_m =3.0 eV и T=293 K (1). Сплошная линия — результат аппроксимации (2), штриховыми линиями показаны: туннельный компонент I_{tun} (3) и функция выхода $\eta(t)$ (4).

Рис. 5. Кинетика затухания ИКЛ монокристалла LGBO : Се, зарегистрированная при $E_m = 3.0 \text{ eV}$ и T = 293 K (1). Сплошная линия — результат аппроксимации (2), штриховыми линиями показаны: туннельный компонент I_{tun} (3), функция выхода $\eta(t)$ (4) и инерционный рекомбинационный процесс (5).

(рис. 4, 5) приведены только для энергии $E_m = 3.0 \text{ eV}$, хотя измерения проводились также и в других точках спектра. В обоих случаях (монокристалл и кристалловолокно) затухание интенсивности ИКЛ на порядок величины происходит за время несколько сотен наносекунд. При больших временах затухания наблюдаются инерционные рекомбинационные процессы. Так, в случае монокристалла (рис. 5) выделен медленный компонент затухания ИКЛ, подчиняющийся гиперболической зависимости второго порядка с характерным временем около 100μ s и амплитудой около 4% от начальной интенсивности.

4. Обсуждение результатов

Доминирующими излучательными переходами в оптических материалах, содержащих ионы Ce^{3+} , являются интерконфигурационные $5d \rightarrow 4f$ переходы в ионе Ce^{3+}

$$(Ce^{3+})^* \to Ce^{3+} + h\nu.$$
 (1)

При возбуждении зона-зона возможны два взаимосвязанных механизма рекомбинации зонных электронов и дырок с участием ионов церия [16]. В первом случае (2) 4f-электрон иона Ce³⁺ рекомбинирует с дыркой из валентной зоны (B3).

$$Ce^{3+} + h^+ \to Ce^{4+}.$$
 (2)

$$Ce^{4+} + e^- \to (Ce^{3+})^*.$$
 (3)

Процесс (2) является безызлучательным и может быть представлен как захват дырки из ВЗ на локальный уровень дырочного Ce^{3+} -центра захвата. В результате образуется ион Ce^{4+} , который на следующей стадии (3) может захватить электрон из зоны проводимости. Захваченный электрон релаксирует в метастабильное 5d-состояние, соответствующее нижнему возбужденному уровню иона Ce^{3+} . Далее реализуется излучательный $5d \rightarrow 4f$ -переход по схеме (1). При наличии дополнительных центров захвата электронов между стадиями (2) и (3) может быть временной промежуток, обусловленный процессом делокализации электронов с дополнительных центров захвата. Данный механизм является достаточно универсальными объясняет люминесценцию ионов Ce^{3+} при рекомбинации зонных носителей заряда с участием примесных ионов церия.

На рис. 6 приведена предполагаемая модель рекомбинационных процессов с участием примесных и собственных дефектов кристалла LGBO, протекающих после воздействия наносекундного пучка электронов.

В исходном состоянии LGBO : Се содержит примесные ионы церия преимущественно в зарядовом состоянии Ce⁴⁺ (состояние (*a*) на рис. 6). Действительно, в случае прямого фотовозбуждения LGBO : Се интенсивность фотолюминесценции примесных ионов Ce³⁺ невелика. Однако при возбуждении электронным пучком доминирует альтернативный механизм возбуждения, на фоне которого после окончания импульса возбуждения

Рис. 6. Модель рекомбинационных процессов с участием примесных и собственных дефектов LGBO : Се.

мы не видим характерного короткого интенсивного свечения Ce³⁺ с постоянной времени 30-40 ns. Согласно развиваемым представлениям [9], в образце при этом происходит создание френкелевских пар дефектов типа "вакансия лития-междоузельный ион лития", которые после перезарядки превращаются в дырочный центр О-(дырка на 2*p*-орбитали кислорода в окрестности вакансии лития) и подвижный электронный центр Li⁰. Отметим, что в LGBO : Се могут присутствовать также другие типы дырочных центров, например, несколько видов О⁻-центров, различающихся глубиной потенциальной ямы для локализации дырки [17]. Большинство таких центров захвата являются мелкими и им соответствуют пики термостимулированной люминесценции (ТСЛ) в области 100-130 К, но есть и центры, дающие пики ТСЛ при 250-300 К [18]. На рис. 6 показан только один тип мелкого дырочного центра с вероятностью захвата дырки из ВЗ (А1) и вероятностью термостимулированной делокализации захваченной дырки в ВЗ (ω_1).

В LGBO: Се КОП обусловлен электронными переходами между состояниями ВЗ и локальным уровнем дырочного О⁻-центра [9]. Другой тип центра захвата представляет собой примесный ион церия. Основной $4f^1$ -уровень Се³⁺ иона расположен в запрещенной зоне на 3.6 eV выше потолка ВЗ [1]. Поэтому на нем возможен только захват дырок из ВЗ (2) с вероятностью A_2 (состояние (d) на рис. 6). При низкой температуре все термостимулированные процессы заморожены и кинетика рекомбинационных процессов описывается системой дифференциальных уравнений

$$\begin{cases} \frac{dn_1}{dt} = -K(t)n_1(t)N;\\ \frac{dn_2}{dt} = -K_1(t)n_2(t)N, \end{cases}$$

$$\tag{4}$$

где обозначены концентрации (m^{-3}) электронных Li⁰ центров захвата (N), дырок, локализованных на мелких

собственных (n_1) и глубоких примесных (n_2) центрах захвата; константы скоростей реакций K(t) и $K_1(t)$ (m^3/s) , показанные на рис. 6. Здесь K(t) соответствует безызлучательному туннельному переносу электрона между подвижным электронным (Li^0) и дырочным $(O^-$ центрами. Для френкелевских дефектов начальная концентрация O^- центров $n_1(t=0) = n_{10} \approx N$, тогда "туннельный" компонент

$$\tilde{n}_1(t) = \frac{n_{10}}{1 + N \int_0^t K(t) dt}.$$
(5)

При больших временах затухания $K(t) \rightarrow \text{const}$ и асимптотическая формула для описания "хвоста" кинетики $n_1(t)$ будет стремиться к гиперболе первого порядка.

Константа скорости реакции $K_1(t)$ соответствует туннельному переносу электрона с подвижного электронного Li⁰ центра на примесный дефект Ce⁴⁺. Структура этого центра на данном этапе нам не известна. Из общих соображений можно предположить, что это ион церия в позиции Gd³⁺, ассоциированный с каким-либо зарядокомпенсирующим дефектом, например, катионной вакансией, но может быть это ион церия в какой-либо другой кристаллографической позиции. После туннельного переноса электрона в итоге получаем возбужденный ион $(Ce^{3+})^*$ (состояние (*b*) на рис. 6), который снимает возбуждение через характерную $5d \rightarrow 4f$ -люминесценцию в области 2.8-3.3 eV. В итоге получаем ион Ce³⁺ в основном состоянии (состояние (с) на рис. 6). Для примесных ионов церия $n_2 \ll N$, тогда второй "туннельный" компонент

$$\tilde{n}_2(t) = n_{20} \exp\left[-N \int_0^t K_1(t) dt\right],$$
(6)

где *n*₂₀ — концентрация дырок на Ce⁴⁺ центрах в начальный момент времени.

Повышение температуры приводит к делокализации дырок с мелких центров (n_1) и их повторному захвату на центрах (n_2) . Рассмотрим модельную систему из двух взаимодействующих дырочных центров (n_1, n_2) и одного электронного центра (n_3)

$$\begin{cases} \frac{dn_1}{dt} = -\lambda_1 n_1(t);\\ \frac{dn_2}{dt} = n_1(t)\omega_1\delta_2 + n_3(t);\\ \frac{dn_3}{dt} = -\lambda_2 n_3(t). \end{cases}$$
(7)

Здесь использованы обозначения $\lambda_1 = \omega_1(1 - \delta_1), \lambda_2$ время жизни электронного Ce³⁺-центра (n_3) в возбужденном состоянии, δ_1 и δ_2 — безразмерные параметры

$$\delta_k = \frac{A_k(\nu_k - n_k)}{A_1(\nu_1 - n_1) + A_2(\nu_2 - n_2)}, \quad k = 1, 2.$$
 (8)

Здесь v_k — концентрации дефектов, служащих прекурсорами для мелких собственных (v_1) и глубоких примесных (v₂) дырочных центров. Решением системы уравнений (7) являются следующие зависимости для "термоактивационных" компонентов

$$\begin{cases} n_1(t) = b_{10} \exp(-\lambda_1 t); \\ n_2(t) = n_{20} + n_{10} [1 - \exp(-\lambda_1 t)] + \frac{n_{30}}{\lambda_2} [1 - \exp(-\lambda_2 t)]. \end{cases}$$
(9)

Величина регистрируемого сигнала D(t) (КОП) с точностью до постоянного масштабного множителя соответствует концентрации О⁻ центров $n_1(t)$. Аппроксимирующую функцию получим в виде суммы решений уравнений (5) и (9).

$$D(t) = B_1 \exp(-\lambda_1 t) + \frac{B_2}{1 + N \int_0^t K(t) dt}.$$
 (10)

Здесь *B*₁ и *B*₂ — параметры аппроксимации, определяющие относительный вклад каждого из процессов в регистрируемый сигнал.

Величина регистрируемого сигнала I(t) (ИКЛ) с точностью до постоянного масштабного множителя соответствует $-dn_2/dt \propto n_2(t)K_1(t)$. Аппроксимирующую функцию получим в виде произведения решений уравнений (6) и (9).

$$\begin{cases}
I(t) = \eta(t) \times I_{\text{tun}}; \\
\eta(t) = 1 + B_1[1 - \exp(-\lambda_1 t)] - B_2 \exp(-\lambda_2 t); \\
I_{\text{tun}} = B_0 \left(\frac{K_1(t)}{K_1(0)}\right) \exp\left[\int_0^t K_1(t) dt\right],
\end{cases}$$
(11)

Здесь $\eta(t)$ — функция выхода, учитывающая интерактивный компонент; B_0 — масштабный множитель; B_1 и B_2 — параметры аппроксимации, определяющие относительный вклад интерактивных процессов в регистрируемый сигнал; $I_{tun}(t)$ — интенсивность туннельной

Параметры модели LGBO при 293 К, описывающие кинетику КОП при 1.8 eV и кинетику ИКЛ при 3.0 eV

Параметр	КОП		ИКЛ	
	(CF)	(CF)	(CF)	(SC)
B_0 , arb.units	-	-	1.630	1.116
B_1 , arb.units	0.295	-	0.001	1.985
λ_1^{-1} , ns	87.3	_	87.0	2600
B_2 , arb.units	0.125	0.373	0.699	0.463
λ_2^{-1} , ns	_	—	32.2	27.1
\tilde{N} , 10 ²³ m ⁻³	7.00	14.5	7.4	5.8
FOM.%	4.97	< 1.00	4.77	7.35*

Примечание. * FOM для кристалловолокна (CF) и монокристалла (SC) рассчитан для одного и того же диапазона времен затухания $10 \text{ ns} - 5 \, \mu \text{s}$. Прочерк означает, что данный параметр не используется.

люминесценции. Качество аппроксимации оценивали с использованием стандартного критерия FOM (Figure Of Merit)

$$FOM = \frac{\sum_{i} |y_i - y(t_i)|}{\sum_{i} y_i},$$
(12)

где t_i — моменты времени затухания, для которых получены экспериментальные данные y_i и рассчитаны теоретические значения $y(t_i)$. Результаты наилучшей аппроксимации представлены в таблице и на рис. 2, 4 и 5.

5. Заключение

Спектры и кинетика ИКЛ и КОП монокристаллов и кристалловолоконных образцов LGBO : Се экспериментально исследованы при возбуждении электронным пучком наносекундной длительности. Экспериментальные данные сопоставлены с результатами численного моделирования рекомбинационных процессов. На основании полученных экспериментальных и расчетных данных сделаны обоснованные заключения относительно происхождения интенсивной ИКЛ LGBO : Се, спектр которой сосредоточен в 5d-4f-полосе люминесценции Ce³⁺ (2.5–3.4 eV).

Согласно предложенному механизму возбуждения ИКЛ, при воздействии электронного пучка в окружении четырехвалентных ионов церия формируются короткоживущие электронные Li⁰-центры. Туннельный перенос электрона между Li⁰ и Ce⁴⁺-центрами приводит к перезарядке примесного иона и формированию короткоживущего примесного Се³⁺-центра в возбужденном состоянии. Снятие этого возбуждения приводит к дополнительному вкладу в люминесценцию в полосе свечения Ce³⁺. Кинетика затухания ИКЛ в рамках данного механизма контролируется реакцией туннельного переноса электрона в паре $\{Li^0, Ce^{4+}\}$. Постоянная времени такой реакции заметно превышает радиационное время жизни возбужденного иона Се³⁺. Это обусловливает отличия кинетики затухания ИКЛ от кинетики затухания фотолюминесценции Ce³⁺. Дополнительные особенности кинетики затухания ИКЛ обусловлены взаимодействием мелких дырочных центров, являющихся источником делокализованных дырок, и глубокими дырочными центрами в виде примесных ионов церия.

Авторы признательны Л.И. Исаенко и И.Н. Седуновой за предоставление образцов боратов лития для исследования, Д.О. Вострову за помощь в проведении экспериментов.

Список литературы

- [1] I.N. Ogorodnikov, V.A. Pustovarov. J. Lumin. 134, 113 (2013).
- [2] I.N. Ogorodnikov, V.A. Pustovarov, S.I. Omelkov, D.O. Vostrov, L.I. Isaenko. Opt. Mater. 36, 6, 1060 (2014).
- J.-P. Chaminade, O. Viraphong, F. Guillen, C. Fouassier, B. Czirr. IEEE Trans. Nucl. Sci. 48, 4, 1158 (2001).

- [4] C.W.E. van Eijk. Rad. Meas. 38, 4-6, 337 (2004).
- [5] И.Н. Огородников, Н.Е. Порывай, В.А. Пустоваров, А.В. Толмачев, Р.П. Явецкий, В.Ю. Яковлев. ФТТ 51, 6, 1097 (2009).
- [6] I.N. Ogorodnikov, N.E. Poryvay, V.A. Pustovarov, A.V. Tolmachev, R.P. Yavetskiy, V.Yu. Yakovlev. Rad. Meas. 45, 3–6, 336 (2010).
- [7] F. Yang, S.K. Pan, D.Z. Ding, G.H. Ren. Cryst. Res. Tech. 44,2, 141 (2009).
- [8] Р.П. Явецкий, А.В. Толмачев. Письма ЖТФ **30**, *23*, 8 (2004).
- [9] И.Н. Огородников, М.С. Киселева, И.Н. Седунова. ХВЭ 46, 3, 199 (2012).
- [10] И.Н. Огородников, М.С. Киселева. ЖЭТФ **142**, *1*, 169 (2012).
- [11] И.Н. Огородников, И.Н. Седунова, В.Ю. Иванов, Л.И. Исаенко. ФТТ **54**,*10*, 1914 (2012).
- [12] T.S. Koroleva, M.M. Kidibaev, A. Nehari, Ch. Pedrini, K. Lebbou, A.N. Belsky, A.N. Tcherepanov, A.V. Ishchenko, V.Yu. Ivanov, I.N. Sedunova, O.S. Teslenko, L.V. Viktorov, B.V. Shulgin, L.H. Zheng, J. Xu, V. Kononets, O. Sidletskiy. Opt. Mater. **35**, *5*, 868 (2013).
- [13] И.Н. Огородников, И.Н. Седунова, В.Ю. Иванов, Б.В. Шульгин, А.В. Ищенко, М.М. Кидибаев, Т.С. Королева. Оптика и спектроскокпия, **115**, *1*, 68 (2013).
- [14] В.Ю. Яковлев. ФТТ 34, 4, 1231 (1992).
- [15] В.М. Лисицын, В.И. Корепанов. Спектральные измерения с временным разрешением. Изд. ТПИ, Томск (2008), 90 с.
- [16] W.W. Moses, S.E. Derenzo, M.J. Weber, A.K. Ray-Chaudhuri, F. Cerrina. J. Lumin. 59, 89 (1994).
- [17] И.Н. Огородников, М.С. Киселева. ФТТ 54, 4, 697 (2012).
- [18] I.N. Ogorodnikov, D.O. Vostrov, V.A. Pustovarov, I.N. Sedunova. Opt. Mater. 36, 9, 1571 (2014).

Редактор К.В. Емцев