Топологические поверхностные состояния фермионов Дирака в термоэлектриках *n*-Bi₂Te_{3-y}Se_y

© Л.Н. Лукьянова, И.В. Макаренко, О.А. Усов, П.А. Дементьев

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия E-mail: lidia.lukyanova@mail.ioffe.ru

(Поступила в Редакцию 20 декабря 2018 г. В окончательной редакции 24 декабря 2018 г. Принята к публикации 28 декабря 2018 г.)

В термоэлектриках *n*-Bi₂Te₃ и *n*-Bi₂Te_{3-y}Se_y исследованы поверхностные состояния фермионов Дирака межслоевой ван-дер-ваальсовой поверхности (0001) методами сканирующей туннельной микроскопии и спектроскопии. Морфология поверхности и характер модуляции на линейных профилях изображений, полученных методом туннельной микроскопии, определяется локальными искажениями плотности поверхностных электронных состояний и зависит от состава. Точка Дирака E_D в исследованных составах локализована в запрещенной зоне и смещается к потолку валентной зоны с увеличением содержания Se в твердых растворах *n*-Bi₂Te_{3-y}Se_y. Установлена зависимость между параметрами поверхностных состояний фермионов Дирака (положением точки Дирака, скоростью Ферми, поверхностной концентрацией фермионов) и термоэлектрическими свойствами (коэффициентом Зеебека и параметром мощности) в исследованных термоэлектриках.

DOI: 10.21883/FTP.2019.05.47557.15

1. Введение

Новые возможности для разработки халькогенидных материалов на основе теллурида висмута в настоящее время связаны с изучением топологических свойств поверхностных состояний фермионов Дирака в этих материалах, относящихся к трехмерным топологическим изоляторам [1]. Аномальные свойства топологических поверхностных электронных состояний интенсивно изучаются с целью использования в различных областях физики [2,3], в том числе в термоэлектричестве [4–8].

В работе проведено исследование поверхностных состояний фермионов Дирака методами сканирующей туннельной микроскопии/спектроскопии (СТМ/СТС) в n-Bi₂Te₃ и твердых растворах n-Bi₂Te_{3-y}Se_y. Установлена связь между результатами исследований методами СТМ/СТС, коэффициентом Зеебека *S* и параметром мощности $S^2\sigma$, позволяющая качественно оценить вклад топологических поверхностных электронных состояний в исследованных термоэлектриках.

Кристаллическая структура и образцы для исследований

Термоэлектрики на основе теллурида висмута имеют ромбоэдрическую кристаллическую структуру с пространственной группой $R\bar{3}m(D_{3d}^5)$. Параметры гексагональной элементарной ячейки составляют для Bi₂Te₃ a = 0.4383 нм и c = 3.0487 нм, для Bi₂Se₃ a = 0.4138 нм и c = 2.864 нм [9].

Кристаллическая структура теллурида висмута состоит из плоских анизотропных слоев, образующих квинтеты, которые разделены щелями Ван-дер-Ваальса. Атомные слои в квинтете Те и Ві чередуются в последовательности (-Te(1)-Bi-Te(2)-Bi-Te(1)-). В твердых растворах *n*-Bi₂Te_{3-y}Se_y атомы Se замещают атомы Te(2) или Te(1).

Образцы для исследований методами CTM/CTC, составы которых приведены в таблице, были вырезаны из монокристаллических зерен объемных слитков вдоль межслоевых плоскостей Ван-дер-Ваальса (0001), ориен-

Номер образца	Состав	S, мк $\mathbf{B} \cdot \mathbf{K}^{-1}$	$S^2\sigma$, $10^{-6}\mathrm{Bt}\cdot\mathrm{cm}^{-1}\cdot\mathrm{K}^{-2}$
1	$Bi_2Te_3 + 0.05\% CdBr_2$	-272	26
2	$Bi_2Te_{2.88}Se_{0.12} + 0.05\% Hg_2Cl_2$	-270	28.1
3	$Bi_2Te_{2.85}Se_{0.15} + 1\% In_2Te_3$	-213	46.3
4	$Bi_2Te_{2.79}Se_{0.21} + 5\%$ Te	-322	24.4
5	${\rm Bi_2Te_{2.76}Se_{0.24}+0.25\%}$ Te $+$ 0.043% CuI	-290	37.3
6	$Bi_2Te_{2.7}Se_{0.3} + 3.5\%$ Te	-294	30.1
7	$Bi_2Te_{2.7}Se_{0.3} + 0.1\% CdCl_2$	-193	44.1

Характеристики образцов

Рис. 1. Изображения поверхности (0001) (2-1, 4-1), профили высот (2-2, 4-2) и БПФ-изображения (2-3, 4-3) *n*-Bi₂Te_{2.88}Se_{0.12} + 0.05% Hg₂Cl₂ и Bi₂Te_{2.79}Se_{0.21} + 5% Те. Перепады высот по профилю поверхности (0001) составляют 0.04 (2-2) и 0.07 нм (4-2). Номера (2-1)-(2-3), (4-1)-(4-3) соответствуют образцам 2 и 4 в таблице.

тированных по оси роста, перпендикулярной кристаллографической оси *с*.

При исследованиях термоэлектриков на основе теллурида висмута методами СТМ/СТС использовался высоковакуумный микроскоп GPI-300 (ИОФАН, Москва), укомплектованный высоковакуумным модулем (ФТИ им. А.Ф. Иоффе, СПб.) [8].

3. Морфология межслоевой поверхности

Морфология межслоевой ван-дер-ваальсовой поверхности (0001) n-Bi₂Te₃ и твердых растворов n-Bi₂Te_{3-y}Se_y регистрировалась с помощью СТМ в режиме поддержания постоянного туннельного тока, величина которого составляла 0.2 или 0.3 нА. Туннельное напряжение U_t подбиралось по минимальным шумам сканирования и находилось в пределах 250-800 мВ.

Типичные изображения поверхности, профили распределения высот на поверхности (0001) и результаты быстрого преобразования Фурье (БПФ) изображений приведены на рис. 1, 2. Для всех исследованных составов морфология поверхности (0001) характеризуется высоким качеством гексагональной плотноупакованной структуры (рис. 1 и 2). Для образцов различного состава и в зависимости от легирования перепад высот вдоль поверхности (0001) изменяется от 0.025 до 0.07 нм. Такие величины перепадов объясняются искажениями поверхностных электронных состояний, возникающими в результате замещения атомов $Te \rightarrow Se$ в твердых растворах и вследствие образования структурных дефектов [10]. Наибольший перепад высот наблюдался в n-Bi₂Te_{2.79}Se_{0.21} (рис. 1) и n-Bi₂Te_{2.7}Se_{0.3} (рис. 2), содержащих большое количество избыточного теллура. Объемные образцы этих составов были выращены методом направленной кристаллизации без прецизионной регулировки температуры на фронте кристаллизации, что привело к увеличению количества структурных дефектов.

Особенности длинноволновой модуляции на профилях СТМ-изображений поверхности (0001) зависят от локальных искажений плотности поверхностных электронных состояний, которые возникают при замещении атомов Те атомами Se, а также при легировании избыточным количеством Те и галогенидов металлов (рис. 1, 2).

Фурье-образы изображений поверхности (0001) представляют собой спектральное распределение интенсивностей двумерного обратного пространства с центром в точке Г зоны Бриллюэна (рис. 1, 2).

В окрестности точки Г зоны Бриллюэна на изображениях обратного пространства (рис. 1, 2), наблюдаются характерные для топологических изоляторов осцилляции Фриделя, связанные с интерференцией квазичастичных возбуждений поверхностных электронов на дефек-

Рис. 2. Изображения поверхности (0001) (5-1)-(7-1), профили высот (5-2)-(7-2) и БПФ-изображения (5-3)-(7-3) *n*-Bi₂Te_{2.76}Se_{0.24} + 0.25% Te + 0.043% CuI, *n*-Bi₂Te_{2.7}Se_{0.3} + 3.5% Te и Bi₂Te_{2.7}Se_{0.3} + 0.1% CdCl₂. Перепады высот по профилю поверхности (0001) составляют 0.025 (5-2), 0.05 (6-2), 0.025 нм (7-2). (5-1)-(5-3), (6-1)-(6-3) и (7-1)-(7-3) соответствуют образцам 5-7 в таблице.

тах [11]. На этих изображениях также наблюдаются спектральные компоненты второго порядка, интенсивность которых существенно выше в n-Bi₂Te_{2.79}Se_{0.21} + 5% Те и n-Bi₂Te_{2.7}Se_{0.3} + 3.5% Те, характеризующихся увеличением перепада высот профилей поверхности (0001) при легировании большим количеством избыточного Те (рис. 1, образец 4 и рис. 2, образец 6).

Сканирующая туннельная спектроскопия

Дифференциальная туннельная проводимость dI_t/dU_t в зависимости от напряжения U_t была измерена в $n-\text{Bi}_2\text{Te}_3$ и твердых растворах $n-\text{Bi}_2\text{Te}_{3-y}\text{Se}_y$ на поверхности (0001) при комнатной температуре (рис. 3, 4). Края валентной зоны E_v и зоны проводимости E_c были определены из положений точек перегиба на нормированной кривой туннельной проводимости $d \ln I_t/d \ln U_t$ в топологических термоэлектриках *n*-типа, когда точка Дирака находится в запрещенной зоне (рис. 4, кривая 3) в соответствии с [12].

Сдвиг точки Дирака $E_{\rm D}$ к потолку валентной зоны увеличивается с ростом содержания атомов Se в твердых растворах *n*-Bi₂Te_{3-y}Se_y до y = 0.24 (рис. 3, кривые I-5, рис. 5, кривая I). При дальнейшем увеличении количества замещенных атомов в подрешетке Те при y = 0.3 сдвиг $E_{\rm D}$ уменьшается. Это может быть связано с влиянием структурных дефектов при легировании избыточным Te (рис. 3, кривая 6), которое

Рис. 3. Нормированная дифференциальная проводимость в зависимости от туннельного напряжения U_i . Показано положение точек Дирака E_D . Все кривые нормированы на минимум, затем 2–7 произвольно смещены вверх для наглядности. 1 — n-Bi₂Te₃ + 0,05% CdBr₂, 2 — n-Bi₂Te_{2.88}Se_{0.12} + 0.05% Hg₂Cl₂, 3 — n-Bi₂Te_{2.85}Se_{0.15} + 1% In₂Te₃, 4 — Bi₂Te_{2.79}Se_{0.21} + 3.5% Te, 5 — n-Bi₂Te_{2.76}Se_{0.24} + 0.25% Te + 0.043% CuI, 6 — n-Bi₂Te_{2.7}Se_{0.3} + 3.5% Te, 7 — n-Bi₂Te_{2.7}Se_{0.3} + 0.1% CdCl₂.

Рис. 4. Дифференциальная проводимость dI_t/dU_t (1), $|I_t|(U_t)$ (2) и $d\ln(I_t)/d\ln(U_t)$ (3) в зависимости от туннельного напряжения U_t в n-Bi₂Te₃. На вставке — вольт-амперная характеристика $I_t(U_t)$. Точками на кривой 3 показано положение краев зоны проводимости E_c и валентной зоны E_v .

Рис. 5. Зависимости положения точки Дирака E_D (1, 4), потолка валентной зоны E_v (2, 5) и дна зоны проводимости E_c (3, 6) в *n*-Bi₂Te₃ и твердых растворах *n*-Bi₂Te_{3-y}Se_y от содержания селена: y = 0, 0.12, 0.15, 0.21, 0.24, 0.3. 4, 5, 6: y = 0.15, S = -213 мкВ · K⁻¹; y = 0.3, S = -193 мкВ · K⁻¹. y (E_g): 0, *n*-Bi₂Te₃ (205 и 150 мэВ [13]); 0.12 (214 мэВ); 0.15 (226 мэВ); 0.21 (223 мэВ); 0.24 (231 мэВ); 0.3 (238 мэВ); 0.3 (243 и 228 мэВ [13]).

приводит к увеличениям перепада высот профилей поверхности (0001) и росту интенсивности спектральных компонентов второго порядка на изображениях БПФ (рис. 2, 6-2, 6-3).

Легирование галогенидами металлов приводит к увеличению сдвига E_D к потолку валентной зоны по сравнению с избыточным Те (рис. 3, кривые 4, 6).

На рис. 5 точки 4, 5, 6, которые соответствуют величинам E_D , E_v и E_c в образцах n-Bi₂Te_{2.85}Se_{0.15} и Bi₂Te_{2.7}Se_{0.3} с низкими значениями коэффициента Зеебека S, отклоняются от зависимостей $E_D(y)$, $E_v(y)$ и $E_c(y)$, построенных для образцов с более высокими значениями S (см. таблицу). Такие особенности указывают на зависимость коэффициента Зеебека от положения точки Дирака и положения краев валентной зоны и зоны проводимости в твердых растворах Bi₂Te_{3-v}Se_v.

Сдвиг $E_{\rm D}$ увеличивается с уменьшением коэффициента Зеебека, которое сопровождается увеличением параметра мощности (рис. 3, кривые 3, 5, таблица). Наибольший сдвиг точки $E_{\rm D}$ был обнаружен в составе n-Bi₂Te_{2.85}Se_{0.15} + 1% In₂Te₃ с высоким параметром мощности, (рис. 3, кривые 2, 3 и 6, 7, рис. 5, кривая 1, таблица).

Сдвиг краев валентной зоны и зоны проводимости увеличивается с ростом атомных замещений в твердых растворах, что приводит к увеличению ширины запрещенной зоны E_g по сравнению с оптическими данными, особенно в *n*-Bi₂Te₃ [13] (рис. 5, кривые 2, 3, значения E_g отмечены стрелкой и приведены в подписи к рисунку).

Такое увеличение E_g объясняется изменением плотности состояний при инверсии краев запрещенной зоны в топологических изоляторах [14].

Рис. 6. Скорость Ферми $v_{\rm F}(1)$, волновой вектор $k_{\rm F}(2)$, поверхностная концентрация фермионов Дирака $n_s(3)$ в *n*-Bi₂Te₃ и твердых растворах *n*-Bi₂Te_{3-y}Se_y в зависимости от состава. y = 0.12, 0.15, 0.21, 0.24, 0.3.

Скорость Ферми v_F (рис. 6, кривая I) была определена по закону Вегарда с использованием величин v_F для Bi₂Te₃, твердых растворов B₂Te_{3-y}Se_y (y = 0.9, 1) и Bi₂Se₃ [15]. С увеличением содержания замещенных атомов Se в n-Bi₂Te_{3-y}Se_y скорость Ферми v_F (рис. 6, кривая I) и, следовательно, подвижность в поверхностном слое возрастают. Рост скорости v_F сопровождается увеличением поверхностной концентрации n_s (рис. 6, кривая 3) в составах с высокими значениями коэффициента Зеебека, $S > |270| \text{ мкB} \cdot \text{K}^{-1}$ (см. таблицу), который оптимизирован для температур ниже комнатной.

При уменьшении коэффициента Зеебека в *n*-Bi₂Te_{2.7}Se_{0.3} до $-193 \text{ мкB} \cdot \text{K}^{-1}$ поверхностная концентрация уменьшается. Наибольшее значение n_s было получено для *n*-Bi₂Te_{2.85}Se_{0.15} + 1% In₂Te₃ с высоким параметром мощности (см. таблицу), в котором точка Дирака имела наибольший сдвиг относительно потолка валентной зоны E_v .

5. Заключение

Таким образом, проведенные исследования параметров поверхностных состояний фермионов Дирака и термоэлектрических свойств позволяют установить зависимости между положением точки Дирака, скоростью Ферми, поверхностной концентрацией фермионов, коэффициентом Зеебека и параметром мощности в топологических термоэлектриках n-Bi₂Te_{3-y}Se_y, что дает возможность оценить влияние поверхностных состояний фермионов Дирака на транспортные характеристики исследованных термоэлектриков в зависимости от изменения состава твердых растворов.

Авторы Л.Н. Лукьянова и О.А. Усов благодарны за частичную финансовую поддержку исследований, полученную в рамках проекта РФФИ № 16-08-00478.

Авторы выражают глубокую признательность А.Н. Климову (ИОФАН, Москва) и В.Н. Петрову (ФТИ им. А.Ф. Иоффе) за постоянную помощь и поддержку при отладке программ спектроскопии.

Список литературы

- [1] M.Z. Hasan, C.L. Kane. Rev. Mod. Phys., 82, 3045 (2010).
- [2] J. Lee, J. Koo, Y.M. Jhon, J.H. Lee. Opt. Express, 22, 6165 (2014).
- [3] J. Zilong, C. Cui-Zu, M.R. Masir, Chi Tang, Y. Xu, J.S. Moodera, A.H. MacDonald, S. Jing. Nature Commun., 7, 11458 (2016).
- [4] Y.P. Chen. Proc. SPIE, **8373**, 83730B (2012).
- [5] M. Eschbach et al. Nature Commun., 6, 8816 (2015).
- [6] Ning Xu, Yong Xu, Jia Zhu. npj Quantum Materials, **2**, 51 (2017).
- [7] S.Y. Matsushita, K.K. Huynh, H. Yoshino, N.H. Tu, Y. Tanabe, K. Tanigaki. Phys. Rev. Mater., 1, 054202 (2017).
- [8] L.N. Lukyanova, I.V. Makarenko, O.A. Usov, P.A. Dementev. Semicond. Sci. Technol., 33, 055001 (2018).
- [9] R.W.G. Wyckoff. Crystal Structures (N.Y., Wiley, 1964) v. 2.[10] W. Ko, I. Jeon, H.W. Kim, H. Kwon, S.-J. Kahng, J. Park,
- J.S. Kim, S.W. Hwang, H. Suh. Sci. Reports, **3**, 2656 (2013).
- [11] L. Petersen, P.T. Sprunger, P. Hofmann, E. Lagsgaard, B.G. Briner, M. Doering, H.-P. Rust, A.M. Bradshaw, F. Besenbacher, E.W. Plummer. Phys. Rev. B, 57 R6858 (1998).
- [12] C. Wagner, R. Franke, T. Fritz. Phys. Rev. B, 75, 235432 (2007).
- [13] А.Н. Вейс, М.К. Житинская, Л.Н. Лукьянова, В.А. Кутасов. Науч.-техн. ведомости СПбГПУ. Физ.-мат. науки, 177 (3), 29 (2013).
- [14] W.S. Whitney, V.W. Brar, Y. Ou, Y. Shao, A.R. Davoyan, D.N. Basov, K. He, Q.-K. Xue, H.A. Atwater. Nano Lett., 17, 255 (2017).
- [15] H. Liu, S. Liu, Ya Yi, H. He, J. Wang. 2D Mater., 2, 045002 (2015).

Редактор Л.В. Шаронова

Topological surface states of Dirac fermions in $n-Bi_2Te_{3-\nu}Se_{\nu}$ thermoelectrics

L.N. Lukyanova, I.V. Makarenko, O.A. Usov, P.A. Dementev loffe Institute, 194021 St. Petersburg, Russia

Abstract In *n*-Bi₂Te₃ and *n*-Bi₂Te_{3-y}Se_y thermoelectrics, the surface states of Dirac fermions of the interlayer van der Waals plane (0001) were studied by scanning tunneling microscopy (STM) and spectroscopy. The surface morphology and modulated line profiles of the images in tunneling microscopy is determined by local distortions of the surface electron states density and depend on the composition. The Dirac point E_D of the studied compositions is localized in the energy gap, and it shifts to the top of the valence band with increase of Se content in the solid solutions. The dependence between Dirac surface state parameters (the Dirac point position, the Fermi velocity, the fermion surface concentration) and thermoelectric properties (Seebeck coefficient and the power factor) is established for the thermoelectrics studied.