Изменение состояния примесных атомов ^{119m}Sn в PbTe в процессе установления радиоактивного равновесия изотопов ^{119m}Te/¹¹⁹Sb

© П.П. Серегин¹, А.В. Марченко¹, Ф.С. Насрединов², А.Б. Жаркой¹

¹ Российский государственный педагогический университет им. А.И. Герцена,

191186 Санкт-Петербург, Россия

² Санкт-Петербургский политехнический университет Петра Великого,

195251 Санкт-Петербург, Россия

E-mail: ppseregin@mail.ru

(Поступила в Редакцию 20 декабря 2018 г. В окончательной редакции 24 декабря 2018 г. Принята к публикции 28 декабря 2018 г.)

Проведено сравнение параметров эмиссионных мессбауэровских спектров PbTe на дочернем изотопе ^{119m}Sn при использовании различных материнских ядер ^{119mm}Sn, ¹¹⁹Sb и ^{119m}Te. Это сравнение позволило идентифицировать примесные атомы олова в обеих подрешетках теллурида свинца. Обнаружено, что отношение концентраций олова в разных подрешетках зависит от времени, прошедшего после приготовления источника.

DOI: 10.21883/FTP.2019.05.47554.12

1. Введение

Эмиссионная мессбауэровская спектроскопия на изотопе ¹¹⁹Sn с материнским изотопом ^{119mm}Sn оказалась эффективным методом исследования состояния примесных атомов олова в халькогенидах свинца и твердых растворах на их основе [1–3]. В частности показано, что примесные атомы олова замещают атомы свинца в теллуриде свинца, и олово является электрически неактивной изовалентной примесью.

В этой связи возникает вопрос о поведении примесных атомов олова, внедренных в анионную подрешетку халькогенидов свинца. В частности, такая ситуация реализуется при использовании эмиссионной мессбауэровской спектроскопии на изотопе ¹¹⁹Sn с материнскими изотопами ¹¹⁹Sb и ^{119m}Te [2–6]. Настоящая работа посвящена рассмотрению проблем, возникающих при интерпретации эмиссионных мессбауэровских спектров примесных атомов ^{119m}Sn, возникающих после распада материнского изотопа ^{119m}Te в теллуриде свинца. Предварительные результаты опубликованы в работе [7].

2. Методика эксперимента

Изотопы ^{119mm}Sn, ¹¹⁹Sb и ^{119m}Tе получали по реакциям ¹¹⁸Sn $(n, \gamma)^{119m}$ Sn, ¹²⁰Sn $(p, 2n)^{119}$ Sb и ¹¹⁷Sn $(\alpha, 2n)^{119m}$ Te. Для выделения безносительных препаратов ¹¹⁹Sb и ^{119m}Te использовали процедуру анионного обмена.

Мессбауэровские источники были изготовлены путем сплавления образцов теллурида свинца с облученным металлическим изотопом ¹¹⁸Sn, либо с безносительным препаратом ¹¹⁹Sb, либо с безносительным препаратом ^{119m}Te, так что концентрация примесных атомов ^{119mm}Sn была $N_{\rm Sn} \approx 10^{20} \, {\rm cm}^{-3}$, а оценочная концентрация примесных атомов ¹¹⁹Cm⁻³.

Распад материнских атомов ^{119mm}Sn (конвертированный изомерный переход) и ¹¹⁹Sb (электронный захват) приводит к возникновению непосредственно изотопа ^{119m}Sn (см. рис. 1). Распад материнских атомов ^{119m}Te происходит с образованием промежуточных дочерних радиоактивных ядер ¹¹⁹Sb (см. рис. 1), распад которых приводит к появлению атомов ^{119m}Sn, причем к моменту установления подвижного радиоактивного равновесия образуется смесь из не распавшегося изотопа теллура (обозначим его ^{119m}Te1) и образовавшегося изотопа сурьмы (обозначим его ¹¹⁹Sb1). Доля атомов ^{119m}Te1 в единицах концентрации исходного содержания ^{119m}Te составляет 0.575, а доля атомов ¹¹⁹Sb1 составляет 0.195. Именно эта смесь сплавлялась с сульфидом и теллуридом свинца.

Рис. 1. Схемы распада радиоактивных изотопов 119mm Sn, 119 Sb и 119m Te.

Рис. 2. Эмиссионные мессбауэровские спектры примесных атомов ^{119m}Sn в *n*-PbTe и *p*-PbTe, образующихся после радиоактивного распада изотопа ^{119mm}Sn, смеси изотопов ¹¹⁹Sb, ^{119m}Te и изотопа ¹¹⁹Sb. Спектры были получены при 80 K в интервале времен 0-9.5 и 152.4–190.5 ч после приготовления мессбауэровского источника. Показано положение линий, отвечающих центрам Sn⁰ и Sn²⁺.

Исходные образцы PbTe были электронного (с избытком свинца, $n \sim 5 \cdot 10^{18} \,\mathrm{cm^{-3}})$ и дырочного (с избытком халькогена, $p \sim 5 \cdot 10^{18} \,\mathrm{cm^{-3}})$ типа проводимости. В случае источников с материнским изотопом ^{119mm}Sn исходные образцы дырочного типа проводимости содержали примесь натрия (таллия), причем для концентрации натрия и таллия $N_{\mathrm{Na,Tl}}$ выдерживалось соотношение $2N_{\mathrm{Na}} > N_{\mathrm{Sn}}$.

Мессбауэровские спектры ^{119m}Sn измерялись на спектрометре CM-2201 при 80 K с поглотителем CaSnO₃ (поверхностная плотность по олову составляла 5 мг/см²). Далее изомерные сдвиги приводятся относительно спектра станната кальция. Для каждого источника снималась серия спектров с длительностью набора 9.5 ч в интервале от момента окончания приготовления образцов до 190.5 ч. Типичные мессбауэровские спектры

4

Рис. 3. Зависимости $P = \frac{SI}{SI+SII}$ от возраста источников *n*-PbTe : (¹¹⁹Sb, ^{119m}Te) и *p*-PbTe : (¹¹⁹Sb + ^{119m}Te). Экспериментальные значения показаны черными (данные для *n*-PbTe) и светлыми (данные для *p*-PbTe) квадратами. Расчетные зависимости: *1* — полученная в предположении, что все атомы ¹¹⁹Sb1 находятся в подрешетке Pb, а все атомы ^{119m}Te1 в подрешетке Te; *2* и *3* — полученные с учетом попадания 80% и 15% ¹⁹Sb1 в подрешетку Pb для *n*-PbTe и *p*-PbTe соответственно; *4* и *5* — полученные с учетом *f*_{Te}/*f*_{Pb} = 0.5 для *n*-PbTe и *p*-PbTe соответственно; *6* и *7* — полученные с учетом смещения 10% атомов ¹¹⁹Sb2 в подрешетку Pb.

приведены на рис. 2, а результаты их обработки сведены на рис. 3.

3. Экспериментальные результаты и их обсуждение

Эмиссионные мессбауэровские спектры с материнским изотопом ^{119mm}Sn несут информацию о валентном и координационном состояниях примесных атомов ^{119т}Sn, образовавшихся после распада атомов ^{119тт}Sn. В системе Pb_{1-x}Sn_xTe существует непрерывный ряд твердых растворов замещения [8] и поэтому следовало ожидать стабилизации примесных атомов ^{119m}Sn в узлах свинца. Спектры *n*-PbTe и *p*-PbTe образцов представляют собой одиночные линии с изомерным сдвигом IS = 3.43(2) мм/с (см. рис. 2), причем величина изомерного сдвига не зависит от времени, прошедшего с момента окончания синтеза источника (т. е. не зависит от возраста источника), от типа проводимости образца и близка к изомерному сдвигу мессбауэровского спектра теллурида двухвалентного олова (координационное число олова равно шести и в ближайшем окружении олова находятся атомы теллура). Следовательно, центр 119m Sn²⁺ изовалентно замещает атомы свинца в решетке РьТе и является электрически неактивной примесью.

Эмиссионные мессбауэровские спектры с материнским изотопом ^{119m}Те несут информацию о состоянии примесных атомов олова ^{119m}Sn, образовавшихся после распада атомов, при этом *apriori* атомы ^{129m}Te занимают узлы теллура в решетке РbTe. Как видно из рис. 2, мессбауэровские спектры ^{119m}Sn образцов *n*-PbTe и *p*-PbTe представляют собой наложение двух линий. Одна линия имеет изомерный сдвиг 2.31(2) мм/с. Этот сдвиг отвечает интерметаллическим соединениям олова (в ближайшем окружении этих центров находятся атомы свинца, и взаимодействие олова с ними приводит к изомерному сдвигу, типичному для металлических сплавов олова) и в соответствии с этим эту линию следует приписать центрам ^{119m}Sn⁰, образовавшихся после цепочки распадов $^{119m}\text{Te1} \rightarrow ^{119}\text{Sb2} \rightarrow ^{119m}\text{Sn}$ в узлах теллура (спектр I). Вторая линия имеет изомерный сдвиг 3.42(2) мм/с, она отвечает теллуриду олова и, следовательно, эту линию можно приписать двухвалентным центрам ^{119m}Sn²⁺ в узлах свинца (спектр II). Для образца с дырочным типом проводимости интенсивность спектра ^{119m}Sn⁰ в подрешетке теллура возрастает с возрастом источника, тогда как для образца с электронным типом проводимости отношение площадей под двумя линиями лишь незначительно изменяется.

Учитывая то, что примесные атомы олова в теллуриде свинца электрически неактивны, различное поведение мессбауэровских спектров ^{119m}Sn образцов PbTe с дырочным и электронным типом проводимости, легированных материнским изотопом ^{119m}Te, требует объяснения.

Во-первых, для молодых источников основной вклад в спектры ^{119m}Sn дают материнские атомы ¹¹⁹Sb1 (постоянная распада $\lambda_{Sb} = 5.05 \cdot 10^{-6} \, c^{-1}$), и, очевидно, возникает вопрос об электрической активности примесных атомов сурьмы в теллуриде свинца и распределении этих атомов между подрешетками свинца и теллура (известно лишь, что примеси Sb в халькогенидах свинца являются донорами, хотя доля электрически активных атомов существенно меньше единицы [8]). Учитывая то, что энергия отдачи дочерних атомов ^{119m}Sn вследствие процесса электронного захвата в ¹¹⁹Sb и испускания нейтрино не превышает 1.4 эВ, можно ожидать, что радиоактивное превращение не приводит к смещению атомов олова из нормальных узлов кристаллической решетки. Таким образом, параметры эмиссионных мессбауэровских спектров ^{119m}Sn с материнским изотопом ¹¹⁹Sb должны отражать валентное (зарядовое) состояние атомов ^{119m}Sn, локализованных в узлах, занятых атомами сурьмы. Мессбауэровские спектры примесных атомов ^{119m}Sn в электронном и дырочном теллуриде свинца, легированных материнским изотопом ¹¹⁹Sb, приведены на рис. 1. Спектры представляют собой наложение двух линий, относительная интенсивность которых зависит от типа проводимости материала. Одна из этих линий (она преобладает в образцах с электронным типом проводимости) имеет изомерный сдвиг, характерный для спектра типа I, и ее следует приписать центрам 119m Sn⁰ в анионной подрешетке PbTe. Очевидно, что атомы 119m Sn⁰ образуются из атомов ¹¹⁹Sb, находящихся в анионной подрешетке РbTe. Вторая линия (она преобладает в образцах р-типа) имеет изомерный сдвиг, характерный для спектра II, и ее следует приписать центрам 119m Sn²⁺

в катионной подрешетке PbTe. Таким образом, место локализации примесных атомов ¹¹⁹Sb1 в решетке PbTe зависит от характера отклонения состава от стехиометрического: в образцах с избытком свинца сурьма локализуется преимущественно в анионной подрешетке, а в образцах с избытком теллура — преимущественно в катионной подрешетке (и играет роль донора). Доля электрически активных атомов сурьмы зависит от распределения сурьмы между подрешетками, но всегда она меньше единицы (это следует из того факта, что даже в образцах с дырочным типом проводимости значительная часть атомов сурьмы оказывается в анионной подрешетке).

Во-вторых, по мере накопления вторичной сурьмы ¹¹⁹Sb2, образующейся при распаде ^{119m}Te1 ($\lambda_{Te} = 1.7 \cdot 10^{-6} c^{-1}$), будет возрастать интенсивность спектра от материнских атомов ¹¹⁹Sb2, которые локализованы в подрешетке теллура.

В третьих, следует учитывать возможность смещения части дочерних атомов ¹¹⁹Sb₂ из узлов, занимаемых материнскими атомами ^{119m}Te, за счет эффекта отдачи. Вероятность появления смещенных дочерних атомов при радиоактивном распаде материнских атомов зависит от соотношения энергии отдачи дочернего ядра $E_{\rm R}$ и пороговой энергии смещения атомов $E_{\rm d} \sim 25$ эВ. Максимальные энергии отдачи для дочернего зонда при распаде ^{119m}Te \rightarrow ¹¹⁹Sb оказываются $E_{\rm R} \sim 24$ эВ, что позволяет ожидать в эмиссионных мессбауэровских спектрах ^{119m}Sn образцов PbTe появления линий, отвечающих смещенным примесным атомам.

Для количественного описания изменения структуры мессбауэровских спектров ^{119m}Sn в PbTe были вычислены экспериментальные отношения $P = \frac{SI}{SI + SII}$ для различных возрастов источников (здесь SI и SII — площади под нормированными мессбауэровскими спектрами I и II соответственно).

Площади под спектрами ^{119*m*}Sn пропорциональны концентрациям N их непосредственного радиоактивного предшественника ¹¹⁹Sb и факторам Мессбауэра f в соответствующих подрешетках $S \sim f \cdot N$. Зависимость концентрации N от времени может быть получена из уравнения баланса:

$$\frac{dN}{dt} = -\lambda_{\rm Sb}N + \lambda_{\rm Te}n_{\rm Te},\tag{1}$$

где *n*_{Te} — концентрация ^{119*m*}Te в той же подрешетке. Решение этого уравнения имеет вид

$$N = \frac{\lambda_{\text{Te}}}{\lambda_{\text{Sb}} - \lambda_{\text{Te}}} k n_{\text{Te}}^{0} \left[\exp(-\lambda_{\text{Te}}t) - \exp(-\lambda_{\text{Sb}}t) \right] + n_{\text{Sh}}^{0} \exp(-\lambda_{\text{Sb}}t), \qquad (2)$$

где n_{Te}^0 и n_{Sb}^0 — концентрации атомов ^{119m}Te и ¹¹⁹Sb в начальный момент времени. Концентрацией n_{Te}^0 в подрешетке Pb можно прене-

Концентрацией n_{Te}^0 в подрешетке Pb можно пренебречь, спектр происходит только от материнских атомов Sb1, а выражение (2) упрощается:

$$N_{\rm Sb\,in\,Pb} = n_{\rm Sb\,in\,Pb}^0 \exp(-\lambda_{\rm Sb}t),\tag{3}$$

где $N_{\rm Sb \, in \, Te}$ концентрация атомов Sb1 в узлах Pb.

Подавляющая часть атомов Te1 попадает при синтезе в подрешетку Te, а атомы Sb1 распределяются между обеими подрешетками. Поэтому для подрешетки Te

$$N_{\text{Sb in Te}} = k n_{\text{Te}}^{0} \left[\exp(-\lambda_{\text{Te}}t) - \exp(-\lambda_{\text{Sb}}t) \right] + n_{\text{Sb}}^{0} \exp(-\lambda_{\text{Sb}}t),$$
(4)

при этом общая концентрация Sb1 определяется как $n_{\rm Sb}^0 - n_{\rm Sb\,in\,Pb}^0 + n_{\rm Sb\,in\,Te}^0$.

Отношение площадей под нормированными спектрами описывается соотношением

$$P = \frac{kn_{\text{Te}}^{0}\left\{\left[\exp(-\lambda_{\text{Te}}t) - \exp(-\lambda_{\text{Sb}}t)\right] + \frac{n_{\text{Sb in Te}}^{0}\exp(-\lambda_{\text{Sb}}t)\right\} \cdot f_{\text{Te}}}{kn_{\text{Te}}^{0}\left\{\left[\exp(-\lambda_{\text{Te}}t) - \exp(-\lambda_{\text{Sb}}t)\right] + \frac{n_{\text{Sb in Te}}^{e}\exp(-\lambda_{\text{Sb}}t)\right\} \cdot f_{\text{Te}} + n_{\text{Sb in Te}}^{0}\exp(-\lambda_{\text{Sb}}t) \cdot f_{\text{Pb}}}$$
(5)

Соотношение (5) позволяет с помощью экстраполяции графиков на рис. З получить значения $n_{\text{SbinTe}}^0 f_{\text{Te}}/(n_{\text{SbinTe}}^0 + n_{\text{SbinPb}}^0 f_{\text{Pb}})$, равные 0.15 для *p*-PbTe и 0.8 для *n*-PbTe. Если не учитывать различие в факторах Мессбауэра в узлах теллура f_{Te} и в узлах свинца f_{Pb} , что, видимо, справедливо при 80 K, то эти величины показывают долю Sb1, попавшую при синтезе в подрешетку Te. В *n*-PbTe (избыток Pb, вакансии Te) Sb1 с вероятностью около 80% заполняет узлы Te, в то время как в *p*-PbTe большая часть Sb оказывается в узлах Pb.

Зависимости P(t) для электронного и дырочного РьТе, рассчитанные по формуле (5) с полученным выше распределением Sb1 по подрешеткам и с учетом $n_{\rm Te}^0/n_{\rm Sb}^0 = 2.949$, вместе с экспериментальными величинами P приведены на рис. 3. Кривая I, рассчитанная в предположении, что все атомы ¹¹⁹Sb1 находятся в подрешетке свинца, а все атомы ^{119m}Te1 в подрешетке теллура, существенно отклоняется от экспериментальных величин как для *p*-PbTe, так и в особенности для *n*-PbTe. Если учесть обсужденное выше попадание части ¹¹⁹Sb1 в подрешетку Те, то рассчитанные зависимости P(t) удовлетворительно описывают экспериментальные данные для малого возраста источников, но дают завышенные значения для спектров, измеренных через значительное время после приготовления источников (кривые 2 и 3). Причинами такого расхождения могут быть, во-первых, меньшее значение фактора Мессбауэра f_{Te} для узлов Te по сравнению с узлами Pb (f Pb), а, во-вторых, смещение части атомов ¹¹⁹Sb2 подрешетки теллура в подрешетку свинца. Такое перемещение может происходить за счет энергии отдачи, получаемой дочерними атомами ¹¹⁹Sb2 при радиоактивном распаде материнских атомов ^{119m}Te1.

Кривые 4 и 5 на рис. 3 показывают P(t), рассчитанные для *p*- и *n*-PbTe в предположении $f_{\rm Te}/f_{\rm Pb} = 0.5$. Для образца с дырочным типом проводимости это предположение заметно улучшает согласие с экспериментом, но практически не меняет вида P(t) для образца с электронным типом проводимости. Следовательно, различие факторов Мессбауэра не может объяснить пониженные значения P(t) для спектров источников с большим возрастом. Кривые 6 и 7 на рис. 3 показывают P(t), рассчитанные для *p*- и *n*-PbTe в предположении, что доля 0.1 от общего числа атомов ¹¹⁹Sb2 оказывается смещенной в подрешетку свинца. Для обоих образцов наблюдается удовлетворительное согласие с измеренными значениями *P*.

4. Заключение

Проведено сравнение состояния примесных атомов олова, введенных в катионные и анионные узла решетки теллурида свинца путем его легирования долгоживущими радиоактивными материнскими изотопами ^{119mm}Sn и ^{119mm}Ce. Показано, что в случае материнского изотопа ^{119mm}Sn дочерние атомы ^{119m}Sn стабилизируются в катионной подрешетке в виде ионов Sn²⁺, тогда как в случае материнского изотопа ^{119m}Te дочерние атомы стабилизируются в катионной (в виде центров Sn²⁺) и анионной (в виде центров Sn⁰) подрешетках, причем соотношение концентраций олова в разных подрешетках зависит как от времени, прошедшего после приготовления источника, так и от типа проводимости исходного теллурида свинца.

Список литературы

- F.S. Nasredinov, L.V. Prokofieva, P.P. Seregin, S.V. Zarubo, A.V. Ermolaev, A.N. Kurmantaev. Phys. Status Solidi B, 130, 727 (1985).
- [2] С.А. Немов, П.П. Серегин, Ю.В. Кожанова, Н.П. Серегин. ФТП, **37**, 1414 (2003).
- [3] А.В. Марченко, Е.И. Теруков, П.П. Серегин, А.Н. Раснюк, В.С. Киселев. ФТП, 50, 893 (2016).
- [4] F. Ambe, S. Ambe. J. Chem. Phys., 75, 2463 (1981).
- [5] N.P. Seregin, P.P. Seregin, S.A. Nemov, A.Yu. Yanvareva. J. Phys: Condens. Matter, 15, 7591 (2003).
- [6] Г.А. Бордовский, С.А. Немов, А.В. Марченко, А.В. Зайцева, М.Ю. Кожокарь, П.П. Серегин. ФТП, 45, 437 (2011).
- [7] Е.И. Теруков, А.В. Марченко, П.П. Серегин, Н.Н. Жуков. ФТП, **52**, 560 (2018).
- [8] О.А. Александрова, А.И. Максимов, В.А. Мошников, Д.Б. Чеснокова. Халькогениды и оксиды элементов IV группы. Получение, исследование, применение (СПб., Технолит, 2008).

Редактор А.Н. Смирнов

Evolution on the ^{119m}Sn impurity atoms state in PbTe under establishing radioactive equilibrium of ^{119m}Te/¹¹⁹Sb isotopes

P.P. Seregin¹, A.V. Marchenko¹, F.S. Nasredinov², A.B. Zharkoy²

¹ Herzen State Pedagogical University of Russia (Herzen University),

191186 St. Petersburg, Russia

²Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia

Abstract Information on the valence and coordination states of the daughter ^{119m}Sn atoms arising from the parent ¹¹⁹Sb and ^{119m}Te atoms at the cation and anion sites of lead telluride has been obtained by the emission Mössbauer spectroscopy method with the parent ^{119m}Te isotope being in a mobile radioactive equilibrium with its daughter ¹¹⁹Sb isotope. It is shown that the relative amount of arising tin atoms in different valence and coordination states depends on the time after preparation of Mössbauer sources.