06;07

Углеродная наноструктура для термоэлектрического генератора

© М.К. Рабчинский¹, Е.Д. Эйдельман^{1,2,¶}, А.Я. Виноградов¹, С.А. Грудинкин¹, А.Т. Дидейкин¹

 ¹ Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия
 ² Санкт-Петербургский государственный химико-фармацевтический университет, Санкт-Петербург, Россия
 [¶] E-mail: Eidelman@mail.ioffe.ru
 Поступило в Редакцию 7 декабря 2018 г.

В окончательной редакции 21 декабря 2018 г. Принято к публикации 11 января 2019 г.

Показано, что технологически возможно получение пленок из графитоподобного материала, пригодных для создания термоэлектрического генератора. Могут быть обеспечены однородность и довольно малая толщина такой пленки, а также ее размещение на алмазоподобной пленке с нанесенными контактами при приемлемом интерфейсе. Измерения показывают, что эффект увлечения обеспечивает значения термоэдс, примерно в 100 раз бо́льшие, чем диффузионный процесс. Размещение графитоподобного материала на алмазоподобной пленке также обеспечивает рост значения термоэдс. В этом проявляется эффект баллистического увлечения электронов фононами. Установлено, что могут быть достигнуты условия, необходимые для создания термоэлектрического генератора на базе углеродных наноструктур.

DOI: 10.21883/PJTF.2019.07.47534.17630

В настоящее время активно ведутся исследования термоэлектрических свойств графитоподобных пленок — пленок углеродных материалов с sp^2 -гибридизацией атомов углерода, а также их возможного применения для создания термоэлектрического генератора (ТЭГ) [1–3]. Изучались и различные аспекты эффекта увлечения электронов фононами — эффекта Гуревича — в углеродных материалах. Однако вклад данного эффекта не превышает типичных значений для вклада диффузии и составляет около $50 \,\mu V \cdot K^{-1}$ [1,2,4,5] в лучших из существующих ТЭГ.

Новая идея состоит в использовании для повышения коэффициента термоэдс *S* эффекта увлечения электронов потоком тепла — фононами в тонких пленках.

Уникальным материалом, в котором реализуется указанная идея, является углеродная наноструктура, которая состоит как из области с sp^2 -гибридизацией атомов углерода, графитоподобной области с металлическими свойствами, так и из области с sp^3 -гибридизацией атомов углерода, представляющей собой алмазоподобную область с диэлектрическими свойствами. В такой наноструктуре, как показано ранее [1,2], должен реализоваться эффект увлечения электронов баллистическими — не сталкивающимися друг с другом — фононами. В идеальных условиях это позволяет достичь величины $S \approx 1.50 \text{ mV} \cdot \text{K}^{-1}$. Указанная углеродная наноструктура защищена патентом РФ [3].

На этой основе был предложен вариант реализации ТЭГ с рекордными параметрами [6]. Цель настоящей работы показать, что технологически возможно создать такие углеродные наноструктуры, при применении которых предложенный вариант реализации ТЭГ с рекордными параметрами будет экспериментально достижим.

В различных способах получения пленок — слоев графитоподобного (sp^2) материала с высоким кристаллическим совершенством — температуры синтеза или последующего отжига обычно составляют 1000°С и выше. Такие значения температуры превышают типичную температуру CVD-роста (CVD — chemical vapor deposition) алмазных пленок на разных подложках, что может привести к изменениям фазового состава и нарушениям механических свойств *sp*³-слоя из-за термического воздействия в процессе осаждения на него *sp*²-слоя. Для достижения технологической совместимости процессов осаждения чередующих слоев с sp³и *sp*²-гибридизацией атомов углерода были исследованы технологические схемы получения графитоподобных материалов — sp^2 -слоев — при температурах, не превышающих используемые в процессе CVD-роста sp^3 -слоев.

В качестве метода осаждения графитоподобных пленок применен метод магнетронного распыления графитовой мишени в режиме постоянного тока.

Измерения толщины пленок *sp*²-материала (20–140 nm) проведены методами сканирующей электронной микроскопии (СЭМ), зондовой профилометрии и сканирующей зондовой микроскопии. Результаты совпадают. Метод СЭМ не позволил надежно определять толщины менее 20 nm.

Было проведено исследование технологических схем нанесения чередующихся слоев sp^3 (основного материала термоэлемента, OM) и sp^2 (дополнительного материла термоэлемента, ДМ).

Было проведено последовательное осаждение слоя sp^3 методом микроволнового плазмохимического газофазного осаждения (MWPCVD) при низких концентрациях метана в рабочей смеси (< 1%). Далее осаждался слой sp^2 материала тем же методом MWPCVD при высоких концентрациях метана (> 10%). Затем осаждался слой sp^3 методом MWPCVD при низких концентрациях метана в рабочей смеси (< 1%).

Для проведения структурных исследований трехслойных материалов из чередующихся пленок ОМ и ДМ применялся метод СЭМ, с помощью которого получались изображения поперечного сечения структур на различных этапах их создания. На рис. 1 в качестве примера реализованной схемы выращивания многослойных структур методом МWPCVD приведены изображения поперечного сечения: слоя sp^3 на кремниевой подложке (a), слоя sp^2 на слое sp^3 (b) и трехслойной структуры $sp^3 - sp^2 - sp^3$ (c). В многослойных структурах толщины слоев $sp^2 - 40 - 150$ nm.

Таким образом, в данной схеме осуществлен рост sp^3 -слоев на слоях с высоким содержанием sp^2 -углерода. Сообщений в литературе об осуществлении такого процесса авторами не найдено. Проведенные исследования технологических схем получения чередующихся пленок ОМ и ДМ показали возможность практической реализации структур с тремя и более чередующимися слоями при создании термоэлектрического преобразователя.

Для измерения термоэлектрических характеристик использовалась простейшая двухслойная система. Для этого проводилось выращивание на кварцевой подложке размером $16 \times 16 \text{ mm } sp^3$ (алмазного)-слоя, затем было проведено нанесение системы золотых контактов методом фотолитографии, после этого на золотые контакты был нанесен рабочий слой — графитоподобная пленка с зонами нагрева и охлаждения по краям (рис. 2). Для создания измерительной установки оказалось необходимым провести разварку и корпусирование полученного двухслойного образца. Затем на поверхности корпусированной подложки с sp^3/sp^2 -слоями и стержневыми выводами контактов разваренной подложки закреплялась покрывающая кварцевая пластина. Вся система скреплялась прижимными пластинами.

Нагрев образца на 250-300°С обеспечивался с одной из сторон пластины с помощью контактного нагревателя (паяльника). Температура нагревателя измеряется термопарой. Охлаждение обеспечивалось прижимаемым медным стержнем, погруженным в воду. Температура охлаждаемой части измеряется пирометром. Типичные результаты измерения термоэдс при толщине sp²-слоя $\sim 100\,\mathrm{nm}$ на поверхности алмаза составили величину, в десятки и сотни раз бо́льшую значения $3 \cdot 10^{-5} \, \text{mV} \cdot \text{K}^{-1}$, типичного для макроскопического пиролитического графита [7]. Влияние sp^3 -подслоя при такой толщине sp^2 было гораздо слабее и не превышало 150%. Очевидно, что алмазный подслой обеспечивает увеличение термоэдс элемента. Полученные значения сильно зависят от местоположения контактов, однако эффект наблюдался везде. Трудности реализации достаточно резкого переходного слоя — интерфейса между слоями углерода с *sp*²- и *sp*³-гибридизацией электронных оболочек (на уровне $\sim 10 \, \text{nm})$ — очевидны.

Рис. 1. Полученные методом СЭМ изображения поперечного сечения слоя sp^3 (*a*), слоя sp^2 на sp^3 (*b*), трехслойной структуры $sp^3 - sp^2 - sp^3$ (*c*).

Конструкция ТЭГ на основе слоистых углеродных структур защищена патентом [8], относящимся к термоэлектрическому приборостроению. Свойственное только углеродным наноструктурам уникальное сопряжение этих материалов на чрезвычайно близких расстояниях создает возможность отвода из sp^2 -областей фононов, испущенных электронами после совместного движения, и позволяет ожидать получение коэффициента термоэдс около 0.1 mV·K⁻¹.

Рис. 2. Двухслойная система, использованная в эксперименте: *sp*²-слой — графитоподобная пленка, получаемая магнетронным напылением; *sp*³-слой — поликристаллический CVDалмаз.

На рис. 2 представлена структура, состоящая из областей двух типов, в одной из которых атомы углерода имеют sp^2 -гибридизацию, а в другой — sp^3 -гибридизацию, т.е. структура, состоящая из графитоподобной и алмазоподобной областей. Алмазоподобная область является своеобразным "холодильником", отводит тепло от графитоподобной области. Между sp^2 -и sp^3 -областями устанавливается разность температур, протекает поток фононов. Таким образом, поток фононов увлекает электронный газ в sp^2 -области и создает термоэлектрическое поле.

Расчет эффективности процесса увлечения и коэффициента термоэдс, определяемого эффектом увлечения [1], показал, что коэффициент термоэдс на порядки превышает известные значения коэффициента термоэдс для графита, равные $\sim 10-20\,\mu\mathrm{V}\cdot\mathrm{K}^{-1}$ в области температур выше комнатной.

Коэффициент термоэдс *S* может быть записан как $S = \alpha k_{\rm B}/e$, где $k_{\rm B}$ — постоянная Больцмана, e — заряд электрона. Величина α — безразмерный коэффициент термоэдс. Очевидно, что смещения электрона λ при увлечении баллистическими фононами гораздо больше, чем при увлечении хаотическими. Такие смещения примерно равны или меньше постоянной решетки для графита (0.35 nm). С другой стороны, очевидно (см. [6]), что баллистическое увлечение возможно только на расстояниях, сравнимых с длиной пробега фонона. В настоящее время технологически достижима толщина *sp*²-слоя, бóльшая чем 50 nm. Имеем (см. [1])

$$\alpha_{bal} \cong \left(\frac{2\pi k_{\rm B}T\lambda}{hc}\right)^3.$$

Числовой множитель принят равным единице $(c \approx 1.5 \cdot 10^3 \text{ m/s} - \text{скорость звука в } sp^2$ -области, h — постоянная Планка). Оценки показывают, что коэффициент термоэдс $\alpha \approx \alpha_{bal} = 600-700$ при температурах

 $T \approx 3 \cdot 10^2$ К. Это означает, что коэффициент термоэдс $S \approx 50 \text{ mV} \cdot \text{K}^{-1}$. Примем, что электропроводность sp^2 пленки совпадает с табличной величиной, приводимой в справочниках для угольных электродов ($\sigma \approx 2500$ S), а теплопроводность тонких sp^2 -слоев значительно превышает справочную теплопроводность графита и равна $\chi \approx 200$ W/(m·K) [7]. Эффективность термоэлектрического генератора $ZT = TS^2\sigma/\chi$ зависит от теплопроводности материала χ , его электропроводности σ и коэффициента термоэдс S. Тогда термоэлектрическая эффективность рассмотренной системы может достигать $ZT \approx 20$ при комнатной температуре. В лучших из существующих ТЭГ [1,4] термоэлектрическая эффективность $ZT \approx 1.5$ при комнатной температуре.

Можно сделать следующий вывод: идею, состоящую в использовании для повышения коэффициента термоэдс *S* эффекта увлечения электронов потоком тепла (фононами), возможно реализовать! Размещение графитоподобного материала на алмазоподобной пленке также обеспечивает рост значения термоэдс. В этом, на наш взгляд, проявляется эффект баллистического увлечения электронов фононами.

Можно ожидать, что технологически осуществимо создание таких углеродных наноструктур, при применении которых предложенный вариант реализации ТЭГ с рекордными параметрами будет экспериментально достижим.

Авторы благодарят А.Я. Вуля, В.Г. Голубева, С.В. Коняхина, Ф.М. Шахова, С.В. Кидалова, А.П. Мейлахса за помощь и обсуждение, Н.Д. Ильинскую и ее сотрудников за проведение литографических работ, О.Н. Сараева и его сотрудников за проведение разварки контактов.

Работа выполнена при поддержке РНФ (грант 16-19-00075).

Список литературы

- Eidelman E.D., Vul' A.Ya. // J. Phys.: Condens. Matter. 2007.
 V. 19. N 26. P. 266210. DOI: http://dx.doi.org/10.1088/0953-8984/19/26/266210
- Koniakhin S.V., Eidelman E.D. // Europhys. Lett. 2013.
 V. 103. N 3. P. 37006. DOI: http://dx.doi.org/10.1209/0295-5075/103/37006
- [3] Вуль А.Я., Эйдельман Е.Д. Патент РФ № 2376681. Термоэлектрический элемент. Приоритет от 06.10.2008.
- [4] Kubakaddi S.S., Bhargavi K.S. // Phys. Rev. B. 2010. V. 82.
 N 15. P. 155410.

DOI: https://link.aps.org/doi/10.1103/PhysRevB.82.155410

- [5] Koniakhin S.V., Nalitov A.V. // Phys. Rev. B. 2016. V. 94. N 12.
 P. 125403. DOI: http://dx.doi.org/10.1103/PhysRevB.94.125403
- [6] Эйдельман Е.Д. // ФТП. 2017. Т. 51. В. 7. С. 944–947.
- [7] Kidalov S.V., Shakhov F.M., Vul' A.Y., Ozerin A.N. // Diamond Relat. Mater. 2010. V. 19. N 7-9. P. 976–980.
 DOI: http://dx.doi.org/10.1016/j.diamond.2010.03.004
- [8] Эйдельман Е.Д., Шахов Ф.М., Вуль А.Я. Патент РФ № 2628676. Термоэлектрический элемент. Приоритет от 25.11.2016.