05

Магнитные и диэлектрические свойства мультиферроиков (1-x)BiFeO₃-xYMnO₃

© В.И. Михайлов 1 , В.Т. Довгий 2 , А.И. Линник 1 , З.Ф. Кравченко 1 , В.И. Каменев 1 , Н.Н. Кулик 3 , А.В. Боднарук 3 , Ю.А. Легенький 4 , Д.Д. Татарчук 5 , Н.В. Давыдейко 1

E-mail: mikhaylovv55@gmail.com

Поступило в Редакцию 25 октября 2018 г. В окончательной редакции 9 января 2019 г. Принято к публикации 10 января 2019 г.

Изучены петли магнитного гистерезиса, полученные в магнитном поле от 0 до $\pm 2.5\,\mathrm{kOe}$, и диэлектрическая проницаемость ε (при $1\,\mathrm{kHz}$, $1\,\mathrm{MHz}$ и $8.3\,\mathrm{GHz}$) композиционных мультиферроиков $(1-x)\mathrm{BiFeO_3}-x\mathrm{YMnO_3}$ ($0 \le x \le 0.5$). Керамические образцы твердых растворов изготовлены по нитратной технологии. Установлено, что составы $(1-x)\mathrm{BiFeO_3}-x\mathrm{YMnO_3}$ (0.1 < x < 0.5) — магнитомягкие ферромагнетики, чувствительные к слабому магнитному полю. Поле коэрцитивности H_c для них составляет $\sim 20-32\,\mathrm{Oe}$. Максимальная намагниченность наблюдалась у образца с x=0.35. Для образцов с $0 \le x \le 0.4$ при $T=300\,\mathrm{K}$ на частоте $1\,\mathrm{kHz}$ $\varepsilon \sim 17.6-248.6$, на частоте $1\,\mathrm{MHz}$ $\varepsilon \sim 7.8-63.2$, а на частоте $8.3\,\mathrm{GHz}$ $\varepsilon \sim 4\pm0.3$.

DOI: 10.21883/PJTF.2019.07.47531.17574

Развитие микроэлектроники в направлении спинтроники связано с открытием и исследованием новых материалов, обладающих спин-поляризованной проводимостью (манганиты), ферроэлектрическим, ферромагнитным упорядочением, а также пьезоэффектом, магнитоэлектрическим эффектом и магнитострикцией (мультиферроики). С одной стороны, интерес к данной тематике обусловлен фундаментальными свойствами мультиферроиков, а с другой — ожидаются вполне конкретные практические приложения в таких областях, как сенсорная техника, спинтроника, логические устройства [1-4]. Среди мультиферроиков наиболее интересным является BiFeO₃. Этот высокотемпературный мультиферроик перспективен для практического применения. Но, как известно, он является антиферромагнетиком вследствие геликоидального магнитного упорядочения. Существуют различные способы разрушения геликоидальной структуры: приложение к объемному материалу магнитного поля порядка 200 kOe [2], получение тонких пленок [2,3]. В последние годы появилось много работ, посвященных разнообразным системам твердых растворов и пленок на основе этого материала [3-9]. В частности, выделяются семейства твердых растворов BiFeO₃ и хорошо известных сегнетоэлектриков или антисегнетоэлектриков [5]. Другими видами систем являются соединения на основе BiFeO₃ с частичным замещением ионов Ві рядом трехвалентных (преимущественно редкоземельных) или двухвалентных ионов [6], а также с частичным замещением ионов Fe ионами Mn, Co или Cr [7].

Системы твердых растворов и пленок, в которых в качестве вторых компонентов к BiFeO₃ содержатся гексагональные манганиты hex-RMnO₃, рассмотрены в работах [8,9]. В [8] довольно подробно описаны структурные изменения в системе BiFeO₃-YMnO₃, но не проведены исследования магнитных и электрических свойств. Авторами [9] методом импульсного лазерного напыления были изготовлены тонкие пленки системы (1-x)Ві FeO_3-x YMn O_3 : максимальная намагниченность наблюдалась в пленках с концентрацией x = 0.1, а электрическая поляризация в поле напряженностью $300\,\mathrm{kV/cm}$ достигала значения $P=15\,\mu\mathrm{C/cm^2}$. Отметим, что BiFeO₃ и YMnO₃ являются мультиферроиками первого типа и антиферромагнетиками. В них сегнетоэлектричество проявляется при более высоких температурах, чем магнетизм. В пленках $BiFeO_3$ спонтанная поляризация Р часто достигает величины $\sim 10-100\,\mu\text{C/cm}^2$ [2,3]. Связь между магнетизмом и сегнетоэлектричеством в этих материалах, как правило, довольно слабая. Следует ожидать, что физические свойства твердых растворов BiFeO₃ с YMnO₃ зависят от соотношения компонентов.

В настоящей работе проведены исследования структурных, магнитных и диэлектрических свойств композиционной системы (керамических образцов) состава (1-x)Ві $FeO_3-xYMnO_3$. Цель работы — выяс-

 $^{^{1}}$ Донецкий физико-технический институт им. А.А. Галкина, Донецк, Украина

² Донецкий физико-технический институт им. А.А. Галкина НАН Украины, Киев, Украина

³ Институт физики НАН Украины, Киев, Украина

⁴ Донецкий национальный университет, Донецк, Украина

⁵ Национальный технический университет Украины "Киевский политехнический институт им. И. Сикорского", Киев, Украина

Рис. 1. Петли магнитного гистерезиса для образцов системы (1-x)Ві FeO_3-x $YMnO_3$, измеренные при T=110~(a) и $300~{\rm K}~(b)$ для различных значений x: a) 1,2-0.35 (2- для дополнительного образца), 3-0.2, 4-0.25, 5-0.3, 6-0.1, 7-0.5; b) $I=0.35,\ 2=0.2,\ 3=0.25,\ 4=0.3,\ 5=0.1,\ 6=0.5.$ На вставке показан фрагмент петли гистерезиса для образца 0.65BiFeO₃-0.35YMnO₃.

нить особенности магнитных и диэлектрических свойств (1-x)ВіFеO₃-xYMnO₃ в зависимости от концентрации х.

Образцы керамик состава (1-x)ВiFeO₃-xYMnO₃ были получены по нитратной технологии из окислов Ві2О3, У2О3, Мп3О4 и железа карбонильного марки осч, взятых в стехиометрическом соотношении. Стехиометрическую смесь порошков растворяли в разбавленной азотной кислоте (HNO₃). После разложения нитратов до окислов твердые растворы (1-x)BiFeO₃-xYMnO₃ с x = 0.1, 0.2, 0.25, 0.3, 0.35, 0.4 и 0.5 были синтезированы при $T=600^{\circ}{\rm C}$ в течение 10 h. Продукты синтеза после перетирки были спрессованы в таблетки диаметром $8\,\mathrm{mm}$ и толщиной $d=1.5\,\mathrm{mm}$. Таблетки спекались при $T = 1000^{\circ} \text{C}$ на воздухе в течение 18 h. Рентгенофазовый анализ (РФА) осуществлялся на рентгеновском дифрактомере ДРОН-2 (излучение CuK_{α}). РФА для всех значений х показал образование фаз со структурой перовскита и небольшое количество примесной фазы $(\sim 5-10\%)$, предположительно Bi₂₅FeO₃₉. В диапазоне температур 5-950 К данная фаза демонстрирует парамагнитное поведение [10].

Запись петель перемагничивания производилась как с помощью вибрационного магнитометра LDJ-9500, так и с помощью индуктивно-частотной методики (автогенератор, частота модуляции поля 133 Нz). Результаты измерений намагниченности M на магнитометре LDJ-9500 для керамических дисков (1-x)BiFeO₃-xYMnO₃ представлены на рис. 1, a и b.

Из рис. 1, a видно, что из всех составов (1-x)ВіFеO₃-xYMnO₃, где 0.1 < x < 0.5, максимальной намагниченности стабильно достигают образцы с x = 0.35 (петли 1, 2). Далее по мере убывания намагниченности M при $H=2.5\,\mathrm{kOe}$ следуют образцы с x = 0.2 (петля 3), 0.25 (петля 4), 0.3 (петля 5), 0.1

(петля 6) и 0.5 (петля 7). На рис. 1, b для той же системы приведены аналогичные петли магнитного гистерезиса, измеренные при температуре $T = 300 \, \mathrm{K}$. Видно, что по сравнению с результатами, полученными при $T = 110 \, \mathrm{K}$, намагниченность образцов уменьшилась, но закономерность ее изменения в зависимости от состава осталась прежней. На вставке к рис. 1, b показан фрагмент петли гистерезиса для образца 0.65BiFeO₃ – 0.35YMnO₃. Несимметричность петли гистерезиса свидетельствует о том, что в образце кроме ферромагнитной присутствует и антиферромагнитная фаза.

основе ширины Ha петель магнитного гистерезиса можно сделать вывод, что составы (1-x)ВіFеO₃-xYMnO₃ (0.1 < x < 0.5) являются магнитомягкими ферромагнетиками, поле коэрцитивности H_c для них составляет $\sim 20-32\,\mathrm{Oe}$ (рис. 2). Для x=0.2, 0.25 и 0.35 по касательной к точке перегиба кривых M(T) определены температуры ферромагнитного упорядочения, значения которых оказались довольно близкими (548, 549 и 551 К соответственно). Эти данные подтверждают, что за ферромагнетизм отвечает одна и та же фаза.

Диэлектрические свойства образцов измерялись при комнатной температуре в конденсаторной ячейке с обкладками в виде дисков диаметром 8 mm с помощью *RLC*-метров Е7-8 (частота 1 kHz) и Е7-12 (1 MHz). Диэлектрическая проницаемость ε_{x} определялась как отношение емкости ячейки с образцом C_x к емкости ячейки с воздухом C_{air} : $\varepsilon_x = C_x/C_{air}$.

Здесь $C_x = \varepsilon_x \varepsilon_0 S/d$, $C_{air} = \varepsilon_{air}\varepsilon_0 S/d,$ $arepsilon_0 = 8.85 \cdot 10^{-12} \, \mathrm{F/m}, \, S$ — площадь обкладок, d — расстояние между обкладками конденсатора. Эта формула справедлива, так как диэлектрическая проницаемость воздуха $\varepsilon_{air}=1$ с достаточной точностью. Кроме диэлектрической проницаемости ε приборы позволяют

Рис. 2. Температурные зависимости намагниченности M при $H=2.5\,\mathrm{kOe}$ (кружки) и поля коэрцитивности H_c (квадраты) для образцов (1-x)Ві $\mathrm{FeO_3}-x$ $\mathrm{YMnO_3}$ с различной концентрацией x: a — 0.2, b — 0.25, c — 0.35.

измерить тангенс угла диэлектрических потерь $\operatorname{tg} \delta$ и адмиттанс G — аналог проводимости. Результаты измерений приведены в таблице. Диэлектрическая проницаемость образцов ε состава $(1-x)\operatorname{BiFeO_3}-x\operatorname{YMnO_3}$ для значений $x=0,\ 0.25$ и 0.35 измерялась и в области СВЧ на частоте $f_{res}=8.3\,\mathrm{GHz}$. Оказалось, для данного состава $\varepsilon\sim 4\pm 0.3$ независимо от величины x в предположении, что значение магнитной проницаемости μ_x в области СВЧ стремится к единице.

системе твердых растворов (1-x)ВіFеO₃-xYMnO₃ за магнитное упорядочение могут отвечать как взаимодействие Дзялошинского (в чистом ВіГеО₃) [2,11], так и суперобменные взаимодействия Fe-O-Fe, Fe-O-Mn и Mn-O-Mn [6,7]. Анализ кривых намагниченности M(H) (рис. 1) позволяет сделать вывод, что в этой системе в диапазоне концентраций 0.1 < x < 0.5 наблюдается ферромагнитное упорядочение. По данным работы [9], в которой исследовались тонкие пленки (1-x)BiFeO₃-xYMnO₃, максимум намагниченности соответствует составу с x = 0.1. Изучение керамических объемных образцов той же системы в настоящей работе показывает, что максимум намагниченности соответствует составу с x = 0.35. Преимущество образцов этой композиционной системы состоит в том, что они достигают намагниченности насыщения в малых магнитных полях и величина намагниченности значительно больше, чем для образцов с частичным замещением ионов висмута рядом трехвалентных (преимущественно редкоземельных) или двухвалентных ионов, а также с частичным замещением ионов Fe. Как следует из рис. 2, поле коэрцитивности H_c для твердых растворов (1-x)Ві FeO_3-x YMn O_3 с концентрацией 0.1 < x < 0.35 составляет $\sim 20-32$ Ое. Эти данные подтверждают наш вывод о том, что такие материалы являются магнитомягкими ферромагнетиками, чувствительными к слабому магнитному полю. Указанное свойство делает их перспективными для использования в устройствах переключения электрической поляризации магнитным полем и, наоборот, переключения намагниченности электрическим полем.

На основании проведенных исследований можно сделать следующие выводы.

1. В системе твердых растворов (1-x)Ві FeO_3-x УМ nO_3 в диапазоне концентраций 0.1< x<0.4 обнаружено ферромагнитное упорядочение. 2. Установлено, что поле коэрцитивности H_c для твердых растворов (1-x)Ві FeO_3-x УМ nO_3 $(0.1 < x \le 0.4)$ составляет $\sim 20-32$ Ое. Следовательно, они являются

Диэлектрические параметры образцов (1-x)BiFeO₃-xYMnO₃, измеренные *RLC*-метрами Е7-8 (1 kHz) и E7-12 (1 MHz)

х	$\operatorname{tg}\delta_{x}$	G_x , μ S	C_x , pF	C_{air}^* , pF	$\varepsilon_x \pm \Delta \varepsilon$
1 kHz					
0	0.16	1.23	21.5	1.22	17.6 ± 0.8
0.1	0.2	1.93	51.5	1.22	42 ± 2
0.2	0.15	3.8	292.7	1.22	240 ± 10
0.25	0.17	3.65	147.2	1.22	121 ± 5
0.3	0.2	2.41	295.5	1.22	240 ± 10
0.35	0.1	3.25	185.6	1.22	152 ± 5
0.4	0.2	2.12	303.3	1.22	250 ± 10
1 MHz					
0	0.07	0.2	7.0	0.9	7.8 ± 0.5
0.1	0.1	5.4	28.9	0.9	32 ± 2
0.2	0.12	5.2	56.9	0.9	63 ± 3
0.25	0.12	4.6	28.9	0.9	32 ± 2
0.3	0.14	2.12	30.4	0.9	34 ± 2
0.35	0.12	3.25	20.3	0.9	23 ± 1
0.4	0.1	3.7	30.1	0.98	31 ± 2

 $^{^*}C_{air}$ — средние значения; для x=0.4 в случае $f=1\,\mathrm{MHz}$ взято реальное значение $C_{air} = 0.98 \, \mathrm{pF}$.

магнитомягкими ферромагнетиками, чувствительными к слабому магнитному полю.

- 3. Показано, что максимум намагниченности керамических объемных образцов исследуемой системы (в отличие от пленочных) соответствует составу с x = 0.35.
- 4. Обнаружено, что диэлектрическая проницаемость образцов (1-x)Ві FeO_3-x YMn O_3 (0 < x < 0.4) на частоте 1 kHz составляет $\varepsilon \sim 17.6-248.6$, на частоте 1 MHz $\varepsilon \sim 7.8-63.2$, а на частоте 8.3 GHz $\varepsilon \sim 4.3$.

Список литературы

- [1] Fiebig M. // J. Phys. D: Appl. Phys. 2005. V. 38. N 8. P. R123-R152.
- [2] Kadomtseva A.M., Popov Yu.F., Pyatakov A.P., Vorob'ev G.P., Zvezdin A.K., Viehland D. // Phase Trans. 2006. V. 79. N 12. P. 1019-1042.
- [3] Пятаков А.П., Звездин А.К. // УФН. 2012. Т. 182. № 6. C. 593-620.
- [4] Nan C.-W., Bichurin M.I., Dong S., Viehland D., Srinivasan G. // J. Appl. Phys. 2008. V. 103. N 3. P. 031101 (1-35).
- [5] Silva J., Reyes A., Esparza H., Camacho H., Fuentes L. // Integr. Ferroelectrics. 2011. V. 126. N 1. P. 47-59.
- [6] Макоед И.И., Ревинский А.Ф., Лозенко В.В., Галяс А.И., Демиденко О.Ф., Живулько А.М., Янушкевич К.И., Мощалков В.В. // ФТТ. 2017. Т. 59. В. 8. С. 1514-1519.
- [7] Покатилов В.С., Русаков В.С., Сигов А.С., Белик А.А. // ΦΤΤ. 2017. T. 59. B. 8. C. 1535-1541.
- [8] Назаренко А.В., Разумная А.Г., Куприянов М.Ф., Кабиров Ю.В., Рудская А.Г. // ФТТ. 2011. Т. 53. В. 8. C. 1523-1525.

- [9] Nie P.-X., Wang Y.-P., Yang Y., Yuan G.-L., Li W., Ren X.-T. // Energy Harvest. Syst. 2015. V. 2. N 3-4. P. 157-162.
- [10] Köferstein R., Buttlar T., Ebbinghaus S.G. // J. Solid State Chem. 2014. V. 217. P. 50-56.
- [11] Дзялошинскй И.Е. // ЖЭТФ. 1957. Т. 32. В. 8. C. 1547-1562.