06

Отрицательные электроды для литий-ионных аккумуляторов, полученные фотоанодированием кремния солнечной градации

© Г.В. Ли, Е.В. Астрова, Н.Е. Преображенский, А.М. Румянцев, С.И. Павлов, Е.В. Берегулин

Физико-технический институт им. А.Ф. Иоффе РАН, 194021 Санкт-Петербург, Россия e-mail: GalyaFedulova@mail.ioffe.ru, east@mail.ioffe.ru

Поступило в Редакцию 11 мая 2018 г. В окончательной редакции 26 ноября 2018 г. Принято к публикации 5 декабря 2018 г.

Отрицательные электроды для литий-ионных аккумуляторов, изготовленные методом электрохимического травления монокристаллического кремния, демонстрируют высокие значения удельной емкости на грамм материала и на единицу номинальной площади анода, а также высокую стабильность в течение нескольких сотен и даже тысяч циклов. Однако промышленное использование подобного рода структур нецелесообразно, из-за высокой стоимости материала и используемой технологии. Исследованы аноды на основе неупорядоченных макропор в солнечном *n*-Si, полученные с помощью фотоанодирования в 4% растворе HF в диметилформамиде. Использование органического электролита приводит к формированию слоев с пористостью, более высокой, чем в водном электролите, и обеспечивает самопроизвольное отделение этих слоев от подложки. Из макропористых мембран толщиной $48-86\,\mu{\rm m}$ с пористостью 52-75% изготовлены аноды и исследованы их электрохимические характеристики. Установлено влияние геометрических параметров пористой структуры и режима испытаний на величину зарядной и разрядной емкости и на длительность работы анодов. В режиме ограничения зарядной емкости величиной 1000 mA \cdot h/g и скорости заряда/разряда C/5 полученные аноды способны стабильно работать в течение нескольких сотен циклов, сохраняя высокую (более 98%) кулоновскую эффективность.

DOI: 10.21883/JTF.2019.05.47473.193-18

Введение

Кремниевые структуры, полученные методом электрохимического травления, являются перспективным материалом для анодов литий-ионных аккумуляторов [1–5]. При использовании Si-структурных элементов (наностенок или нанопроволок) нужного размера, ограничении количества лития, внедряемого в электрод, и оптимальных токов заряда/разряда кремниевые аноды стабильно работают в составе полуячейки [6-8]. Разработанная нами ранее технология получения упорядоченных 3D-структур с тонкими монодисперсными стенками [8-10] позволила получать аноды, не проявляющие признаков деградации в течение более 1200 циклов при удельной емкости 1000 mA · h/g и демонстрирующие кулоновскую эффективность на уровне 98-100% (за исключением первых нескольких циклов). Однако промышленное использование таких анодов ограничено их себестоимостью, которая в первую очередь определяется использованием монокристаллического кремния, предназначенного для микроэлектроники, а также наличием таких дорогих процессов в технологии, как фотолитография. Кремневые пластины солнечной градации доступны на рынке по цене за грамм, в 10 раз меньшей, и обладают высоким временем жизни неосновных носителей, что немаловажно для фототравления. Кроме того, формирование неупорядоченной решетки макропор не предполагает использование фотолитографии. В работе [11] было исследовано формирование макропористых слоев

и мембран из *n*-Si, предназначенного для солнечной энергетики. Целью настоящей работы явилось изучение электрохимических характеристик анодов, полученных из этих мембран.

Эксперимент

Исходным материалом для анодирования служили пластины монокристаллического кремния п-типа солнечной градации. Пластины толщиной $180 \,\mu$ m, ориентированные в плоскости (100), имели удельное сопротивление $3 \,\Omega \cdot \text{сm} (N_d = 1.7 \cdot 10^{15} \text{ cm}^{-3})$ и обладали текстурированной поверхностью, пирамидки на поверхности которой сохранялась и после анодирования (рис. 1). Электрохимическое травление образцов размером $27 \times 27 \text{ mm}$ проводилось на установке SiPor фирмы ET&TE в электролите, состоящем из 4 % раствора

Рис. 1. Текстурированная поверхность образца после анодирования.

Рис. 2. Зависимость тока от времени при анодировании образцов 21-04-N1 (a) и 15-03-N1 (b).

Рис. 3. Образование полостей в пористой мембране: а, b — SEM-изображение поперечного сечения образца 21-04-N2.

НF в диметилформамиде (ДМФ). Процесс проводился при *T* = 22°C в условиях освещения обратной стороны образца светом с длиной волны $\lambda = 0.88 \, \mu m$. Фотоанодированию подвергалась область диаметром 18 mm. Анодирование осуществлялось в потенциостатическом режиме при разном напряжении (подробнее технология описана в работе [11]). В табл. 1 приведены режимы анодирования и характеристики полученных пористых структур, где U — напряжение на границе кремнийэлектролит, Е — интенсивность подсветки, пропорциональная напряжению на матрице светодиодов, р — гравиметрическая пористость мембраны, измеренная после отделения ее от подложки, l — толщина мембраны, а а — среднее расстояние между порами. Отделение макропористой мембраны от подложки происходило за счет перехода в режим электрополировки. Типичная зависимость тока анодирования от времени приведена на рис. 2. На ней имеется линейно возрастающий участок тока, характерный для порообразования, после которого следует спадающий участок, обусловленный появлением полостей в пористом кремнии, а затем и полным отделением мембраны от подложки (рис. 3).

Рис. 4. Зависимость времени t_{off} , необходимого для начала отделения пористого слоя от подложки, от напряжения.

Из табл. 1 видно, что при напряжении U < 4 V плотность пор возрастает с напряжением (*a* уменьшается), а при U > 4 V остается практически неизменной.

			-					
№ анода	Образец	U, V	E, V	t, min	l, µm	<i>p</i> ,%	$a, \mu m$	$t_{\rm off}, \min$
_	13-04-N2	1	4.5	120	98	40.2	3.2	> 120
3-8	21-04-N1	2.5	4.5	120	86	55.3/74.6 ^{*)}	1.4	75
9–7	14-04-N1	4	4.5	120	66	62.4	0.95	50
5–7	21-04-N2	7	4.5	120	48	68.6	1.05	35
_	12-04-N1	10	4.5	60	0	100	_	0
1-8	15-03-N1	4	4	80	76	52.1	1.0	> 80
		4	6	30				0

Таблица 1. Режимы фотоанодирования (4% HF в ДМФ) и параметры пористых слоев

Примечание. toff — время до начала отделения пористого слоя от подложки, *) — пористость после дополнительной обработки в КОН.

Обычно отделение пористого слоя происходило самопроизвольно, причем время до начала отделения уменьшалось по мере увеличения напряжения U (рис. 4), что сопровождалось уменьшением толщины мембраны l. Из величины тока I = 40 mA, при котором это происходило, можно оценить критическую плотность тока, соответствующую переходу к четырехвалентному растворению кремния (электрополировке) $j_{PS} = 15.7$ mA/cm². Это значение примерно в 2 раза меньше, чем j_{PS} для водного электролита с тем же содержанием HF [12]. Повидимому, этим обусловлена более высокая пористость слоев, полученных фотоанодированием в ДМФ, по сравнению с водным электролитом.

Образец 15-03-N1 анодировали в комбинированном режиме: 80 min при U = 4 V и E = 4, а затем, чтобы произошло отделение, интенсивность света увеличивали до E = 6. Из табл. 1 следует, что при $U \ge 10$ V или при высокой интенсивности подсветки (E = 6) травление сразу переходит в режим электрополировки.

Электрохимические характеристики анодов

Для изготовления анодов из приведенных в табл. 1 образцов были выбраны те, что имеют наиболее высокую пористость. На верхнюю поверхность мембраны с помощью вакуумного термического напыления наносилась медь с подслоем хрома, а затем гальванически осаждался слой меди толщиной $7-15\,\mu$ m из раствора на основе медного купороса с добавлением небольших количеств серной кислоты и этанола. Плотность тока осаждения составляла $5-10 \text{ mA/cm}^2$, время осаждения 300-480 min. Образец 21-04-N1 до нанесения гальванической меди был подвергнут дополнительной обработке в растворе 12.3% КОН и изопропилового спирта при $T = 30^\circ$ в течение 30 min, в результате чего его пористость возросла, а толщина Si стенок уменьшалась.

Из мембран с гальваническим медным контактом вырезались электроды меньшей площади. Полученные аноды собирались в дисковые корпуса CR2032, где вторым электродом служил металлический литий. Полуячейки подвергались циклическим испытаниям в гальваностатическом режиме на стенде CT3008W-5V10mA (Neware). В качестве электролита использовался коммерческий продукт TC-E918 (Тіпсі, КНР), представляющий собой 1М раствор LiPF6 в смеси EC/PC/DEC/EMC (этилен-карбонат, пропиленкарбонат, диэтилкарбонат, этилметилкарбонат). Режимы исследования электрохимических характеристик приведены в табл. 2. Заряд ограничивался величиной удельной емкости $Q_{\rm ch} \approx 1000 \,\mathrm{mA} \cdot \mathrm{h/g}$ и потенциалом относительно лития $V = 10 \,\mathrm{mV}$. Таким образом, диапазон изменения напряжения лежал в интервале $10-2000 \,\mathrm{mV}$. При заряде срабатывало либо ограничение по емкости, либо по напряжению 10 mV. В последнем случае реальное время заряда оказывалось меньше, чем заданное.

Зарядно-разрядные кривые всех анодов имеют типичный вид (рис. 5, *b*). Первый цикл заряда отличается от последующих, что связано с аморфизацией, происходящей при литировании кристаллического кремния [13]. Разрядная кривая первого цикла демонстрирует необратимые потери 7—18%, это количество электричества было потрачено на реакцию восстановления электролита и формирование твердофазной пленки на поверхности электрода (SEI). Формирование SEI обычно заканчивается на 2-м–3-м цикле (при этом необратимые потери составляют 1.3-2.9%). Кулоновская эффективность для последующих циклов была близка к 100%.

На рис. 5, а представлена зависимость удельной емкости разряда от числа циклов для анодов 9_7 и 3_8, а на рис. 5, b показаны зарядно-разрядные кривые для анода 9_7. В рамках испытания анодов было установлено влияние так называемой "формировки электрода", которая представляла собой заряд или заряд/разряд анода на начальных циклах малым током. Так, анод 9_7 после сборки в ячейку сначала заряжался током 0.2 А/g (цикл 0 в табл. 2). При этом в электрод практически не удалось внедрить литий, так как произошло быстрое падение напряжения до 10 mV. Причиной такого поведения является низкая скорость диффузии атомов лития в кристаллический кремний. В результате большей скорости восстановления лития, его частицы накапливаются на поверхности, что приводит к быстрому снижению поверхностного потенциала до 10 mV. Уменьшение на следующем цикле зарядного тока до $j = 0.1 \,\text{A/g}$ позволило значительно увеличить $Q_{\rm ch}$, и далее анод стал способен заряжаться током 0.2 А/g до заданного

Рис. 5. *а* — зависимость удельной емкости от числа циклов для образов 9_7 и 3_8; *b* — зарядно-разрядные кривые образца 9_7; номера возле кривых указывают номер цикла.

№ анода	Площадь <i>S</i> , mm ²	Macca, mg	№ цикла	Плотность тока <i>j</i> , A/g		Удельная емкость Q , mA \cdot h/g		Время заряда, h	
				Заряда	Разряда	Заряда Q_{ch}	Разряда $Q_{\rm dch}$	Заданное	Реальное
9–7	7.09	0.41	0 1 2-3 4-310	0.2 0.1 0.2 0.2	0.2 0.2 0.2 0.2	104 896 1000 1000	26 800 976–987 1000	5 10 5 5	0.52 8.96 5 5
3–8	5.9	0.30	$ \begin{array}{r}1\\2-3\\4-100\\101-166\\167-267\end{array} $	0.1 0.1 0.2	0.1 0.1 0.2	1000 1000 1000 966–956 936–40	842 971–984 1000 966–956 936–40	10 10 5 5 5	10 10 5 4.83-4.78 4.68-0.2
1–8	18.27	1.55	1 2 3–38 39–102 103–105 106–108 109–111 112–165	0.05 0.2 0.1 0.2 0.4 0.8 0.1	0.2 0.2 0.1 0.2 0.4 0.8 0.1	952 810 740 1000 740 32 4 1000	889 793 740 1000 740 32 4 1000	20 5 5 10 5 2.5 1.25 10	19.04 4.05 3.70 10 3.70 0.08 0.005 10
5-7	10.25	0.36	1 2 3 4–65 66–68 69–71 72–74 75–77 78–160	0.1 0.2 0.1 0.2 0.4 0.8 0.1 0.2	0.2 0.2 0.1 0.2 0.4 0.8 0.1 0.2	1000 1000 846 1000 1000 592 120 1000 1000	828 945 833 1000 1000 592 120 1000 1000	$ \begin{array}{c} 10\\ 10\\ 5\\ 10\\ 5\\ 2.5\\ 1.25\\ 10\\ 5\\ \end{array} $	$ \begin{array}{c} 10\\ 10\\ 4.23\\ 10\\ 5\\ 1.48\\ 0.15\\ 10\\ 5 \end{array} $

Таблица 2. Параметры кремниевых анодов и режимы испытаний

 $Q_{\rm ch} = 1000 \,{\rm mA} \cdot {\rm h/g}$, демонстрируя стабильную работу в течение 310 циклов.

Образец 3_8 прошел формировку током j = 0.1 A/g в течение первых трех циклов и далее стабильно циклировался при j = 0.2 A/g, заряжаясь до заданной емкости,

в течение 100 циклов. Однако затем его зарядная и соответственно разрядная емкости стали постепенно уменьшаться, а начиная со 167 цикла анод начал резко деградировать. Таким образом, несмотря на меньшую пористость, образец 9_7 выдерживает большее число

Рис. 6. Зарядно-разрядные кривые образца 5_7. Номера возле кривых указывают номер цикла.

Рис. 7. Зависимость разрядной емкости от длительности полуцикла для анодов 5_7 и 1_8.

циклов. Возможно, это связано с более высокой плотностью пор на единицу плоской поверхности электрода и соответственно меньшей толщиной стенок. Не исключено, что влияет и меньшая толщина мембраны (табл. 1), которая, как было показано в [14], более равномерно литируется по глубине.

Аналогичная картина по влиянию формировки наблюдалась нами и для анода 5_7. Так, ток j = 0.1 A/g на первых двух циклах позволял заряжать анод до заданной емкости. Разрядная емкость в этом случае демонстрирует типичную картину: емкость разряда на втором цикле больше, чем на первом, в результате того, что на первом цикле происходит образование SEI. На третьем цикле внедрение лития осуществлялось в два раза большим током j = 0.2 A/g (заданное время 5 h). Как видно из рис. 6, в этом случае после достижения емкости 800 mA \cdot h/g напряжение начинает быстро падать, достигая 10 mV. Такая ступенька на зарядной кривой свидетельствует об образовании новой фазы с высоким

содержанием лития. Начиная с 4-го цикла, анод заряжали и разряжали током j = 0.1 A/g. Переход на 66-м–68-м цикле снова на ток j = 0.2 A/g уже не приводил к появлению ступеньки и не сопровождался уменьшением $Q_{\rm ch}$, как это было на цикле № 3. По-видимому, это связано с тем, что по мере увеличения числа циклов усиливается разупорядочение кристаллической решетки, и аморфизация структуры происходит по всей глубине, а в аморфном материале скорость диффузии лития выше. После испытания работоспособности при разных токах на циклах 69–77 электрод продолжили заряжать и разряжать током j = 0.2 A/g. На момент написания настоящей работы он прошел 160 циклов заряда/разряда. Аналогично ведет себя и анод 1_8, но полностью зарядить его можно было только за 10 h (j = 0.1 A/g).

Для оценки зависимости разрядной емкости от скорости заряда/разряда на анодах 5_7 и 1_8 после 65-го и 102-го циклов соответственно ток увеличивали так, что скорость составляла C/5, C/2.5 и C/1.25, и затем снова возвращалась на C/10, где C — заданная зарядная емкость. Из графика на рис. 7 видно, что анод 5_7 позволяет использовать большие скорости заряда, чем анод 1_8. Оба анода не могут заряжаться со скоростью C/1.25. Сравнивая параметры структуры анодов 5_7 и 1_8, можно видеть, что они отличаются толщиной мембраны и пористостью. Большей пористости анода 5_7 соответствуют более тонкие стенки и более высокая площадь внутренней поверхности, что может служить причиной снижения плотности тока на единицу площади.

Заключение

Таким образом, технология изготовления макропористых кремниевых анодов может быть существенно удешевлена за счет использования солнечного кремния. Электрохимические испытания, проведенные в режиме ограничения зарядной емкости 1000 mA · h/g, демонстрируют средние скорости заряда/разряда C/5или C/10. Их емкость на единицу номинальной площади электрода составляет 3.5-8.5mA · h/cm², а ресурс работы в составе полуячейки составляет несколько сотен циклов при высокой кулоновской эффективности.

Работа выполнена с использованием приборной базы ЦКП "Материаловедение и диагностика в передовых технологиях" ФТИ им. А.Ф. Иоффе.

Список литературы

- Fóll H., Hartz H., Ossei-Wusu E., Carstensen J., Riemenschneider O. // Phys. Stat. Solid. RRL. 2010. Vol. 4. N 1–2. P. 4–6.
- [2] Астрова Е.В., Федулова Г.В., Смирнова И.А., Ременюк А.Д., Кулова Т.Л., Скундин А.М. // Письма в ЖТФ. 2011. Т. 37. Вып. 15. С. 87–94.

- [3] Thakur M., Pernites R.B., Nitta N., Isaacson M., Sinsabaugh S.L., Wong M.S., Biswal S.L. // Chem. Mater. 2012. Vol. 24. N 15. P. 2998–3003.
- [4] Thakur M., Sinsabaugh S.L., Isaacson M.J., Wong M.S., Biswal S.L. // Scientific Reports. 2012. Vol. 2. N 795. P. 1–7.
- [5] Luais E., Sakai J., Desplobain S., Gautier G., Tran-Van F., Ghamouss F. // J. Power Sources. 2013. Vol. 242. P. 166–170.
- [6] Quiroga-González E., Carstensen J., Föll H. // Energies. 2013. Vol. 6. P. 5145–5156.
- [7] NÓhren S., Quiroga-Gonzalez E., Carstensen J., Föll H. // J. Electrochem. Society. 2016. Vol. 163. N 3. P. A373–A379.
- [8] Li G.V., Rumyantsev A.M., Levitskii V.S., Beregulin E.V., Zhdanov V.V., Terukov E.I., Astrova E.V. // Semicond. Sci. Technol. 2016. Vol. 31. P. 014008.
- [9] Ли Г.В., Астрова Е.В., Румянцев А.М., Воронков В.Б., Парфеньева А.В., Толмачев В.А., Кулова Т.Л., Скундин А.М. // Электрохимия. 2015. Т. 51. № 10. С. 1020–1029.
- [10] Астрова Е.В., Ли Г.В., Румянцев А.М., Жданов В.В. // ФТП. 2016. Т. 50. Вып. 2. С. 279–286.
- [11] Астрова Е.В., Преображенский Н.Е., Ли Г.В., Павлов С.И. // ФТП. 2018. Т. 52. Вып. 3. С. 414-430.
- [12] Lehmann V. Electrochemistry of Silicon. Weinheim: Wiley– VCH, 2002. Ch.9. P. 183.
- [13] Kasavajjula U, Wang C, Appleby A.J. // Power Sources. 2007. Vol. 163. P. 1003–1039.
- [14] Астрова Е.В., Ли Г.В., Парфеньева А.В., Румянцев А.М., Жданов В.В., Павлов С.И., Левицкий В.С., Теруков Е.И., Давыдов В.Ю. // ЖТФ. 2015. Т. 85. Вып. 4. С. 52–61.