08,04

Энергетическое обоснование образования димеров иттербия в монокристаллах форстерита

© В.Б. Дудникова¹, Е.В. Жариков², Д.А. Лис², Н.Н. Еремин¹

¹ Московский государственный университет им. М.В. Ломоносова, Москва, Россия ² Институт общей физики им. А.М. Прохорова РАН, Москва, Россия

E-mail: VDudnikova@hotmail.com

(Поступила в Редакцию 12 декабря 2018 г. В окончательной редакции 12 декабря 2018 г. Принята к публикации 12 декабря 2018 г.)

Проведено структурное компьютерное моделирование иттербийсодержаших кристаллов форстерита. Моделирование проводилось методом межатомных потенциалов с использованием программного комплекса GULP 4.1 (General Utility Lattice Program). Рассмотрены разные механизмы растворения иттербия в кристаллах форстерита, рассчитаны энергии растворения изолированных дефектов, а также заряженных и нейтральных кластеров различной конфигурации. Результаты расчета свидетельствуют о том, что образование кластеров иттербия с магниевой вакансией дает существенный выигрыш в энергии растворения. Образование нейтральных кластеров (димеров) в позиции M1: $(Yb_{Mg1}v_{Mg1}Yb_{Mg1})^{\times}$ дает энергетический выигрыш в 1.7 eV по сравнению со статистическим распределением дефектов. В результате моделирования показана энергетическая обусловленность образования димеров иттербия в кристаллах форстерита и предложена модель наиболее энергетически выгодного центра для позиции M1 — димера, состоящего из пары ионов трехвалентного иттербия с магниевой вакансией между ними, которые образуют цепочку, параллельную кристаллографической оси *с*.

Настоящая работа была выполнена при финансовой поддержке Российского научного фонда (грант № 18-12-00517) и Российского фонда фундаментальных исследований (грант № 18-07-01144 А).

DOI: 10.21883/FTT.2019.04.47422.339

1. Введение

Диэлектрические кристаллы с димерными центрами редкоземельных ионов представляют интерес для реализации устройств квантовой информатики. В этом отношении весьма интересными свойствами обладают кристаллы форстерита, легированного ионами иттербия [1]. В работе [1] методом стационарной и импульсной ЭПР-спектроскопии в Х-диапазоне исследованы парамагнитные центры, образованные примесными ионами Yb^{3+} в синтетическом форстерите (Mg₂SiO₄). Эти центры представляют собой одиночные ионы, замещающие магний в двух различных кристаллографических позициях, обозначаемых M1 и M2, и димерные ассоциаты, образованные двумя ионами Yb³⁺ в близлежащих позициях М1. Установлено, что имеется ярко выраженный механизм, благоприятствующий самоорганизации ионов иттербия в димерные ассоциаты. В настоящей работе подробно излагаются результаты структурного компьютерного моделирования для объяснения причин образования димерных центров в кристаллах Mg₂SiO₄: Yb и выбора наиболее энергетически выгодной конфигурации этих центров.

2. Методика моделирования

Моделирование кристаллов форстерита, в основу которого положена процедура минимизации энергии межатомных взаимодействий в структуре, было проведено с помощью программы GULP 4.1 (General Utility Lattice Program) [2]. Атомистический подход основан на использовании эмпирически определенных межатомных потенциалов, которые описывают взаимодействие между ионами в кристалле. Парный потенциал U_{ij} взаимодействия ионов *i* и *j* с зарядами q_i и q_j является алгебраической суммой нескольких составляющих:

$$U_{ij}(R_{ij}) = q_i q_j e^2 / R_{ij} + A_{ij} \exp(-R_{ij} / \rho_{ij}) - c_{ij} / R_{ij}^6.$$

Первый член представляет собой кулоновское взаимодействие, второй — отталкивание, возникающее при перекрывании электронных оболочек соседних атомов, а последний учитывает ван-дер-ваальсово взаимодействие, R_{ij} — межатомное расстояние, A_{ij} , ρ_{ij} , c_{ij} — параметры короткодействующих потенциалов, область действия которых в вычислениях составляла 12 Å.

Мы использовали формальные заряды ионов $(q_{Mg} = +2e, q_{Si} = +4e, q_{Yb} = +3e, q_O = -2e)$. Однако известно, что химические связи в Mg₂SiO₄ не могут быть адекватно описаны с помощью чисто ионной модели. Один из эффективных способов введения поправки

на частичную ковалентность связей состоит в учете поляризуемости отдельных ионов, чаще всего анионов. Мы учитывали поляризуемость кислородных ионов O^{2-} с помощью так называемой "оболочечной модели" [3]. В этом подходе ионы описываются как точечные положительно заряженные остовы, содержащие всю массу атома и окруженные отрицательно заряженной оболочкой, которая имитирует валентное электронное облако. Остов и оболочка связаны гармонической упругой константой χ_i :

$$U_i^s = (1/2)\chi_i l_i^2,$$

где l_i — расстояние между центрами остова и смещенной оболочки.

Трехчастичное взаимодействие (ijk) ионов в связях O-Si-O в тетраэдрах SiO₄ было учтено с помощью потенциала изгиба связи

$$U_{ijk} = (1/2)\alpha_{ijk}(\theta_{ijk} - \theta_o)^2,$$

где α_{ijk} — эмпирическая константа, θ_{ijk} — равновесный угол между связями, θ_o — угол в правильном тетраэдре (109.47°).

Использованные значения параметров потенциалов взаимодействия представлены в табл. 1. Для взаимодействия Yb–Os они взяты из работы [4], для остальных параметров взаимодействия использовались позиционнозависимые значения параметров взаимодействия, полученные в работе [5].

Для оценки энергии дефектов в форстерите рассчитывалась энергия оптимизированной структурной модели кристалла. Энергия дефекта зависит от его взаимодействия с окружающей матрицей и определяется в результате минимизации статической энергии кристалла, содержащего дефект, при изменении положения атомов и дипольных моментов вокруг дефекта. Эта энергия представляет собой разницу между энергией кристалла, нарушенного (искаженного) дефектом, и энергией бездефектного кристалла.

Расчеты проводились по методике Мотта-Литтлтона [6], где вокруг дефекта выделяются две сферические области, с радиусами R_1 и R_2 , $R_1 < R_2$. В области R₁, непосредственно примыкающей к дефекту, энергия взаимодействия рассчитывается точно, путем решения уравнений для всех сил, действующих на каждый атом, с условием, чтобы их сумма была равна нулю. В промежуточной области между R₁ и R₂ энергия рассчитывается как функция смещений атомов в гармоническом приближении. В остальной части кристалла, которая рассматривается как диэлектрический континиум, оценивается поляризующее действие, обусловленное зарядом, расположенным в центре дефекта. В наших расчетах центральная область с радиусом $R_1 = 10 \,\text{\AA}$ включала более 600 атомов, следующая за ней сфера имела радиус $R_2 = 18$ Å и содержала более 3000 атомов.

Таблица 1. Параметры потенциалов межатомных взаимодей-
ствий в кристаллах Mg ₂ SiO ₄ : Yb (O _C — остов, O _S — валентная
оболочка иона кислорода)

Связь	Параметры взаимодействия			
Mal Ol-	A, eV	1662		
Mg1-013	ho, Å	0.295		
Mg1–O2 _S	A, eV	1341		
	ho, Å	0.295		
Ma1 02	A, eV	1480		
Mg1-O3s	ho, Å	0.295		
Mg2–O1s	A, eV	1310		
	ho, Å	0.295		
Mg2_02-	A, eV	1315		
$Mg_2 - O_{2s}$	ho, Å	0.295		
	A, eV	1358		
Mg2-03s	ho, Å	0.295		
Vh_Oc	A, eV	1309.6		
10-05	ho, Å	0.3462		
	A, eV	1283.908		
Si–O1 _s	ho, Å	0.3205		
	C, eV Å ⁶	10.6616		
	A, eV	1280		
$Si-O2_S$	ho, Å	0.3205		
	C, eV Å ⁶	10.6616		
	A, eV	1283.9073		
$Si-O3_S$	ho, Å	0.3205		
	C, eV Å ⁶	10.6616		
$O_S - O_S$	A, eV	22764.3		
	ho, Å	0.149		
	C, eV Å ⁶	27.88		
Оболочечная модель для атомов кислорода				
$O_S - O_C$	χ , eV Å ⁻²	74.9204		
Трехчастичные взаимодействия				
O _S -Si-O _S	α , eV rad ⁻²	2.09724		

3. Результаты и их обсуждение

Растворение примесей в кристалле можно рассмотреть с помощью реакций обмена между кристаллической фазой и расплавом, содержащим основной и примесный компоненты в форме оксидов. Иттербий находится в форстерите в трехвалентном состоянии, при этом, его вхождение в октаэдрические позиции структуры происходит по гетеровалентному механизму. При гетеровалентном замещении магния трехвалентным иттербием образуется примесный дефект с избыточным положительным зарядом, который необходимо скомпенсировать. При отсутствии специально вводимых компенсаторов замещение на два трехвалентных иона иттербия происходит за счет удаления трех двухвалентных ионов магния с образованием одной магниевой вакансии. При этом точечные дефекты (примесные ионы иттербия и магниевая вакансия) могут распределяться статистически, а также образовывать заряженные или нейтральные кластеры.

При статистическом распределении дефектов процесс гетеровалентного замещения может быть представлен следующим образом

$$\frac{1}{2} \operatorname{Yb}_2 \operatorname{O}_3 + \frac{3}{2} \operatorname{Mg}_{Mg}^{\times} \Leftrightarrow \operatorname{Yb}_{Mg}^{\bullet} + \frac{1}{2} \nu_{Mg}^{\prime\prime} + \frac{3}{2} \operatorname{MgO}^{,1}$$

Энергия этого процесса в расчете на один ион иттербия может быть получена из соотношения

$$E_{S} = \frac{1}{2} E_{d} \left(2 Y b_{Mg}^{\bullet} + v_{Mg}^{\prime \prime} \right) + \frac{3}{2} E_{str.} (MgO) - \frac{1}{2} E_{str.} (Y b_{2}O_{3}),$$

где E_d — энергии соответствующих дефектов в форстерите, при этом невзаимодействующие дефекты (находящиеся в скобках) будем обозначать отделенными друг от друга знаком плюс. $E_{str.}$ — энергии решетки оксидов, которые по результатам расчета составляют —41.3 и —136.8 eV для MgO и Yb₂O₃ соответственно. Результаты расчета энергии одиночных дефектов, участвующих в процессе растворения иттербия и энергии растворения иттербия в расчете на один ион при статистическом распределении дефектов представлены в табл. 2.

Из табл. 2 видно, что образование вакансии магния в позиции М1, выгоднее, чем в позиции М2. Этот вывод подтверждают также квантово-механические оценки [8]. Согласно нашим расчетным данным, одиночный дефект иттербия в позиции М2 энергетически более выгоден, чем в позиции М1. Наименьшая энергия растворения изолированных дефектов составляет 2 eV, что соответствует случаю, когда ион иттербия локализуется в позиции М2, а магниевая вакансия — в позиции М1 (см. табл. 2).

Разноименно заряженные дефекты притягиваются и могут образовывать кластеры. Влияние кластеризации рассмотрим на примере ионов иттербия, локализованных в позиции М1, кластеры (димеры) которых были обнаружены, как уже упоминалось выше, при ЭПР исследовании этих кристаллов. В случае, когда ион иттербия и магниевая вакансия располагаются рядом,

Таблица 2.	Энергии	дефектов	(E_d) 1	и энергии	растворе-
ния (E_S) иттер	рбия в вид	це изолиро	ванных	дефектов	в кристал-
лах Mg ₂ SiO ₄ :	Yb				

Дефекты	E_d , eV	E_S , eV
$\nu_{ m Mg1}^{\prime\prime}$	24.1	
$ u_{Mg2}^{\prime\prime}$	26.4	
Yb_{Mg1}^{\bullet}	-16.0	
Yb _{Mg2}	-16.5	
$Yb^{\bullet}_{Mg1} + \tfrac{1}{2}\nu_{Mg1}^{\prime\prime}$		2.5
$Yb^{\bullet}_{Mg1} + \tfrac{1}{2}\nu''_{Mg2}$		3.6
$Yb^{\bullet}_{Mg2}+\tfrac{1}{2}\nu_{Mg1}^{\prime\prime}$		2.0
$Yb^{ullet}_{Mg2}+rac{1}{2} u^{\prime\prime}_{Mg2}$		3.2

может образовываться заряженный кластер, который имеет отрицательный заряд по сравнению с ненарушенной решеткой. Этот заряд может быть скомпенсирован не связанным в кластер удаленным вторым ионом иттербия. Энергия растворения для этого процесса может быть рассчитана следующим образом:

$$E_{S} = \frac{1}{2} E_{d} \left[(Yb_{Mg1}\nu_{Mg1})' + Yb_{Mg1}^{\bullet} \right] + \frac{3}{2} E_{str.} (MgO) - \frac{1}{2} E_{str.} (Yb_{2}O_{3}).$$

(При обозначении кластеров рядом расположенные дефекты заключены в круглые скобки с указанием результирующего заряда кластера

Магниевая вакансия может также располагаться рядом с двумя ионами иттербия, образуя в этом случае нейтральный кластер (димер). Энергия растворения этого кластера

$$E_{S} = \frac{1}{2} E_{d} (\mathrm{Yb}_{\mathrm{Mg1}} \nu_{\mathrm{Mg1}} \mathrm{Yb}_{\mathrm{Mg1}})^{\times} + \frac{3}{2} E_{str.} (\mathrm{MgO})$$
$$- \frac{1}{2} E_{str.} (\mathrm{Yb}_{2} \mathrm{O}_{3}).$$

Структуры разных кластеров ионов иттербия, занимающих позицию М1, с магниевой вакансией представлены на рисунке. В левой колонке рисунка представлены заряженные ассоциаты, а в правой — нейтральные ассоциаты (димеры). Энергии заряженных и нейтральных кластеров различной конфигурации, энергии ассоциации в этих кластерах, представляющие собой разницу между энергией кластера и энергией соответствующих изолированных дефектов, а также энергии растворения иттербия в виде кластера в расчете на один ион представлены в табл. 3. За счет энергии ассоциации при образовании заряженных кластеров энергия кристалла уменьшается на 1.9 и 0.6 eV при локализации вакансии магния в

¹ Здесь и далее приняты обозначения, предложенные Крегером [7]: нижний индекс соответствует позиции дефекта в кристалле, верхний — эффективному избыточному положительному (•), избыточному отрицательному (′) или нейтральному (×) заряду по отношению к заряду соответствующей позиции в матрице, ν — вакансия.

Структура кластеров иттербия Yb_{Mg1} в форстерите. (*a*) — заряженные ассоциаты, (*b*) — нейтральные ассоциаты-димеры.

позиции M1 и M2 соответственно. В то же время, образование нейтральных димеров понижает энергию кристалла на 3.4 и 3.3 eV для случаев вакансии магния в M1 и M2. Что демонстрирует энергетическую выгодность образования ассоциатов иттербия в кристаллах форстерита.

Таблица 3. Энергии дефектов (E_d) , энергии ассоциации в кластерах (E_{as}) и энергии растворения ионов Yb³⁺ в виде кластеров (E_S) (в расчете на один ион иттербия в кристаллах Mg₂SiO₄:Yb)

Дефекты	E_d , eV	$E_{\rm as},{\rm eV}$	E_S , eV
$(\nu_{Mg1}Yb_{Mg1})'$	6.2	1.9	
$(\nu_{Mg2}Yb_{Mg1})'$	9.8	0.6	
$(Yb_{Mg1}\nu_{Mg1}Yb_{Mg1})^{\times}$	-11.3	3.4	
$(Yb_{Mg1}\nu_{Mg2}Yb_{Mg1})^{\times}$	-8.9	3.3	
$\tfrac{1}{2}\left[(\nu_{Mg1}Yb_{Mg1})'+Yb^{\bullet}_{Mg1}\right]$			1.6
$\tfrac{1}{2}\left[(\nu_{Mg2}Yb_{Mg1})'+Yb^{\bullet}_{Mg1}\right]$			3.4
$\tfrac{1}{2}(Yb_{Mg1}\nu_{Mg1}Yb_{Mg1})^{\times}$			0.8
$rac{1}{2} \left(Y b_{Mg1} \nu_{Mg2} Y b_{Mg1} ight)^{ imes}$			2.0

Результаты расчета свидетельствуют о том, что образование кластеров иттербия с магниевой вакансией дает существенный выигрыш в энергии растворения. Кластеры, в которых вакансия магния занимает позицию M2, менее энергетически выгодны по сравнению с теми, где вакансия локализована в позиции M1.

Таким образом, наиболее энергетически выгодно образование нейтральных кластеров (димеров) $(Yb_{Mg1}\nu_{Mg1}Yb_{Mg1})^{\times}$. Димеры $(Yb_{Mg1}\nu_{Mg1}Yb_{Mg1})^{\times}$ на рисунке, выделены жирными линиями. Если ионы иттербия и компенсирующая магниевая вакансия являются изолированными дефектами (статистическое распределение), то энергия растворения в расчете на один ион иттербия составляет 2.5 eV (см. табл. 2). При образовании димера (локальная компенсация заряда) энергия растворения иттербия заряда) энергия на один ион иттербия миттербия в составляет с дефектом, компенсирующим электронейтральность, составляет 0.8 eV (в расчете на один ион иттербия), т.е. уменьшается на 1.7 eV по сравнению с их статистическим распределением.

4. Заключение

С использованием позиционно-зависимых потенциалов межатомного взаимодействия проведено атомистическое моделирование кристаллов форстерита, легированного ионами иттербия. Рассчитаны энергии растворения изолированных дефектов, а также заряженных и нейтральных кластеров различной конфигурации. В результате моделирования показана энергетическая обусловленность образования димеров иттербия в кристаллах форстерита и обоснована модель наиболее энергетически выгодного центра иттербия в позиции М1 — димера, состоящего из пары ионов трехвалентного иттербия с магниевой вакансией между ними, которые замещают три магниевых иона образуя цепочку, параллельную кристаллографической оси *с*.

Работа выполнена с использованием оборудования Центра коллективного пользования сверхвысокопроизводительными вычислительными ресурсами МГУ им. М.В. Ломоносова

Список литературы

- В.Ф. Тарасов, А.А. Суханов, В.Б. Дудникова, Е.В. Жариков, Д.А. Лис, К.А. Субботин. Письма в ЖЭТФ 106, 2, 78 (2017).
- [2] J. Gale, A.L. Rohl. Mol. Simul. 29, 5, 291 (2003).
- [3] B.G. Dick, A.W. Overhauser. Phys. Rev. 112, 90 (1958).
- [4] G.V. Lewis, C.R.A. Catlow. J. Phys C 18, 1149 (1985).
- [5] В.Б. Дудникова, В.С. Урусов, Е.В. Жариков. ФТТ 56, 1327 (2014).
- [6] N.F. Mott, M.J. Littleton. Trans. Faraday Soc. 34, 485 (1938).
- [7] Ф. Крегер. Химия несовершенных кристаллов. Мир, М. (1969). 654 с.
- [8] J. Brodholt. Am. Mineralogist 82, 1049 (1997).
- Редактор Т.Н. Василевская