Влияние электрон-плазмонного и плазмон-фононного взаимодействия на релаксационные процессы в кристаллах Ві и сплавов Bi_{1-x}Sb_x

© Н.П. Степанов, В.М. Грабов*

Забайкальский государственный педагогический университет им. Н.Г. Чернышевского, 672000 Чита, Россия * Российский государственный педагогический университет им. А.И. Герцена, 191186 Санкт-Петербург, Россия E-mail: stepanov@academ.chita.ru

(Поступила в Редакцию 27 декабря 2002 г. В окончательной редакции 7 марта 2003 г.)

В кристаллах Ві и сплавов $Bi_{1-x}Sb_x$ при внесении определенного количества акцепторной примеси олова происходит сближение энергии плазменных колебаний с энергией межзонных переходов и оптических фононов. В этом случае существенно усиливается взаимодействие указанных элементарных возбуждений, что приводит к наблюдаемому экспериментально в оптических и электрических свойствах значительному изменению времени релаксации носителей заряда.

В работах [1,2] в результате оптических исследований кристаллов висмута и сплавов висмут-сурьма, легированных акцепторной примесью олова, были обнаружены особенности в поведении электронной системы, обусловленные совпадением энергий в плазмонном, фононном и электронном спектрах. Указанные особенности могут оказаться характерными для всего класса веществ — узкозонных полупроводников и полуметаллов, широко использующихся в качестве термоэлектрических материалов [3]. В настоящей работе приводятся результаты исследований, указывающие на влияние электрон-плазмонного и плазмон-фононного взаимодействия не только на оптические, но и на электрические свойства кристаллов висмута и сплавов висмут-сурьма.

Исследовались спектры отражения поляризованного излучения кристаллов висмута и сплавов висмут-сурьма, полученные в геометрии $\mathbf{E} \perp C_3$ и $\mathbf{E} \parallel C_3$ (\mathbf{E} — вектор напряженности электрического поля зондирующего излучения, C_3 — оптическая ось кристалла) на Фурье-спектрометре IFS-113V (BRUKER) в диапазоне $50-800\,{\rm cm}^{-1}$ с разрешением $2\,{\rm cm}^{-1}$ по методике, описанной в работе [1]. Основная часть измерений была выполнена в поляризованном излучении. Степень поляризации 98-99% во всем исследованном спектральном интервале обеспечивалась применением решетчатых реплик на полиэтиленовой основе. Угол падения излучения на образец не превышал 8 градусов. Все представленные в данной работе результаты получены при температуре 80 К. Исследовались чистые и легированные акцепторной примесью олова монокристаллы Bi_{1-x}Sb_x с x = 0, 3, 7, выращенные от затравки методом зонной перекристаллизации [4]. Неоднородность распределения сурьмы по образцу контролировалась на рентгеновском микроанализаторе САМЕВАХ и, как показали исследования, не превышала 0.5%. Образцы для оптических и гальваномагнитных измерений вырезались из средней части слитка электроискровой резкой. Концентрация свободных носителей заряда и их тип определялись из измерений компонентов тензора эффекта Холла и удельного сопротивления при T = 80 K [4]. Кристаллы типа висмута не скалываются по содержащим ось C_3 плоскостям, поэтому необходимо образцы вырезать с помощью электроискровой резки и затем удалять нарушенный слой химической или электрохимической полировкой. Качество полировки контролировалось совпадением спектров отражения от полированной поверхности при $\mathbf{k} \perp C_3$, $\mathbf{E} \perp C_3$ и от естественно зеркальной плоскости скола при $\mathbf{k} \parallel C_3$, $\mathbf{E} \perp C_3$.

В рамках данной работы представляет интерес анализ функции энергетических потерь взаимодействующего

Рис. 1. Спектральная зависимость функции энергетических потерь $(-\text{Im}(\varepsilon^{-1}))$ монокристаллов Ві, легированных акцепторной примесью олова. Е $\perp C_3$, T = 80 К. Номер кривой соответствует номеру образца в таблице.

Количество примеси Sn в Bi, at.%	$ ho_{11}, 10^{-6} \Omega\cdot\mathrm{m}$	$\rho_{33}, 10^{-6} \Omega \cdot \mathrm{m}$	$egin{array}{l} \omega_{p\perp}, 10^{13} { m s}^{-1} \ {f E} \perp C_3 \end{array}$	$egin{array}{lll} \omega_{p\parallel}, 10^{13}\mathrm{s}^{-1}\ \mathbf{E}\parallel C_3 \end{array}$	Номер спектра на рис. 1
0			3.58	3.35	1
0.02	0.234	2.104	3.06	1.97	2
0.04	1.004	3.152	3.18	2.34	3
0.05(1)	1.134	3.351	3.07	2.42	4
0.05(2)	0.639	1.32	6.32	4.61	5
0.05(3)	0.660	-	5.47	3.61	6
0.06	1.116	3.541	3.72	1.71	7
0.08	0.942	2.673	3.99	1.89	8
0.15	0.708	1.592	5.76	3.87	9
0.2	0.726	1.464	7.72	6.59	10

Экспериментальные значения компонентов тензора удельного сопротивления ρ_{11}, ρ_{33} и плазменных частот монокристаллов висмута при $T=80\,{
m K}$

с кристаллом электромагнитного излучения

$$-\mathrm{Im}\,(\varepsilon^{-1}) = \varepsilon_2/((\varepsilon_1)^2 - (\varepsilon_2)^2),\tag{1}$$

которая непосредственно связана со скоростью производства энтропии в системе [5]. На рис. 1 представлены спектральные зависимости функции энергетических потерь, восстановленные при помощи соотношений Крамерса-Кронига из спектров отражения легированных акцепторной примесью олова кристаллов висмута [2]. Номер спектра на рис. 1 соответствует номеру образца в таблице, в которой приведены параметры, полученные в ходе электрических и оптических измерений. Абсолютный максимум функции энергетических потерь соответствует частоте плазменного резонанса. Действительно, в том случае, когда мнимая часть функции диэлектрической проницаемости ε_2 мала, функция энергетических потерь имеет максимум в точке, где вещественная часть ε_1 обращается в нуль. Когда показатель преломления $n = (\varepsilon_1)^{1/2}$ обращается в нуль, в соответствии с выражением $\lambda = 2\pi c/n\omega$ длина волны становится бесконечной, вся электронная система осциллирует в фазе [5], что является условием существования коллективных плазменных колебаний. На плазменной частоте происходит интенсивное поглощение излучения кристаллом, а глубина проникновения излучения в кристалл является минимальной. Отметим также и то, что ширина линии энергетических потерь на полувысоте характеризует время затухания плазменных колебаний (релаксации плазмона).

Внесение акцепторной примеси Sn в Bi в количестве до 0.05 at.% приводит к смещению плазменных частот в область низких энергий, что отражено на рис. 1 и в таблице. Этот факт хорошо коррелирует с наблюдающимся увеличением удельного сопротивления (см. таблицу). Картина смещения плазменных минимумов, наблюдающаяся при легировании кристаллов Bi и Bi_{1-x}Sb_x примесями донорного и акцепторного типа, согласуется с представлениями о зонной структуре исследуемых кристаллов [6]. Она обусловлена изменением величины вкладов свободных носителей заряда L_s -, L_a - и T_{45} -экстремумов валентной зоны и зоны проводимости в формирование отраженного сигнала. Для зонной структуры кристаллов висмута при $\omega_p \tau \gg 1$ квадраты плазменных частот могут быть выражены следующим образом:

$$\omega_{p\perp}^{2} = \frac{e^{2}}{\varepsilon_{\infty\perp}} \frac{1}{2} \sum_{i} N_{i} \left[\frac{1}{(m_{11}^{*})_{i}} + \frac{1}{(m_{22}^{*})_{i}} \right];$$

$$\omega_{p\parallel}^{2} = \frac{e^{2}}{\varepsilon_{\infty\parallel}} \sum_{i} N_{i} \left[\frac{1}{(m_{33}^{*})_{i}} \right], \qquad (2)$$

где $\omega_{p\perp}$ и $\omega_{p\parallel}$ — плазменные частоты, соответствующие ориентации $\mathbf{E} \perp C_3$ и $\mathbf{E} \parallel C_3$, ε_{∞} — высокочастотная диэлектрическая проницаемость, e — заряд электрона, N_i — концентрация свободных носителей заряда L_a -, L_s и T-экстремумов, $(m_{11}^*)_i$, $(m_{22}^*)_i$ и $(m_{33}^*)_i$ — эффективные массы носителей заряда вдоль биссекторной, бинарной и тригональной осей кристалла соответственно. Суммирование учитывает многокомпонентность плазмы.

Как следует из выражения (2) и картины зонной структуры кристаллов висмут-сурьма, представленной на рис. 2, минимальные значения плазменных частот соответствуют минимальным значениям концентрации легких носителей заряда *L*-экстремумов. Эта ситуация

Рис. 2. Положение экстремумов зон в кристаллах $Bi_{1-x}Sb_x$ в зависимости от *x*.

Рис. 3. Время жизни неравновесных носителей заряда в кристаллах $\text{Bi}_{1-x}\text{Sb}_x$ (0.085 $\leq x \leq$ 0.17) при T = 4.2 K в отсутствии магнитного поля [9].

реализуется, когда уровень химического потенциала попадает в энергетический зазор между экстремумами валентной зоны и зоны проводимости в L-точке зоны Бриллюэна, что достигается внесением акцепторной примеси. Наблюдаемые в этом случае значения энергии плазменных колебаний $E_p \approx 10 \,\mathrm{meV}$ обусловлены в основном вкладом носителей заряда сильно анизотропного экстремума Т₄₅ (тяжелых дырок). Таким образом, легирование кристаллов висмута и сплавов висмутсурьма акцепторной примесью приводит к уменьшению плазменных частот (рис. 1), что обеспечивает возможность сближения энергии плазменных колебаний с энергией продольного оптического фонона в Г-точке зоны Бриллюэна $E_{ph} = 12.4 \,\mathrm{meV}$ [7] и энергией межзонных переходов в *L*-точке зоны Бриллюэна [2]. В рамках двухзонной модели энергия межзонного перехода может быть рассчитана с учетом сдвига Бурштейна-Мосса $E_T = E_{gL} + 2E_F$. В случае попадания уровня химического потенциала в энергетический зазор L-точки зоны Бриллюэна в кристаллах Ві энергия Ферми $E_F \approx 0$ и $E_T \approx E_{gL} \approx 15 \text{ meV}.$

Сближение энергии указанных элементарных возбуждений электронной и фононной системы происходит в кристаллах висмута, легированных акцепторной примесью олова в количестве 0.04–0.05 at.%. В этих кристаллах наблюдаются существенные изменения формы спектров оптических функций, в частности, функции энергетических потерь (спектры 3, 4, 5 на рис. 1), сопровождающиеся увеличением интенсивности затухания плазменных колебаний [8]. Наблюдаемые изменения оптических функций свидетельствуют об интенсивном обмене энергией между плазменными колебаниями и колебаниями кристаллической решетки, что влияет на интенсивность релаксационных процессов [1,2,8].

Важно отметить, что наблюдаемые в кристаллах $\text{Bi}\langle 0.05 \text{ at.}\% \text{ Sn} \rangle$ значения энергии плазменных колебаний $E_{p\perp} = 10 \text{ meV}$ (в кристалле $\text{Bi}_{0.93}\text{Sb}_{0.07}$

 $E_{p\perp} = 8 \text{ meV}$ при T = 80 K) по величине близки к энергии $k_B T = 6.8 \text{ meV}$ при этой температуре. Поэтому в полуметаллах и узкозонных полупроводниках в отличие от металлов плазменные колебания могут иметь энергию $\hbar\omega_p \approx kT$ и возбуждаться термически.

В кристаллах $\text{Bi}_{1-x}\text{Sb}_x$, $0 \le x \le 0.22$, энергия плазменных колебаний E_p изменяется в пределах 5–30 meV. В таких условиях оказывается возможным возникновение квазирезонансного взаимодействия возбуждений электронной системы и кристаллической решетки, что приводит к изменениям в ходе релаксационных процессов. Например, в [9] отмечается резкий — примерно на порядок — рост времени жизни неравновесных носителей заряда в кристаллах $\text{Bi}_{0.82}\text{Sb}_{0.18}$ по сравнению с $\text{Bi}_{0.9}\text{Sb}_{0.1}$ (рис. 3). Установлено также, что в кристаллах с содержанием сурьмы менее 15 аt.% наблюдается заметное изменение времени жизни носителей заряда в магнитном поле, в то время как для кристаллов с меньшим количеством Sb таких изменений не обнаружено [9].

Если указанные результаты анализировать в совокупности с данными о взаимном расположении энергии плазменных колебаний, межзонного перехода в L-точке зоны Бриллюэна и энергии продольного оптического фонона, то можно утверждать, что уменьшение времени жизни неравновесных носителей заряда в кристаллах Ві0.9Sb0.1 обусловлено сближением энергий в электронном, плазмонном и фононном спектрах. Так, по данным работы [10], энергия плазменных колебаний в кристалле Bi_{0.905}Sb_{0.095} имеет величину 9.6 meV; в то же время, по данным работы [11], ширина запрещенной зоны в кристалле Bi_{0.89}Sb_{0.11} равна 10.5 meV. Изменение количества сурьмы в кристаллах приводит к удалению указанных энергий друг от друга. Так, в кристалле Bi_{0.884}Sb_{0.116} энергия плазменных колебаний составляет 7 meV [10], а ширина запрещенной зоны — 12.5 meV [11]. В кристалле Bi_{0.84}Sb_{0.16} ширина запрещенной зоны увеличивается до 18 meV [11], а плазменные частоты должны достигать минимальных значений, так как именно в этих кристаллах ширина запрещенной зоны является максимальной. Таким образом, увеличение содержания сурьмы до значений 16 at.% приводит к расхождению частот плазменного резонанса, оптического фонона и межзонного перехода и как следствие к резкому росту времени жизни носителей заряда (рис. 3). В кристаллах Bi_{0.78}Sb_{0.22} осуществляется переход в полуметаллическое состояние [6]. Возрастание концентрации носителей заряда в этом случае вновь приводит к сближению плазменных и фононных частот. Подобного рода особенности в релаксационных процессах, обусловленных электронплазмонным и плазмон-фононным взаимодействием, могут оказаться характерными и для дургих узкозонных полупроводников, например $Cd_{1-x}Hg_xTe$ [12].

Таким образом, изменение энергетического положения экстремумов зон и концентрации свободных носителей заряда в кристаллах полуметаллов и узкозонных полупроводников при изменении состава, температуры, легирования может приводить к сближению энергии плазмонов, фононов и межзонных переходов. Возникающие при этом существенные изменения релаксационных процессов необходимо учитывать при разработке и прогнозировании свойств полупроводниковых материалов.

Список литературы

- [1] Н.П. Степанов, В.М. Грабов. Оптика и спектроскопия **84**, 581 (1998).
- [2] Н.П. Степанов, В.М. Грабов. Оптика и спектроскопия 92, 794 (2002).
- [3] И.В. Гасенкова, М.К. Житинская, С.А. Немов, Л.Д. Иванова. ФТТ 44, 1766 (2002).
- [4] Г.А. Иванов, В.М. Грабов. ФТП 29, 1040 (1995).
- [5] П. Гроссе. Свободные электроны в твердых телах. Мир, М. (1982). Гл. 9. С. 113.
- [6] Н.Б. Брандт, Х. Диттман, Я.Г. Пономарев. ФТТ 13, 2860 (1971).
- [7] F.E. Macfarlane. J. Phys. Chem. Sol. 1, 989 (1971).
- [8] Н.П. Степанов, В.М. Грабов. ФТП 36, 1045 (2002).
- [9] Е.В. Богданов, Н.Б. Брандт, В.М. Мананков, Л.С. Флейшман. ФТП 18, 1263 (1984).
- [10] В.Д. Кулаковский, В.Д. Егоров. ФТТ 15, 2053 (1973).
- [11] Т.М. Лифшиц, А.Б. Ормонт, Е.Г. Чиркова, А.Я. Шульман. ЖЭТФ 72, 1130 (1977).
- [12] Н.С. Барышев. ФТП 9, 2023 (1975).