05

Микроволновой гигантский магниторезистивный эффект в сверхрешетках [CoFe/Cu]_n с рекордным магнитосопротивлением

© А.Б. Ринкевич¹, Я.А. Пахомов¹, Е.А. Кузнецов^{1,2}, А.С. Клепикова^{1,¶}, М.А. Миляев^{1,3}, Л.И. Наумова^{1,3}, В.В. Устинов^{1,3}

¹ Институт физики металлов им. М.Н. Михеева УрО РАН, Екатеринбург, Россия

² Российский государственный профессионально-педагогический университет, Екатеринбург, Россия

³ Уральский федеральный университет им. Б.Н. Ельцина, Институт естественных наук и математики, Екатеринбург, Россия

[¶] E-mail: klepikova@imp.uran.ru

Поступило в Редакцию 29 ноября 2018 г. В окончательной редакции 29 ноября 2018 г. Принято к публикации 12 декабря 2018 г.

> На волнах миллиметрового диапазона исследован микроволновой гигантский магниторезистивный эффект в наноструктурах [CoFe/Cu]_n. Измерения выполнены на сверхрешетках с максимальным магниторезистивным эффектом. Измерены зависимости коэффициентов прохождения и отражения от магнитного поля. Получены рекордные значения изменения коэффициента прохождения до 80%.

DOI: 10.21883/PJTF.2019.05.47397.17614

Открытие гигантского магниторезистивного эффекта привело к интенсивному изучению магнитных металлических мультислойных наноструктур, в настоящее время это направление быстро развивается [1]. Гигантское магнитосопротивление в таких наноструктурах обусловлено сильным различием в вероятности рассеяния электронов проводимости с разным направлением спина в наноструктурах с различным взаимным расположением векторов намагниченности в соседних ферромагнитных слоях. Как известно, зависимость магнитосопротивления металлических наноструктур от толщины немагнитной прослойки — спейсера — имеет осцилляционный характер [2]. Первый максимум обычно приходится на толщину спейсера около 1 nm, а второй — на толщину 2-2.2 nm. Для применения в магнитных сенсорах требуется сочетание в металлических наноструктурах нескольких важных свойств: 1) максимально возможный гигантский магниторезистивный эффект (GMR) при комнатной температуре; 2) по возможности малый гистерезис в магнитосопротивлении; 3) температурная стабильность магниторезистивных свойств. Этими свойствами обладают сверхрешетки, в которых ферромагнитные слои образованы сплавом Co_{1-x}Fe_x, а спейсер приготовлен из меди [3,4]. Установлено, что состав и толщина буферного слоя между диэлектрической подложкой и обменно-связанными слоями оказывают определяющее влияние на формирование совершенной кристаллической структуры в слоях сверхрешетки. Это является одним из необходимых условий и для достижения высоких значений магнитосопротивления [4,5]. Недавно для этого типа сверхрешеток было получено максимальное значение относительного магнитосопротивления свыше 80% [6]. Наибольшее значение $\sim 110\%$ было получено при комнатной температуре в сверхрешетках [Co₉₅Fe₅/Cu]_n с довольно большим числом пар

слоев (n = 120) в многослойной структуре [7]. Хотя магнитосопротивление сверхрешеток, использованных в настоящей работе, меньше указанной величины, но системы [Co_{1-x}Fe_x/Cu]_n на основе сплавов с содержанием Fe около x = 0.1 отличаются более слабым гистерезисом и высокой температурной стабильностью.

Для экспериментального исследования металлических мультислойных наноструктур весьма эффективными оказались электродинамические методы. Из данных по прохождению электромагнитной волны через наноструктуру можно получать информацию о GMR [8–11]. Измерения, выполненные на сверхрешетках Fe/Cr в диапазоне сантиметровых длин волн [10,11], показали, что изменения высокочастотного коэффициента прохождения практически равны относительному магнитосопротивлению, поэтому изменения коэффициента прохождения из-за GMR носят название микроволнового гигантского магниторезистивного эффекта (μ GMR).

В настоящей работе исследованы микроволновые свойства двух сверхрешеток $[(Co_{0.88}Fe_{0.12})/Cu]_n$ с толщинами спейсера $t_s = 0.95$ nm (образец № 1) и 2.05 nm (образец № 2), позволяющими получить высокие значения магнитосопротивления в этой системе, соответственно для двух характерных интервалов изменения магнитного поля: H < 10 kOe и H < 500 Oe. Микроволновые измерения выполнены в интервале частот от 26 до 38 GHz. Измерены полевые зависимости коэффициента прохождения.

[(Co_{0.88}Fe_{0.12})/Cu]_n Сверхрешетки приготовлены магнетронного методом напыления С помощью MPS-4000-C6. установки B качестве подложек использовалось стекло Corning. Были приготовлены образцы наноструктур c композицией $Ta(5)/PyCr(5)/[Co_{0.88}Fe_{0.12}(1.3)/Cu(2.05)]_8/Co_{0.88}Fe_{0.12}(1.3)/PyCr(3)$ и Ta(5)/PyCr(5)/[Co_{0.88}Fe_{0.12}(1.5)/Cu(0.95)]₂₄/Ta(5). Числа в

Рис. 1. Гигантский магниторезистивный эффект в образцах $N_{2} 2(a)$ и $N_{2} 1(b)$.

круглых скобках указывают толщины слоев в нанометрах. Структурные исследования на дифрактометре ДРОН-3М с использованием Со K_{α} -излучения показали, что обе сверхрешетки обладают совершенной структурой слоев с ГЦК-решеткой и аксиальной текстурой (111) с осью, нормальной к плоскости слоев.

Электрическое сопротивление образцов измерялось четырехконтактным методом на постоянном токе при комнатной температуре. Относительное магнитосопротивление определялось как $r = [(R(H) - R_s)/R_s] \cdot 100\%$, где R(H) — сопротивление в поле H; R_s — сопротивление в поле магнитного насыщения. Результаты измерения магнитосопротивления образцов показаны на рис. 1. Наибольшим магнитосопротивлением ~ 78% обладает образец № 1 (рис. 1, *b*). Поле магнитного насыщения у этого образца составляет около 7.5 kOe. Образец № 2 также демонстрирует весьма высокое магнитосопротивление, причем насыщение осуществляется в значительно меньших полях (около 400 Oe).

Исследования прохождения электромагнитных волн выполнены в интервале частот 26-38 GHz по методике,

описанной в [11]. Образец сверхрешетки помещался в поперечное сечение прямоугольного волновода (рис. 2). Измеряется относительное изменение модуля коэффициента прохождения $d_m = [|D(\mathbf{H})| - |D(0)|]/|D(0)|$, где $|D(\mathbf{H})| -$ модуль коэффициента прохождения в поле **H**. Магнитное поле прикладывалось всегда в плоскости сверхрешетки параллельно узкой стороне волновода. Вектор постоянного магнитного поля **H** перпендикулярен вектору переменного магнитного поля волны \mathbf{H}_{\sim} . Согласно [12], для коэффициента прохождения D электромагнитной волны можно записать следующее выражение:

$$D = \frac{2Z_m}{2Z_m \operatorname{ch} k_m d + Z \operatorname{sh} k_m d},\tag{1}$$

где $k_m = (1+i)/\delta$ — волновое число в проводящей среде, δ — глубина скин-слоя, d — толщина всей наноструктуры. Импеданс хорошо проводящей наноструктуры Z_m меньше импеданса окружающей среды Z: $|Z_m| \ll Z$. Формулу (1) будем рассматривать для предельного случая $d \ll \delta$, который реализуется на волнах сантиметрового и миллиметрового диапазонов. Для типичных значений толщины наноструктур от единиц до сотен нанометров из формулы (1) для коэффициента прохождения D следует взаимно однозначное соответствие GMR на постоянном токе и μ GMR, которое выражается соотношением

$$d_m = r. (2)$$

Измерения μ GMR были выполнены на частотах от 26 до 38 GHz для обоих образцов. Результаты этих измерений показаны на рис. 3. Сопоставление полевой зависимости коэффициента прохождения микроволн на частоте f = 26 GHz и относительного магнитосопротивления образца № 2 приведено на рис. 3, *а*. Видно, что форма полевых зависимостей GMR и μ GMR подобна, достаточно близки и значения изменений в магнитном поле. Другими словами, равенство (2) приближенно выполняется. Это равенство выполняется и для образца № 1 (рис. 3, *b*). Величина монотонных изменений,

Рис. 2. Схема расположения образца в волноводе при микроволновых измерениях.

Рис. 3. Сопоставление полевой зависимости коэффициента прохождения микроволн на частоте f = 26 GHz и относительного магнитосопротивления образцов № 2 (*a*) и № 1 (*b*).

вызванных μ GMR, достигает ~ 80%. Достигнутое до сих пор максимальное микроволновое изменение в наноструктурах системы Co/Cu составляло ~ 25% [13]. Высокое микроволновое магнитосопротивление сверхрешеток [(Co_{0.88}Fe_{0.12})/Cu]_n может найти практическое применение.

Исследовано прохождение электромагнитных волн через сверхрешетки $[(Co_{0.88}Fe_{0.12})/Cu]_n$ в миллиметровом диапазоне длин волн. Измерена зависимость от магнитного поля модулей коэффициента прохождения. Получены рекордные значения микроволнового магниторезистивного эффекта до ~ 80%. Установлено, что полевые зависимости коэффициента прохождения хорошо описываются теорией микроволнового гигантского магниторезистивного эффекта.

Работа выполнена в рамках темы "Спин" № АААА-А18-118020290104-2. Измерения микроволнового магнитосопротивления выполнены при финансовой поддержке Российского фонда фундаментальных исследований, Правительства Красноярского края, Красноярского краевого фонда науки в рамках научного проекта № 18-42-243005 "Синтез и исследование магнитных свойств градиентных материалов, отличающихся заданным видом изменения магнитного параметра".

Список литературы

- Magnetic nanostructures. Spin dynamics and spin transport / Ed. H. Zabel, M. Farle. Berlin–Heidelberg: Springer-Verlag, 2013. 268 p.
- [2] Parkin S.S.P., Moore N., Roche K.P. // Phys. Rev. Lett. 1990.
 V. 64. N 19. P. 2304–2307.
- [3] Yang Y., Zhu J.-G., White R.M., Asheghi M. // J. Appl. Phys. 2006. V. 99. N 6. P. 063703.
- [4] Банникова Н.С., Миляев М.А., Наумова Л.И., Проглядо В.В., Криницина Т.П., Каменский И.Ю., Устинов В.В. // ФММ. 2015. Т. 116. № 10. С. 1040 1046.
- [5] Gangopadhyay S., Shen J.X., Kief M.T., Barnard J.A., Parker M.R. // IEEE Trans. Magn. 1995. V. 31. N 6. P. 3933– 3935.
- [6] Миляев М.А., Наумова Л.И., Устинов В.В. // ФММ. 2018. Т. 119. № 12. С. 1?5.
- [7] Parkin S.S.P. Magneto-transport in transition metal multilayered structures // Magnetism in Metals. A symposium in memory of Allan Mackintosh / Eds D.F. McMorrow, J. Jensen, H.M. Rønnow. Matematisk-Fysiske Meddelelser. V. 45. Copenhagen: The Royal Danish Academy of Sciences and Letters, 1997. P. 113–132.
- [8] Krebs J.J., Lubitz P., Chaiken A., Prinz G.A. // J. Appl. Phys. 1991. V. 69. N 8. Pt II. P. 4794797.
- [9] Kuanr B.K., Kuanr A.V., Grunberg P., Nimtz G. // Phys. Lett. A. 1996. V. 221. N 3–4. P. 245–252.
- [10] Ustinov V.V., Rinkevich A.B., Romashev L.N., Minin V.I. // J. Magn. Magn. Mater. 1998. V. 177–181. P. 1205–1206.
- [11] Ринкевич А.Б., Ромашев Л.Н., Устинов В.В. // ЖЭТФ. 2000. Т. 117. В. 5. С. 960–968.
- [12] Устинов В.В., Ринкевич А.Б., Ромашев Л.Н., Кузнецов Е.А. // ЖТФ. 2009. Т. 79. В. 8. С. 71–76.
- [13] Rausch T., Szczurek T., Schlesinger M. // J. Appl. Phys. 1999.
 V. 85. N 1. P. 314–318.