23

Анализ оптических свойств однородных металлических, окисных наночастиц и двухслойных наночастиц с металлическим ядром и окисной оболочкой с целью эффективного поглощения солнечной радиации

© Л.Г. Астафьева¹, В.К. Пустовалов², В. Фритче³

 ¹ Институт физики им. Б.И. Степанова НАН Беларуси, 220072 Минск, Беларусь
 ² Белорусский национальный технический университет, 220013 Минск, Беларусь
 ³ Институт фотонных технологий (IPHT), 07745 Иена, Германия

e-mail: astafev@dragon.bas-net.by

Поступила в редакцию 26.03.2018 г. В окончательной редакции 26.10.2018 г. Принята к публикации 06.11.2018 г.

В последнее время активно изучаются вопросы использования наночастиц для поглощения солнечной радиации и фототермических нанотехнологий. Эффективность применения наночастиц в качестве фототермических агентов для солнечной энергии определяется спектральными оптическими свойствами наночастиц. Выполнено компьютерное моделирование оптических свойств однородных металлических (никелевых, титановых, молибденовых) наночастиц, их окислов и наночастиц, состоящих из металлического ядра и окисной оболочки, с радиусами в диапазоне 50–100 nm в спектральном интервале 200–2500 nm. Исследовано влияние радиусов наночастиц, типов металлов и их окислов на спектральные коэффициенты эффективности поглощения K_{abs} и рассеяния K_{sca} излучения наночастицами. Выбор подходящего типа наночастиц для поглощения солнечного излучения был проведен на основе сравнительного анализа зависимостей коэффициентов эффективности поглощения K_{abs} , интенсивности солнечного излучения I_s и параметра $P_1 = K_{abs}/K_{sca}$ от длины волны. Сферические двухслойные наночастицы, состоящие из никеля, титана в ядре и окисных оболочек, с радиусами около 75, 100 nm могут быть применены в спектральном интервале 200–2500 nm для эффективного поглощения солнечной радиации. Эти результаты вносят существенный вклад в изучение оптических свойств наночастиц, которые могут быть использованы в системах тепловой энергии.

DOI: 10.21883/OS.2019.03.47381.88-18

Введение

В последние годы были исследованы вопросы применения наночастиц для поглощения солнечной радиации, для фототермической нанотехнологии и солнечной тепловой энергетики. Для повышения поглощения при использования солнечного света [1–5], для фотокатализа [6–8], для энергетических применений [9–18] используются различные наночастицы в наножидкостях. Поверхностный плазмонный резонанс определяет эффективность поглощения и рассеяния излучения наночастицами [19–22]. Максимальное улавливание солнечной энергии и последующее преобразование в тепловую энергию будут реализованы в случае высокого поглощения излучения наночастицами. Радиационное рассеяние приводит к уменьшению эффективности процессов поглощения и преобразования света в теплоту.

Металлические наночастицы представляют особый интерес для применения солнечной энергии и нанотехнологий. Оптические свойства металлических наночастиц Cu, Au, Al, Ag и т. д. были исследованы с целью применения в нанотехнологиях в спектральном интервале 300–1000 nm [20,22–24]. К сожалению, металлические наночастицы Ті, Ni, Мо не исследовались в широких интервалах радиусов наночастиц и длин волн излучения 200–2500 nm.

Исследование двухслойных наночастиц, состоящих из металлического ядра и окисной оболочки, также очень интересно для улучшения и манипуляции резонансами плазменного спектра наночастиц в дополнение к чистым металлическим наночастицам. Образование окисной оболочки на металлической наночастице может быть достигнуто различными химическими [25] и физическими [26,27] методами и в результате естественного окисления металлических наночастиц в реактивной среде. Естественное окисление чистых металлических наночастиц в газообразных или жидких средах, содержащих компоненты кислорода (воздух, вода, пар), приводит к образованию тонкой окисной оболочки толщиной около 5-10 nm на металлических наночастицах. Действие интенсивного оптического (солнечного) излучения и нагревания наночастиц может способствовать окислению поверхностного слоя металлической наночастицы и образованию двухслойных металлических/окисных наночастиц с ядром-оболочкой.

Оптические свойства наночастиц с металлическим ядром и его окисной оболочкой (Ag-Ag₂O, Al-Al₂O₃, Cu-Cu₂O) [28,29] не использовались для целей поглощения солнечного излучения. В экспериментальных и теоретических исследованиях поглощения солнечной радиации использовались гомогенные окисные наночастицы (Al₂O₃, SiO₂, CuO, ZnO и др.) [12–14,16]. К сожалению, нет достаточных оснований для использования перечисленных окисных наночастиц для поглощения солнечной энергии.

Существующий разрыв в знаниях между опубликованными результатами и потребностями в наночастицах с соответствующими оптическими свойствами явно требует исследований и выбора оптических свойств потенциально подходящих наночастиц, которые могут быть применены для эффективного поглощения и преобразования солнечной энергии в прикладных системах тепловой энергетики.

Сравнительный анализ оптимальных параметров различных металлических наночастиц, двухслойных металлических/окисных наночастиц и чистых окисных наночастиц для их использования в качестве агентов для поглощения солнечной энергии и в прикладных нанотехнологиях все еще отсутствует. Наши исследования направлены на изучение оптических свойств наночастиц для применения в прикладных энергетических системах для эффективного поглощения энергии солнечного излучения. Здесь мы представляем результаты комплексного исследования оптических свойств сферических металлических, окисных и металлическое ядро-окисная оболочка наночастиц, размещенных в воде, на основе компьютерного моделирования для их применения в поглощении солнечного излучения.

Оптические свойства наночастиц в спектральном интервале 200–2500 nm

Достижение максимального поглощения и минимального рассеяния излучения наночастицами очень важно для эффективного захвата солнечной энергии. Факторы эффективности поглощения K_{abs} , рассеяния K_{sca} и экстинкции $K_{ext} = K_{abs} + K_{sca}$ излучения с длиной волны λ описывают оптические свойства сферической наночастицы с радиусом r_0 [19]. Параметр $P_1 = K_{abs}/K_{sca}$ должен быть больше 1 ($P_1 > 1$ или $P_1 \gg 1$), а фактор поглощения K_{abs} — больше (или намного больше в благоприятных случаях), чем фактор рассеяния K_{sca} . Такая ситуация позволяет достичь максимальной эффективности взаимодействия солнечной радиации с наночастицей для ее нагрева [30,31]. Рассеяние солнечной радиации наночастицами будет преобладать над поглощением для $P_1 < 1$, и после многократного рассеяния излучения на

наночастицах приведет к значительному уменьшению сбора солнечной энергии.

Компьютерное моделирование факторов эффективности поглощения K_{abs} , рассеяния K_{sca} и экстинкции K_{ext} солнечной радиации в зависимости от длины волны λ в спектральном интервале 200–2500 nm однородными металлическими (Ti, Ni, Mo), окисными (TiO₂, NiO, MoO₃) наночастицами и наночастицами с металлическим ядром и окисной оболочкой (Ti-TiO₂, NiO, Mo-MoO₃) было проведено на основе обобщенной теории Ми [19]. Использовались однородные наночастицы с радиусами в диапазоне $r_0 = 50-100$ nm и двухслойные наночастицы с ядрами с радиусами в диапазоне $r_0 = 40-90$ nm и толщиной окисной оболочки $\Delta r_1 = 10$ nm. Значения оптических показателей преломления металлов, окислов и окружающей воды были взяты из [32–35].

Положения λ_{abs}^{max} , λ_{sca}^{max} , и λ_{ext}^{max} и максимальные значения факторов эффективности K_{abs}^{max} , K_{sca}^{max} , K_{ext}^{max} на оси λ обозначены на рис. 1–3 разными вертикальными линиями — величины λ_{abs}^{max} максимального значения фактора поглощения K_{abs}^{max} обозначаются сплошными линиями, λ_{sca}^{max} — штриховыми линиями и λ_{ext}^{max} — штрихпунктирными линиями в случае разных значений λ_{abs}^{max} , λ_{sca}^{max} , и λ_{ext}^{max} . В некоторых случаях сплошные линии обозначают одновременное расположение всех максимумов факторов эффективности. Горизонтальные штриховые линии обозначают значение $P_1 = 1$ на рис. 1–3 (d, h, l).

На рис. 1 представлены зависимости факторов эффективности K_{abs} , K_{sca} и K_{ext} и параметра P_1 от длины волны λ для сферических однородных наночастиц Ті и TiO₂ с радиусами $r_0 = 50$, 75, 100 nm и для двухслойных наночастиц Ti-TiO₂ с толщиной оболочки $\Delta r_1 = 10$ nm, радиусами ядра $r_0 = 40$, 65, 90 nm. Радиусы однородных наночастиц r_0 равны соответственно внешним радиусам $r_1 = r_0 + \Delta r_1$ двухслойных наночастиц с ядром и оболочкой для сравнения результатов в случае эквивалентных наночастиц.

Плазмонный резонанс электромагнитного (солнечного) излучения на наночастицах Ті определяет его поглощение. Величины К_{abs} расположены при $\lambda_{abs}^{max} \sim 500 - 1000 \,\mathrm{nm}$ для наночастиц Ті с $r_0 = 50, 75,$ 100 nm. При увеличении r₀ области размещения максимальных значений факторов $K_{\rm abs}^{\rm max}$, $K_{\rm sca}^{\rm max}$, $K_{\rm ext}^{\rm max}$ на оси λ для наночастиц Ті сдвинуты в сторону больших значений длин волн. Увеличение r_0 приводит к уменьшению $K_{\rm abs}^{\rm max}$ и образованию двух максимальных значений $K_{\rm abs}^{\rm max}$ при $r_0 = 100$ nm. Значения $K_{\rm abs}^{\rm max}$ для наночастиц Ti с $r_0 = 50$, 75 nm приблизительно больше или равны значениям *K*_{sca}^{max} в спектральном интервале 200-750 nm, а значения K_{abs}^{max} больше или намного больше значений K_{sca}^{max} для спектрального интервала 750-2500 nm. Значения $K_{\rm abs}^{\rm max}$ меньше, чем значения $K_{\rm sca}^{\rm max}$ для наночастиц Ti с $r_0 = 100 \,\mathrm{nm}$ в спектральном интервале $\sim 200 - 1000 \,\mathrm{nm}$.

Для наночастиц Ті параметр $P_1 > 1$ для $r_0 = 50$, 75 nm и для всего спектрального интервала 200–2500 nm и достигает значений $P_1 \sim 10-50$ в

Puc. 1. Зависимости факторов эффективности K_{abs} (сплошные кривые, a-c, e-g, i-k), K_{sca} (штриховые, a-c, e-g, i-k) и K_{ext} (штрихпунктирные, a-c, e-g, i-k) и зависимости параметра P_1 (d, h, l) от λ для однородных наночастиц Ti (a-d) и TiO₂ (i-l) с $r_0 = 50$ (a, i, d1, l1), 75 (b, j, d2, l2), 100 nm (c, k, d3, l3) и для наночастиц Ti-TiO₂ с $r_0 = 40$ (e, h1), 65 (f, h2), 90 nm (g, h3) и с $\Delta r_1 = 10$ nm.

спектральном интервале 1500–2500 nm из-за резкого уменьшения $K_{\rm sca}$ при увеличении λ . Это означает возможность эффективного применения наночастиц Ti с $r_0 = 50$, 75 nm для поглощения солнечного излучения в качестве идеальных поглотителей. Параметр P_1

меньше 1 при $r_0 = 100 \,\mathrm{nm}$ в важном спектральном интервале 200 $-1000 \,\mathrm{nm}$.

Образование окисной оболочки на наночастицах Ті $(Ti + TiO_2)$ сдвинуло размещение λ_{abs}^{max} от 350 nm при $r_0 = 50$ nm до 670 nm при $r_0 = 75$ nm. Интересно,

Puc. 2. Зависимости факторов эффективности K_{abs} (сплошные кривые, *a*-*c*, *e*-*g*, *i*-*k*), K_{sca} (штриховые, *a*-*c*, *e*-*g*, *i*-*k*) и K_{ext} (штрихпунктирные, *a*-*c*, *e*-*g*, *i*-*k*) и зависимости параметра P_1 (*d*, *h*, *l*) от λ для однородных наночастиц Ni (*a*-*d*) и NiO (*i*-*l*) с $r_0 = 50$ (*a*, *i*, *d1*, *l1*), 75 (*b*, *j*, *d2*, *l2*), 100 nm (*c*, *k*, *d3*, *l3*) и наночастиц Ni-NiO с $r_0 = 40$ (*e*, *h1*), 65 (*f*, *h2*), $r_0 = 90$ nm (*c*, *h3*) и с $\Delta r_1 = 10$ nm.

что образуются довольно резкий минимум K_{sca}^{\min} при $\lambda \sim 400$ nm и максимумы K_{sca}^{\max} при $\lambda \sim 700-800$ nm для $r_0 = 65$, 90 nm. Значения K_{abs} больше, чем значения K_{sca} , для спектрального интервала 250-2500 nm для всех представленных значений r_0 и Δr_1 . Следует также

отметить резкое уменьшение $K_{\rm sca}$ с увеличением λ в интервале 700–2500 nm.

Мы видим появление максимумов P_1 для $\lambda \sim 350$ nm для наночастиц Ti-TiO₂ с $r_0 = 40$, 65, 90 nm. Величина P_1 равна $\sim 1-2$ в спектральном интервале 250–700 nm

Puc. 3. Зависимости факторов эффективности K_{abs} (сплошные кривые, a-c, e-g, i-k), K_{sca} (штриховые, a-c, e-g, i-k) и K_{ext} (штрихпунктирные, a-c, e-g, i-k) и зависимости параметра P_1 (d, h, l) от λ для однородных наночастиц Mo (a-d) и MoO₃ (i-l) с $r_0 = 50$ (a, i, d1, l1), 75 (b, j, d2, l2), 100 nm (c, k, d3, l3) и для наночастиц Mo-MoO₃ с $r_0 = 40$ (e, h1), 65 (f, h2), 90 nm (c, h3) и с $\Delta r_1 = 10$ nm.

и резко возрастает до $P_1 \sim 10-50$ с увеличением λ в спектральном интервале 700–2500 nm. Наличие окисной оболочки приводит к увеличению поглощения при воздействии излучения на двухслойные наночастицы

и улучшению возможности применения двухслойных наночастиц Ti-TiO₂.

Значение K_{abs} для наночастиц TiO₂ резко падает до 5–6 порядков величины при увеличении длины волны

до $\sim 700 \, {\rm nm}$, ее значение практически равно нулю при $\lambda > 700$ nm. Это означает, что наночастицы TiO₂ обладают значительной поглощательной способностью только в спектральном интервале 200-450 nm. Окисные наночастицы TiO₂ практически не поглощают излучение в спектральном интервале 500-2500 nm, содержащем около 85% всей солнечной энергии. В этом спектральном интервале 500-2500 nm рассеяние наночастицами преобладает над поглощением излучения, а зависимости $K_{\rm sca}(\lambda)$ и $K_{\rm ext}(\lambda)$ практически совпадают друг с другом, $K_{\rm sca}(\lambda) \approx K_{\rm ext}(\lambda)$ (рис. 1). Параметр P_1 резко уменьшается с увеличением λ при $\lambda > 500$ nm. Эти результаты показывают практическую невозможность использования окисных наночастиц TiO2 для эффективного поглощения солнечной радиации в спектральном интервале 500-2500 nm.

На рис. 2, 3 представлены зависимости факторов эффективности K_{abs} , K_{sca} и K_{ext} излучения и параметра P_1 от длины волны λ для сферических однородных наночастиц Ni, NiO и Mo, MoO₃ соответственно с радиусами $r_0 = 50$, 75, 100 nm и двухслойных наночастиц Ni-NiO и Mo-MoO₃ с ядром и оболочкой с радиусами ядра $r_0 = 40$, 65, 90 nm и толщиной оболочки $\Delta r_1 = 10$ nm.

Фактор эффективности поглощения K_{abs} для наночастиц Ni (рис. 2) имеет два слабо выделенных максимума при $r_0 = 100$ nm. Параметр P_1 больше 1 при $r_0 = 50$ nm для спектрального интервала излучения $\lambda = 200-2500$ nm, он достигает значений $P_1 \sim 10$ с увеличением λ в инфракрасной (ИК) области. Параметр P_1 меньше 1 в интервале 200 nm $< \lambda < 850$ nm для наночастиц Ni с $r_0 = 75$ nm и в интервале 300 nm $< \lambda < 1400$ nm при $r_0 = 100$ nm. Наночастицы Ni являются хорошими поглотителями излучения во всем оптическом спектре при $r_0 = 50$ nm и в ИК оптическом интервале при $r_0 = 75$ nm.

Значения K_{abs} больше, чем K_{sca} , для наночастиц Ni-NiO с $r_0 = 40$ nm в полном спектральном интервале 250–2500 nm. С другой стороны, для наночастиц Ni-NiO с $r_0 = 65$ nm $K_{abs} < K_{sca}$ в спектральном интервале 550–750 nm и для $r_0 = 90$ nm $K_{abs} < K_{sca}$ для спектрального интервала 550–1400 nm. Зависимость параметра P_1 от λ имеет сложный характер для всех представленных значений r_0 со сформированными максимумами $P_1 \sim 2-3$ при $\lambda \sim 400$ nm.

Зависимость K_{abs} от λ для однородных окисных наночастиц NiO примерно одинакова в ультрафиолетовом интервале 200–400 nm, и она резко уменьшается на $\sim 3-4$ порядка величины при увеличении λ , и при $\lambda > 700$ nm значение K_{abs} практически равно 0. Это поведение определяется зависимостью показателя поглощения NiO от λ [34]. Значения $K_{sca} \gg K_{abs}$ и $P_1 \ll 1$ для спектрального интервала 400–2500 nm, и наночастицы NiO не подходят для применения в поглощении солнечной энергии.

Спектральная зависимость K_{abs} для наночастиц Мо (рис. 3) имеет один максимум K_{abs}^{max} , который смещается от $\lambda_{abs}^{max} = 380$ nm для $r_0 = 50$ nm до $r_0 = 860$ nm

при $r_0 = 100$ nm. Фактор поглощения K_{abs} больше, чем фактор рассеяния K_{sca} , в спектральном интервале 400–2500 nm при $r_0 = 50$ nm и в интервале 700–2500 nm для наночастиц Мо с $r_0 = 75$ nm. Параметр P_1 возрастает до значений $P_1 \sim 5$ при $r_0 = 50$ nm и $P_1 \sim 2$ при $r_0 = 75$ nm с увеличением λ . Параметр P_1 меньше 1 для $r_0 = 50$, 75 nm в спектральном интервале $\lambda \sim 200-500$ nm и $\lambda \sim 200-700$ nm соответственно. Это означает, что возможность применения наночастиц Мо для поглощения солнечного излучения мала в упомянутых спектральных интервалах. Для наночастиц Мо K_{abs} с $r_0 = 100$ nm меньше фактора рассеяния K_{sca} , и $P_1 < 1$ для всего интервала 200–2500 nm.

Влияние образования окисной оболочки на металлические наночастицы с равными радиусами $r_1 = r_0 + \Delta r_1$ приводит к следующим последствиям. Максимумы плазмонного резонанса создаются и сдвигаются в сторону больших значений длины волны с увеличением r_0 . Это приводит к уменьшению факторов K_{abs}^{max} и небольшому влиянию на все оптические факторы при $r_0 = 40-90$ nm. Значения параметра P_1 уменьшаются с ростом $r_0(r_1)$. Образование окисной оболочки на металле наночастицы приводит к небольшому увеличению P_1 в выбранном спектральном интервале для всех значений r_0 . Увеличение r_0 для однородных наночастиц и r_1 для наночастиц ядро/оболочка приводит к увеличению K_{sca} , K_{ext} по сравнению с K_{abs} .

 $K_{\rm abs}$ для однородных окисных наночастиц MoO₃ резко уменьшается на ~ 3–4 порядка величины при увеличении λ . Значения $K_{\rm sca} \gg K_{\rm abs}$ и $P_1 \ll 1$ для спектрального интервала 400–2500 nm и наночастицы MoO₃ не подходят для применения в поглощении солнечной энергии.

На рис. 4 представлены зависимости интенсивности солнечного облучения I_S [36] и фактора эффективности поглощения $K_{\rm abs}$ для наночастиц Ті, Ті-ТіО₂, ТіО₂, Ni, Ni-NiO, NiO, Mo, Mo-MoO₃, MoO₃ от длины волны для r_0 , $r_1 = 50, 75, 100$ nm.

Нагрев наночастиц (повышение температуры ΔT_0 наночастиц при сравнении с его исходным значением) [30,31] оптическим (солнечным) излучением в спектральном интервале $\lambda_1 - \lambda_2 = 200-2500$ nm пропорционален (для двухслойных наночастиц r_0 заменяется на r_1 в приведенных ниже формулах)

$$\Delta T_0 \sim r_0 \int_{\lambda_1}^{\lambda_2} I_S(\lambda) K_{\rm abs}(r_0, \lambda) d\lambda. \tag{1}$$

Максимальная эффективность нагревания наночастиц достигается, когда правая часть уравнения (1) имеет максимальное значение. Следует отметить, что зависимость $I_S(\lambda)$ (рис. 1–3) имеет некоторую фиксированную форму и может быть смоделирована зависимостью излучения черного тела от λ [36]. Очевидно, что для достижения максимального значения интеграла в (1) зависимость $K_{abs}(\lambda)$ должна иметь приблизительно вид,

Puc. 4. Зависимости солнечного излучения I_S (*a*-*i*, сплошные линии, левая ось) и фактора эффективности поглощения K_{abs} (*a*-*i*, правая ось) от λ для наночастиц с радиусами r_0 , $r_1 = 50$ (пунктирные линии), 75 (штриховые), 100 nm (штрихпунктирные) и наночастиц Ti (*a*), Ti-TiO₂ (*b*), TiO₂ (*c*), Ni (*d*), Ni-NiO (*e*), NiO (*f*), Mo (*g*), Mo-MoO₃ (*h*), MoO₃ (*i*). Введены обозначения: Ме — металл, O — окисел.

аналогичный зависимости $I_S(\lambda)$, с возможным небольшим сдвигом от положения максимальной интенсивности солнечного излучения. Максимальное значение ΔT_0^{\max} может быть реализовано с использованием максимального соответствующего значения r_0^{\max} и максимальных значений $K_{abs}^{\max}(r_0^{\max}, \lambda)$ для всех λ во всем спектральном интервале $\lambda_2 - \lambda_1$, если это возможно:

$$\Delta T_0^{\max} \sim r_0^{\max} \int_{\lambda_1}^{\lambda_2} I_S(\lambda) K_0^{\max}(r_0^{\max}, \lambda) d\lambda.$$
 (2)

Цель реализации ΔT_0^{\max} может быть достигнута путем выбора типа наночастиц и их размера, материалов ядра и оболочки и т.д.

Для наночастиц Ті зависимости K_{abs} от λ при $r_0 = 75$, 100 nm близки к зависимости $I_S(\lambda)$, а значения K_{abs}

больше, чем при $r_0 = 50$ nm, в спектральном интервале $\lambda \sim 600-2500$ nm с $K_{\rm abs}^{\rm max} \approx 1.75$ и в спектральном интервале $\lambda \sim 750-2500$ nm с $K_{\rm abs}^{\rm max} \approx 1.5$. Для наночастиц Ti-TiO₂ зависимость $K_{\rm abs}$ от λ при $r_0 = 65$ nm близка к зависимости $I_S(\lambda)$ в спектральном интервале $\lambda \sim 500-2500$ nm с $K_{\rm abs}^{\rm max} \approx 1.85$. Значения $K_{\rm abs}$ для $r_0 = 90$ nm больше, чем $K_{\rm abs}$ для $r_0 = 40$, 65 nm, в спектральном интерваль $\lambda \sim 750-2500$ nm и меньше в спектральном интервале $\lambda \sim 400-750$ nm.

Такая же ситуация существует для наночастиц Ni и Ni-NiO. Зависимости K_{abs} от λ при $r_0, r_1 = 75$ nm близки к зависимости $I_S(\lambda)$ в спектральном интервале $\lambda \sim 400-2500$ nm с $K_{abs}^{max} \approx 1.6$ и $K_{abs}^{max} \approx 1.65$ соответственно. Следует отметить, что зависимости $K_{abs}(\lambda)$ для $r_0, r_1 = 100$ nm также довольно близки к зависимости $I_S(\lambda)$, и они имеют более высокие значения K_{abs}

чем для $r_0, r_1 = 75$ nm, в спектральном интервале от $\lambda \sim 800-2500$ nm.

Для наночастиц Мо и Мо-МоО₃ с r_0 , $r_1 = 75$, 100 nm значение $\lambda_{abs}^{max} \sim 700$, 950 nm было смещено в сторону больших длин волн по сравнению с положением $\lambda_{abs}^{max} \approx 530$ nm. Но эти наночастицы имеют более высокие значения K_{abs} , чем для r_0 , $r_1 = 50$ nm, в спектральном интервале $\lambda \sim 500-2500$ nm. Факторы поглощения K_{abs} для наночастиц TiO₂, NiO, MoO₃ резко снижаются при увеличении λ , и они практически равны нулю при $\lambda > 500$ nm. Эти наночастицы не могут использоваться для эффективного поглощения солнечной радиации.

Исследованные зависимости оптических факторов K_{abs} , K_{sca} и K_{ext} и параметра P_1 в диапазонах радиусов наночастиц 50–100 nm и в спектральном интервале 200–2500 nm являются новыми и содержат новые данные в области оптических свойств наночастиц. Анализ оптических свойств представленных наночастиц Тi, Ti-TiO₂, Ni, Ni-NiO и, возможно, в меньшей степени Mo, Mo-MoO₃ позволяет сделать вывод о том, что эти наночастицы являются подходящими кандидатами для применений в солнечной тепловой энергетике.

Заключение

Выбор новых оптических свойств и оптимальных параметров гомогенных металлических, окисных и ядрометалл и оболочка-окисел наночастиц для эффективного поглощения солнечной радиации и для термических применений основан на исследованиях материалов и структуры наночастиц, их размеров (радиусов) и т.д. и сравнительном анализе их оптических свойств. Изучение указанных параметров было проведено в настоящей работе в качестве предпосылки для успешного использования наночастиц для применения в солнечной тепловой энергетике.

Исследованы новые зависимости факторов поглощения K_{abs} , рассеяния K_{sca} и экстинкции K_{ext} и параметра P_1 однородных наночастиц Ti, Ni, Mo и TiO₂, NiO, MoO₃ и двухслойных наночастиц ядро-оболочка Ti-TiO₂, Ni-NiO, Mo-MoO₃ для длин волн в спектральном интервале 200–2500 nm и в диапазоне радиусов наночастиц r_0 , $r_1 = 50-100$ nm на основе компьютерного моделирования. Параметр P_1 описывает доминирование поглощения наночастиц над рассеянием, если $P_1 > 1$.

Анализ результатов показывает, что окисные наночастицы TiO₂, NiO, MoO₃ не могут использоваться для эффективного поглощения солнечной радиации изза чрезвычайно низкого поглощения в видимой и ИК областях солнечного оптического спектра, их параметры $P_1 \ll 1$.

Металлические и ядро-оболочка наночастицы имеют несколько общих особенностей. Увеличение r_0 , r_1 сдвигает положение λ_{abs}^{max} , λ_{sca}^{max} , λ_{ext}^{max} и значений K_{abs}^{max} , K_{sca}^{max} , K_{ext}^{max} в сторону больших значений λ в видимой и ИК областях с уменьшением значения K_{abs}^{max} и формированием второго максимума. Металлические наночастицы из Ті, Ni и наночастицы металлическое ядро-окисная оболочка из Ti-TiO₂ с r_0 , $r_1 \sim 75$, 100 nm имеют максимальные значения фактора поглощения $K_{abs}(\lambda)$, и их зависимости $K_{abs}(\lambda)$ близки к спектральной зависимости солнечной радиации $I_S(\lambda)$.

Параметр P_1 больше 1 для наночастиц Ті и Ті-ТіО₂ и наночастиц Ni и Ni-NiO с $r_0 = 50$, 75 nm для всего спектрального интервала 200–2500 nm. Но параметр P_1 уменьшается с увеличением r_0 , r_1 и при $r_0 = 100$ nm, а в некоторых случаях и при $r_0 = 75$ nm, P_1 меньше 1 в узких или широких спектральных интервалах и, по крайнем случае, в полном спектральном интервале 200–2500 nm. Параметр P_1 увеличивается с увеличением λ в ИК области спектра до значений $P_1 \sim 10-50$ для r_0 , $r_1 = 50$, 75 nm. Тонкая окисная оболочка толщиной 10 nm влияет на оптические свойства двухслойных наночастиц в ультрафиолетовом и вблизи видимого спектрального интервала из-за оптического поглощения в этих спектральных областях окисным слоем.

Окончательный выбор лучших наночастиц может быть достигнут путем комплексного анализа свойств наночастиц, который позволяет реализовать максимальное нагревание наночастиц. Исследованные наночастицы могут применяться в качестве хороших поглотителей для эффективного поглощения солнечной радиации в применяемых энергетических тепловых системах (прямые солнечные поглощающие коллекторы).

Список литературы

- [1] Tang Y., Vlahovic B. // Nanoscale Res Lett. 2013. V. 8. P. 65.
- [2] Zhang H., Chen H.-J., Du X., Wen D. // Solar Energy. 2014.
 V. 100. P. 141.
- [3] Mlinar V. // Nanotechnology. 2013. V. 24. P. 042001.
- [4] Crisostomo F, Jerrild N, Mesgari S, Li Q, Taylor R. // Appl. Energy. 2017. V. 193. P. 1.
- [5] Du M., Tang G. // Solar Energy. 2016. V. 137. P. 393.
- [6] Hashemi S., Choi J.-W., Psaltis D. // Phys. Chem. Chem. Phys. 2014. V. 16. P. 5137.
- [7] Borgesa M., Sierra M., Cuevas E., García R., Esparzad P. // Solar Energy. 2016. V. 135. P. 527.
- [8] Duan H., Xuan Y. // Appl. Energy. 2014. V. 114. P. 22.
- [9] Kameya Y., Hanamura K. // Solar Energy. 2011. V. 85. P. 299.
- [10] He Q., Wang S., Zeng S., Zheng Z. // Energy Conversion Management. 2013. V. 73. P. 150.
- [11] Hossain M., Saidur R., Sabri M., Said Z., Hassani S. // Renew. Sustain. Energy Reviews. 2015. V. 43. P. 750.
- [12] Hussein A.K. // Renew. Sustain. Energy Reviews. 2016. V. 2.
 P. 767.
- [13] Kasaeian A., Eshghi A., Sameti M. // Renew. Sustain. Energy Reviews. 2015. V. 43. P. 584.
- [14] Leong K., Ong H., Amer N., Norazrina M., Risby M. // Renew. Sustain. Energy Reviews. 2016. V. 53. P. 1092.
- [15] Jin H., Lin G., Bai L., Amjad M., Filho E., Wen D. // Solar Energy. 2016. V. 139. P. 278.
- [16] Yiamsawas T., Mahian O., Dalkilic A., Kaewnai S., Wongwises S. // Appl. Energy. 2013. V. 111. P. 40.

- [17] Amjad M., Raza G., Xin Y., Pervaiz S., Wen D. // Appl. Energy. 2017. V. 206. P. 393.
- [18] Chen M., He Y., Zhu J., Wen D.I. // Appl. Energy. 2016. V. 181. P. 65.
- [19] Bohren C., Huffman D. Absorption and Scattering of Light by Small Particles. Wiley Interscience, 1983. 545 р.; Борен К., Хафмен Д. Поглощение и рассеяние света малыми частицами. М.: Мир, 1986. 664 с.
- [20] *Kreibig U, Vollmer M.* Optical Properties of Metal Clusters. Heidelberg: Springer, 1995. 532 p.
- [21] *Maier S.* Plasmonics: Fundamentals and Applications. Heidelberg: Springer, 2007. 201 p.
- [22] Pelton M., Aizpurua J., Bryant G. // Laser Photonics. 2008.
 V. 2. P. 136.
- [23] Amendola V., Bakr O., Stellacci F. // Plasmonics. 2010. V. 5. P. 85.
- [24] Astafyeva L.G., Pustovalov V.K., Fritzsche W. // Nano-Structures & Nano-Objects. 2017. V. 12. P. 57.
- [25] Jones M., Osberg K., MacFarlane L., Langille R., Mirkin C. // Chem. Rev. 2011. V. 111. P. 3736.
- [26] Pustovalov V., Bobuchenko D. // Int. J. Heat Mass Transfer. 1989. V. 32. P. 3.
- [27] Das S., Datta S., Mukhopadhyay A., Pal K, Basu D. // Materials Chem. Phys. 2010. V. 122. P. 574.
- [28] Laaksonen K., Suomela S., Puisto S., Rostedt N., Ala-Nissila T., Nieminen R. // J. Opt. Soc. Am. B: Opt. Phys. 2013. V. 30. P. 338.
- [29] Pustovalov V., Astafyeva L. // J. Nanomaterials. 2015.
 P. ID 812617. doi 10.1155/2015/812617
- [30] Pustovalov V. // Laser Phys. 2011. V. 21. P. 906.
- [31] Pustovalov V. // RSC Advances. 2016. V. 6. P. 81266.
- [32] Refractive index database. 2015. [Электронный ресурс] Режим доступа: http://refractiveindex.info/
- [33] Devore J. // J. Opt. Soc. Am. 1951. V. 41. P. 416.
- [34] Mahmoud S., Alshomer S., Tarawnh M. // J. Mod. Phys. 2011.
 V. 2. P. 1178.
- [35] Lajaunie L., Bousher F., Dessapt R., Moreau P. // Phys. Rev. B. 2013. V. 88. P. 115141.
- [36] ASTM G-173-03-International standard ISO 9845-1, 1992.
- [37] Pustovalov V., Astafyeva L., Fritzsche W. // Solar Energy. 2015. V. 122. P. 1334.