¹⁶ О фокусировке поверхностных плазмонных волн на свободной поверхности металлической пленки

© А.Б. Петрин

Объединенный институт высоких температур РАН, 125412 Москва, Россия e-mail: a_petrin@mail.ru

Поступила в редакцию 19.09.2018 г. В окончательной редакции 01.11.18 г. Принята к публикации 06.11.18 г.

> На основе теории отражения плоской электромагнитной волны от плоскослоистой структуры рассмотрены возбуждение и фокусировка поверхностной плазмонной волны на свободной поверхности металлической пленки в схеме Кречмана. Предложен метод возбуждения радиально сходящейся поверхностной плазмонной волны. Количественно исследовано распределение электрического поля в фокусе и найдены условия его максимизации. Обсуждены приложения полученных результатов.

DOI: 10.21883/OS.2019.03.47378.276-18

Введение и постановка задачи

В последнее время значительные усилия направлены на развитие методов локального исследования химического состава поверхностей с нанометровым разрешением. Одним из методов является сканирование поверхности нановершиной конического микроострия, на котором сфокусирована сходящаяся поверхностная плазмонная волна оптического диапазона частот [1]. В фокусе (на нановершине) создается настолько сильное оптическое поле, что при попадании в область его действия поверхностной молекулы возникает уникальное для этой молекулы комбинационное излучение. При сканировании исследуемой поверхности оптически возбужденной нановершиной и изучении соответствующего рамановского спектра можно получить химическую карту поверхности с нанометровой точностью. Кроме указанного приложения острийной нанофокусировки к рамановской спектроскопии поверхности, развиваются также и другие приложения, например, связанные с генерацией в сильном оптическом поле фокуса (на нановершине) горячих электронов и оптического излучения при столкновении этих электронов с исследуемой поверхностью (hot electron spectroscopy) [2]. Предлагается использовать указанное явление для поверхностного картирования полупроводниковых наноструктур [3].

Оптическое возбуждение нановершины обычно создают следующим образом. Сначала фокусируют свободно распространяющуюся лазерную волну на устройстве возбуждения поверхностной плазмонной волны, сходящейся к коническому микроострию. В качестве согласующего устройства используют дифракционные решетки [4,5] или фотонные кристаллы [6,7]. Сфокусированная поверхностная плазмонная волна должна создавать на поверхности конического микроострия ТМ-волну, сходящуюся к вершине — фокусу. Следует отметить, что хотя устройства возбуждения нановершины созданы

экспериментально [1], вопрос, насколько оптимальны экспериментальные образцы и согласующие устройства, теоретически не решен.

В настоящей работе теоретически рассматривается задача оптимального возбуждения радиально сходящейся поверхностной плазмонной волны, которую можно было бы использовать как самостоятельное устройство, так и для возбуждения металлических микроострий. Решение этой задачи основано на исследовании возбуждения поверхностной плазмонной волны в схеме Кречмана (рис. 1) оптическими пучками ограниченной апертуры [8]. Оказалось (рис. 4, b работы [8]), что ширина падающего пучка в схеме Кречмана должна быть достаточно велика. Это необходимо, чтобы поверхностная волна выросла до максимально возможной амплитуды. В работе [8] было предложено несколько способов увеличения максимального поля поверхностной волны на свободной границе пленки посредством создания нескольких интерферирующих волн, возбужденных каждая своим когерентным пучком. Было показано, что с помощью четырех волн можно создать на свободной поверхности серебряной пленки фокальные пятна размером порядка длины волны поверхностного плазмона и нормированной амплитудой нормальной компоненты электрического поля приблизительно 73.6. Нормировка проводилась на амплитуду падающей волны в призме.

В рамках обычной схемы Кречмана [9] (рис. 1) согласование поверхностной плазмонной волны I на поверхности металлической пленки 2 и падающей волны 3 осуществляется с помощью стеклянной призмы 4. Линейно поляризованная плоская монохроматическая волна \mathbf{E}^i падает на металлическую пленку со стороны призмы. Вектор напряженности электрического поля падающей волны лежит в плоскости падения (*p*-поляризация). Призма необходима для согласования падающей плоской волны и поверхностной плазмонной волны по волновому числу. Волновое число поверхностной

Рис. 1. Возбуждение поверхностных плазмонов *1* на поверхности металлической пленки *2* по схеме Кречмана. Падающая волна *3* в призме *4* порождает поверхностную плазмонную волну *1* и отраженную волну *5*.

плазмонной волны больше волнового числа плоской волны в свободном пространстве той же частоты [10,11]. Чтобы обеспечить равенство волновых чисел падающей 3, отраженной 5 и поверхностной плазмонной 1 волн вдоль поверхности металла (рис. 1), необходимо, чтобы падающая волна подходила к пленке из оптически более плотной среды (где волновое число больше, чем в свободном пространстве). Показатель преломления призмы и угол падения подбираются таким образом, чтобы обеспечивалось равенство волновых чисел падающей и поверхностных волн. При этих параметрах в отсутствие металлической пленки (и возбуждения поверхностных плазмонов) наблюдается полное внутреннее отражение падающей волны.

Экспериментальные и теоретические исследования показывают, что если угол падения соответствует согласованию по волновому числу падающей и поверхностной плазмонной волн, наблюдается резкое падение коэффициента отражения. Например, при длине падающей волны в вакууме $\lambda = 633$ nm и толщине пленки серебра приблизительно равной 53.8 nm (эта величина зависит от конкретного значения показателя преломления призмы и частоты падающей волны) наблюдается сильное изменение коэффициента отражения практически от единицы до нуля в окрестности угла падения, соответствующего согласованию свободной и поверхностной плазмонной волн. При небольшом отклонении угла падения от угла согласования коэффициент отражения возвращается от нуля к единичному значению.

Так как поле поверхностной плазмонной волны сосредоточено в тонком слое вблизи поверхности металла, характер отражения в схеме Кречмана сильно зависит от изменений показателя преломления в тонком слое вблизи поверхности. Именно на этом основывается широкое применение схемы Кречмана для создания различного рода датчиков, обладающих высокой чувствительностью [12]. Возникновение минимума отражения при возбуждении поверхностной волны сопровождается максимумом амплитуды поверхностной волны на внешней границе пленочной структуры с возбужденной поверхностной волной. Эта амплитуда намного больше амплитуды падающей волны. Так, было показано, что для случая возбуждения поверхностной плазмонной волны на поверхности серебряной пленки [8,13] максимальная амплитуда нормальной составляющей электрического поля в 18.78 раз больше амплитуды падающей волны в призме.

В настоящей работе рассматривается логическое продолжение работы [8] — задача точечной фокусировки посредством создания радиально сходящейся поверхностной волны, возбужденной специальной конической волной. Поверхностная плазмонная стоячая волна 1(рис. 2) возбуждается на поверхности серебряной пленки 2 с помощью конической падающей волны 3 в конической призме 4. Падающая 3 и отраженная 5конические волны имеют p-поляризацию, т.е. вектор напряженности электрического поля лежит в плоскости, проходящей через ось Z. В данном исследовании мы будем интересоваться распределением поля сфокусированной волны на свободной поверхности металлической пленки 2 и значением амплитуды напряженности поля в фокусе.

Общая задача падения электромагнитной волны на плоскослоистую структуру

Рассмотрим задачу падения монохроматической волны с циклической частотой ω единичной амплитуды из полупространства (призмы), заполненного однородным изотропным диэлектриком с показателем преломления n_1 , на плоскую пленку толщиной d_1 . Предполагается для определенности, что пленка металлическая с комплексной диэлектрической проницаемостью ε_2 на

Рис. 2. Возбуждение поверхностной плазмонной стоячей волны *1* на поверхности серебряной пленки *2* с помощью конической волны *3*, падающей со стороны конической призмы *4*. Падающая *3* и отраженная *5* конические волны имеют оляризацию.

рассматриваемой частоте ω , а за пленкой находится однородное полупространство с диэлектрической проницаемостью ε_3 (свободное пространство). Сначала будет рассмотрена задача с одной пленкой, а затем она будет обобщена на многопленочную структуру с произвольным количеством пленок. Данный подход к решению электромагнитной задачи для многопленочной структуры восходит к работе А. Зоммерфельда [14] и развит в работах [15,16].

Уравнения Максвелла в рассматриваемых областях можно записать в виде

$$\operatorname{rot}\mathbf{E}_{j} = i\omega\mathbf{B}_{j},\tag{1}$$

$$\operatorname{rot}\mathbf{B}_{i} = -i\omega\varepsilon_{i}\mu_{i}\mathbf{E}_{i},\qquad(2)$$

где \mathbf{E}_j и \mathbf{B}_j — векторы напряженности электрического поля и индукция магнитного поля в области с номером j; j = 1 соответствует полупространству l, для которого z < 0; j = 2 соответствует области пленки 2 $(0 < z < d_1)$; j = 3 соответствует свободному полупространству $(z > d_1)$. Комплексное представление во времени предполагается в виде $e^{-i\omega t}$.

Из уравнений (1) и (2) следует, что электрическое и магнитное поля удовлетворяют однородному волновому уравнению, т. е.

rot rot
$$\mathbf{E}_{j} - \omega^{2} \mu_{j} \varepsilon_{j} \mathbf{E}_{j} = 0,$$

rot rot $\mathbf{B}_{i} - \omega^{2} \mu_{j} \varepsilon_{i} \mathbf{B}_{j} = 0.$ (3)

Учитывая, что div $\mathbf{D}_{j} = 0$ или $\partial_{x} E_{j,x} + \partial_{y} E_{j,y} + \partial_{z} E_{j,z} = 0$, из (3) получаем уравнение для $E_{j,x}$:

$$\partial_{xx}^2 E_{j,x} + \partial_{yy}^2 E_{j,x} + \partial^2 E_{j,x} + \omega^2 \mu_j \varepsilon_j E_{j,x} = 0.$$
(4)

Аналогичные уравнения получаются для компонент напряженности электрического поля $E_{j,y}$, $E_{j,z}$ и индукции магнитного поля $B_{j,x}$, $B_{j,y}$ и $B_{j,z}$ (для краткости уравнения не выписываем).

Представим в (4) компоненты напряженности электрических полей в виде фурье-разложений:

$$\begin{split} E_{j,x}(x, y, z) &= \frac{1}{(2\pi^2)} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \tilde{E}_{j,x}(\xi, \eta, z) e^{i(\xi x + \eta y)} d\xi d\eta, \\ E_{j,y}(x, y, z) &= \frac{1}{(2\pi)^2} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \tilde{E}_{j,y}(\xi, \eta, z) e^{i(\xi x + \eta y)} d\xi d\eta, \\ E_{j,z}(x, y, z) &= \frac{1}{(2\pi)^2} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \tilde{E}_{j,z}(\xi, \eta, z) e^{i(\xi x + \eta y)} d\xi d\eta, \end{split}$$

где фурье-образы определяются интегралами

$$\tilde{E}_{j,x}(\xi,\eta,z) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} E_{j,x}(x,y,z) e^{-i(\xi x + \eta y)} dx dy,$$

$$\tilde{E}_{j,y}(\xi,\eta,z) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} E_{j,y}(x,y,z) e^{-i(\xi x + \eta y)} dx dy,$$
$$\tilde{E}_{j,z}(\xi,\eta,z) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} E_{j,z}(x,y,z) e^{-i(\xi x + \eta y)} dx dy.$$

Тогда для фурье-образов полей получим следующее уравнение для $\tilde{E}_{j,x}$:

$$\frac{d^2 E_{j,x}}{dz^2} + (\omega^2 \mu_j \varepsilon_j - \xi^2 - \eta^2) \tilde{E}_{j,x} = 0,$$
 (5)

и аналогичные уравнения для $\tilde{E}_{j,y}$ и $\tilde{E}_{j,z}$ (для краткости не выписываем).

Решением этих уравнений являются $\tilde{E}_{j,x}^{\pm} = \hat{E}_{j,x}^{\pm} e^{\pm ik_{j,z}z}$, $\tilde{E}_{j,y}^{\pm} = \hat{E}_{j,y}^{\pm} e^{\pm ik_{j,z}z}$, $\tilde{E}_{j,z}^{\pm} = \hat{E}_{j,z}^{\pm} e^{\pm ik_{j,z}z}$, где $\hat{E}_{j,x}^{+}$, $\hat{E}_{j,x}^{-}$, $\hat{E}_{j,y}^{+}$, $\hat{E}_{j,y}^{-}$, $\hat{E}_{j,z}^{+}$, $\hat{E}_{j,z}^{-}$ функции только от ξ и η ; $k_{j,z} = k_{j,z}(\xi, \eta) = \sqrt{\omega^2 \mu_j \varepsilon_j - \xi^2 - \eta^2}$.

Тогда общее решение уравнений (5) для направлений распространения волн вдоль "+" и против "-" оси Z можно записать в виде

$$\mathbf{E}_{j}^{\pm}(x, y, z) = \frac{1}{(2\pi)^{2}} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \int_{-\infty}^{\infty} \left(\begin{array}{c} \dot{E}_{j,x}^{\pm}(\xi, \eta) \\ \hat{E}_{j,y}^{\pm}(\xi, \eta) \\ \dot{E}_{j,z}^{\pm}(\xi, \eta) \end{array} \right) e^{\pm ik_{j,z}z} \\ \times e^{i(\xi x + \eta y)} d\xi d\eta. \tag{6}$$

Так как div $\mathbf{D}_j = \mathbf{0}$, то $\varepsilon_j \xi \hat{E}_{j,x} + \varepsilon_j \eta \hat{E}_{j,y} \pm \pm \varepsilon_j k_{j,z}(\xi) \hat{E}_{j,z} = \mathbf{0}$, и общее решение (6) можно переписать в виде

$$\mathbf{E}_{j}^{\pm}(x, y, z) = \frac{1}{(2\pi)^{2}} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ \mp \frac{\xi}{k_{j,z}} & \mp \frac{\eta}{k_{j,z}} \end{pmatrix} \times \begin{pmatrix} \hat{E}_{j,x}^{\pm}(\xi, \eta) \\ \hat{E}_{j,y}^{\pm}(\xi, \eta) \end{pmatrix} e^{\pm ik_{j,z}z} e^{i(\xi x + \eta y)} d\xi d\eta.$$
(7)

Запишем общее решение в рассматриваемых областях (рис. 2) в следующем виде:

в области 1

$$\mathbf{E}_{1}(x, y, z) = \frac{1}{(2\pi)^{2}} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ -\frac{\xi}{k_{1,z}} & -\frac{\eta}{k_{1,z}} \end{pmatrix} \begin{pmatrix} \hat{E}_{1,x}^{+} \\ \hat{E}_{1,y}^{+} \end{pmatrix}$$
$$\times e^{ik_{1,z}z} e^{i(\xi x + \eta y)} d\xi d\eta$$
$$+ \frac{1}{(2\pi)^{2}} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ \frac{\xi}{k_{1,z}} & \frac{\eta}{k_{1,z}} \end{pmatrix} \begin{pmatrix} \hat{E}_{1,x}^{-} \\ \hat{E}_{1,y}^{-} \end{pmatrix}$$
$$\times e^{-ik_{1,z}z} e^{i(\xi x + \eta y)} d\xi d\eta, \qquad (8)$$

Оптика и спектроскопия, 2019, том 126, вып. 3

в области 2

$$\mathbf{E}_{2}(x, y, z) = \frac{1}{(2\pi)^{2}} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ -\frac{\xi}{k_{2,z}} & -\frac{\eta}{k_{2,z}} \end{pmatrix} \begin{pmatrix} \hat{E}_{2,x}^{+} \\ \hat{E}_{2,y}^{+} \end{pmatrix}$$

$$\times e^{ik_{2,z}z} e^{i(\xi x + \eta y)} d\xi d\eta$$

$$+ \frac{1}{(2\pi)^{2}} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ \frac{\xi}{k_{2,z}} & \frac{\eta}{k_{2,z}} \end{pmatrix} \begin{pmatrix} \hat{E}_{2,x}^{-} \\ \hat{E}_{2,y}^{-} \end{pmatrix}$$

$$\times e^{-ik_{2,z}(z-d_{1})} e^{i(\xi x + \eta y)} d\xi d\eta, \qquad (9)$$

в области 3

$$\mathbf{E}_{3}(x, y, z) = \frac{1}{(2\pi)^{2}} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ -\frac{\xi}{k_{3,z}} & -\frac{\eta}{k_{3,z}} \end{pmatrix} \begin{pmatrix} \hat{E}_{3,x} \\ \hat{E}_{3,y}^{+} \end{pmatrix} \times e^{ik_{3,z}(z-d_{1})} e^{i(\xi x + \eta y)} d\xi d\eta$$
(10)

Аналогичные выражения в трех областях можно написать и для индукции магнитного поля.

Из уравнения rot $\mathbf{E}_j = i\omega \mathbf{B}_j$ найдем *x*- и *y*-компоненты индукции магнитного поля. Для соответствующих фурье-компонент найдем

$$\hat{\mathbf{B}}_{j}^{+} = \frac{1}{i\omega} \begin{vmatrix} \mathbf{e}_{x} & \mathbf{e}_{y} & \mathbf{e}_{z} \\ i\xi & i\eta & ik_{j,z} \\ \hat{E}_{j,x}^{+} & \hat{E}_{j,y}^{+} & \hat{E}_{j,z}^{+} \end{vmatrix} = \mathbf{e}_{x} \left(\frac{\eta}{\omega} \hat{E}_{j,z}^{+} - \frac{k_{j,z}}{\omega} \hat{E}_{j,y}^{+} \right) \\ - \mathbf{e}_{y} \left(\frac{\xi}{\omega} \hat{E}_{j,z}^{+} - \frac{k_{j,z}}{\omega} \hat{E}_{j,x}^{+} \right) + \mathbf{e}_{z} \left(\frac{\xi}{\omega} \hat{E}_{j,y}^{+} - \frac{\eta}{\omega} \hat{E}_{j,x}^{+} \right),$$

или, учитывая, что $\hat{E}^+_{j,z} = -rac{\xi}{k_{j,x}} - rac{\eta}{k_{j,z}} \hat{E}^+_{j,y},$

$$\hat{\mathbf{B}}_{j}^{+} = \mathbf{e}_{x} \left(-\frac{\xi\eta}{\omega k_{j,z}} \hat{E}_{j,x} - \left(\frac{k_{j,z}^{2} + \eta^{2}}{\omega k_{j,z}}\right) \hat{E}_{j,y}^{+} \right) + \mathbf{e}_{y} \left(\left(\frac{k_{j,z}^{2} + \xi^{2}}{\omega k_{j,z}}\right) \hat{E}_{j,x}^{+} + \frac{\xi\eta}{\omega k_{j,z}} \hat{E}_{j,y}^{+} \right) + \mathbf{e}_{z} \left(\frac{\xi}{\omega} \hat{E}_{j,y}^{+} - \frac{\eta}{\omega} \hat{E}_{j,x}^{+} \right),$$

или в матричном виде

$$\begin{pmatrix} \hat{B}_{j,x}^+ \\ \hat{B}_{j,y}^+ \\ \hat{B}_{j,z}^+ \end{pmatrix} = \begin{bmatrix} -\frac{\underline{\xi}\eta}{\omega k_{j,z}} & -\left(\frac{k_{j,z}^2 + \eta^2}{\omega k_{j,z}}\right) \\ \left(\frac{k_{j,z}^2 + \xi^2}{\omega k_{j,z}}\right) & \frac{\underline{\xi}\eta}{\omega k_{j,z}} \\ -\frac{\eta}{-\frac{\omega}{\omega}} & \frac{\underline{\xi}}{-\frac{\omega}{\omega}} \end{bmatrix} \begin{pmatrix} \hat{E}_{j,x}^+ \\ \hat{E}_{j,y}^+ \end{pmatrix}.$$

Аналогично для $\hat{\mathbf{B}}_{j}^{-}$ найдем

$$\begin{pmatrix} \hat{B}_{j,x}^{-} \\ \hat{B}_{j,y}^{-} \\ \hat{B}_{j,z}^{-} \end{pmatrix} = \begin{bmatrix} \frac{\underline{\xi}\eta}{\omega k_{j,z}} & \left(\frac{k_{j,z}^{2} + \eta^{2}}{\omega k_{j,z}}\right) \\ -\left(\frac{k_{j,z}^{2} + \xi^{2}}{\omega k_{j,z}}\right) & -\frac{\underline{\xi}\eta}{\omega k_{j,z}} \\ -\frac{\eta}{\omega} & \frac{\underline{\xi}}{\omega} \end{bmatrix} \begin{pmatrix} \hat{E}_{j,x}^{-} \\ \hat{E}_{j,y}^{-} \end{pmatrix}.$$

23 Оптика и спектроскопия, 2019, том 126, вып. 3

Тогда для тангенциальных компонент можно записать следующие матричные соотношения:

$$\begin{pmatrix} \hat{B}_{j,x} \\ \hat{B}_{j,y}^+ \end{pmatrix} = \begin{bmatrix} -\frac{\xi\eta}{\omega k_{j,z}} & -\frac{k_{j,z}^2 + \eta^2}{\omega k_{j,z}} \\ \frac{k_{j,z}^2 + \xi^2}{\omega k_{j,z}} & \frac{\xi\eta}{\omega k_{j,z}} \end{bmatrix} \begin{pmatrix} \hat{E}_{j,x} \\ \hat{E}_{j,y}^+ \end{pmatrix},$$
(11)

353

$$\begin{pmatrix} \hat{B}_{j,x}^{-} \\ \hat{B}_{j,y}^{-} \end{pmatrix} = \begin{bmatrix} \frac{\underline{\xi}\eta}{\omega k_{j,z}} & \frac{k_{j,z}^{2} + \eta^{2}}{\omega k_{j,z}} \\ -\frac{k_{j,z}^{2} + \underline{\xi}^{2}}{\omega k_{j,z}} & -\frac{\underline{\xi}\eta}{\omega k_{j,z}} \end{bmatrix} \begin{pmatrix} \hat{E}_{j,x}^{-} \\ \hat{E}_{j,y}^{-} \end{pmatrix}, \quad (12)$$

Прежде чем записать граничные условия, выпишем тангенциальные компоненты напряженности электрического поля и индукции магнитного поля: в области *1*

$$\begin{aligned} \mathbf{E}_{1,\tau} &= \frac{1}{(2\pi)^2} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \hat{E}_{1,x} \\ \hat{E}_{1,y}^+ \end{pmatrix} e^{ik_{1,z}z} e^{i(\xi x + \eta y)} d\xi d\eta \\ &+ \frac{1}{(2\pi)^2} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \hat{E}_{1,x} \\ \hat{E}_{1,y}^- \end{pmatrix} e^{-k_{1,z}z} e^{i(\xi x + \eta y)} d\xi d\eta, \end{aligned}$$
(13)
$$\begin{aligned} \mathbf{B}_{1,\tau} &= \frac{1}{(2\pi)^2} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \begin{pmatrix} -\frac{\xi \eta}{\omega k_{1,z}} & -\frac{k_{1,z}^2 + \eta^2}{\omega k_{1,z}} \\ \frac{k_{1,z}^2 + \xi^2}{\omega k_{1,z}} & \frac{\xi \eta}{\omega k_{1,z}} \end{pmatrix} \begin{pmatrix} \hat{E}_{1,x} \\ \hat{E}_{1,y}^+ \end{pmatrix} \\ &\times e^{ik_{1,z}z} e^{i(\xi x + \eta y)} d\xi d\eta \\ &+ \frac{1}{(2\pi)^2} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \begin{pmatrix} \frac{\xi \eta}{\omega k_{1,z}} & \frac{k_{1,z}^2 + \eta^2}{\omega k_{1,z}} \\ -\frac{k_{1,z}^2 + \xi^2}{\omega k_{1,z}} & -\frac{\xi \eta}{\omega k_{1,z}} \end{pmatrix} \begin{pmatrix} \hat{E}_{1,x} \\ \hat{E}_{1,y}^- \end{pmatrix} \\ &\times e^{-ik_{1,z}z} e^{i(\xi x + \eta y)} d\xi d\eta, \end{aligned}$$
(14)

в области 2

$$\begin{split} \mathbf{E}_{2,\tau} &= \frac{1}{(2\pi)^2} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \hat{E}_{2,x} \\ \hat{E}_{2,y}^+ \end{pmatrix} e^{ik_{2,z}z} e^{i(\xi x + \eta y)} d\xi d\eta \\ &+ \frac{1}{(2\pi)^2} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \hat{E}_{2,x} \\ \hat{E}_{2,y}^- \end{pmatrix} e^{-ik_{2,z}(z-d_1)} e^{i(\xi x + \eta y)} d\xi d\eta, \end{split}$$
(15)
$$\begin{aligned} \mathbf{B}_{2,\tau} &= \frac{1}{(2\pi)^2} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \begin{pmatrix} -\frac{\xi \eta}{\omega k_{2,z}} & -\frac{k_{2,z}^2 + \eta^2}{\omega k_{2,z}} \\ \frac{k_{1,z}^2 + \xi^2}{\omega k_{2,z}} & \frac{\xi \eta}{\omega k_{2,z}} \end{pmatrix} \begin{pmatrix} \hat{E}_{2,y} \\ \hat{E}_{2,y}^+ \end{pmatrix} \\ &\times e^{ik_{2,z}z} e^{i(\xi x + \eta y)} d\xi d\eta \\ &+ \frac{1}{(2\pi)^2} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \begin{pmatrix} \frac{\xi \eta}{\omega k_{2,z}} & \frac{k_{2,z}^2 + \eta^2}{\omega k_{2,z}} \\ -\frac{k_{2,z}^2 + \xi^2}{\omega k_{2,z}} & -\frac{\xi \eta}{\omega k_{2,z}} \end{pmatrix} \begin{pmatrix} \hat{E}_{2,y} \\ \hat{E}_{2,y} \end{pmatrix} \end{aligned}$$

$$\times e^{-ik_{1,z}(z-d_1)}e^{i(\xi x+\eta y)}d\xi d\eta,$$

(16)

в области З

$$\mathbf{E}_{3,\tau} = \frac{1}{(2\pi)^2} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \hat{E}_{3,x} \\ \hat{E}_{3,y}^+ \end{pmatrix} \times e^{ik_{3,z}(z-d_1)} e^{i(\xi x + \eta y)} d\xi d\eta,$$
(17)

$$\mathbf{B}_{3,\tau} = \frac{1}{(2\pi)^2} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \left(\frac{-\frac{\xi\eta}{\omega k_{3,z}}}{\frac{k_{3,z}^2 + \xi^2}{\omega k_{3,z}}} - \frac{k_{3,z}^2 + \eta^2}{\omega k_{3,z}} \right) \begin{pmatrix} \hat{E}_{3,x} \\ \hat{E}_{3,y}^+ \end{pmatrix} \times e^{ik_{3,z}(z-d_1)} e^{i(\xi x + \eta y)} d\xi d\eta.$$
(18)

Полученные выражения для полей в рассматриваемых областях должны удовлетворять граничным условиям. Известно, что для гармонических полей на границах должны быть непрерывны тангенциальные компоненты напряженности электрического поля и индукции магнитного поля.

Рассмотрим границу первой и второй областей (z = 0). На ней непрерывность тангенциальных компонент можно записать в виде

$$E_{1,x}(x, y, 0) = E_{2,x}(x, y, 0), \quad E_{1,y}(x, y, 0) = E_{2,y}(x, y, 0),$$
$$B_{1,x}(x, y, 0)/\mu_1 = B_{2,x}(x, y, 0)/\mu_2,$$
$$B_{1,y}(x, y, 0)/\mu_1 = B_{2,y}(x, y, 0)/\mu_2.$$

Учитывая, что

$$E_{1,x}(x, y, 0) = E_{1,x}^{+}(x, y, 0) + E_{1,x}^{-}(x, y, 0),$$

$$E_{1,y}(x, y, 0) = E_{1,y}^{+}(x, y, 0) + E_{1,y}^{-}(x, y, 0),$$

$$E_{2,x}(x, y, 0) = E_{2,x}^{+}(x, y, 0) + E_{2,x}^{-}(x, y, 0),$$

$$E_{2,y}(x, y, 0) = E_{2,y}^{+}(x, y, 0) + E_{2,y}^{-}(x, y, 0),$$

$$B_{1,x}(x, y, 0) = B_{1,x}^{+}(x, y, 0) + B_{1,x}^{-}(x, y, 0),$$

$$B_{1,y}(x, y, 0) = B_{1,y}^{+}(x, y, 0) + B_{1,y}^{-}(x, y, 0),$$

$$B_{2,x}(x, y, 0) = B_{2,x}^{+}(x, y, 0) + B_{2,x}^{-}(x, y, 0),$$

$$B_{2,y}(x, y, 0) = B_{2,y}^{+}(x, y, 0) + B_{2,y}^{-}(x, y, 0),$$

после несложных преобразований, используя (13)–(16), из граничных условий получим следующие матричные

уравнения:

$$\begin{pmatrix} \mathbf{I} & \mathbf{I} \\ \mathbf{G}_{1}^{+} & \mathbf{G}_{1}^{-} \end{pmatrix} \begin{pmatrix} \hat{E}_{1,x}^{+} \\ \hat{E}_{1,y}^{+} \\ \hat{E}_{1,x}^{-} \\ \hat{E}_{1,y}^{-} \end{pmatrix} \begin{pmatrix} \mathbf{I} & e^{ik_{2,z}d_{1}}\mathbf{I} \\ \mathbf{G}_{2}^{+} & e^{ik_{2,z}d_{1}}\mathbf{G}_{2}^{-} \end{pmatrix} \begin{pmatrix} \hat{E}_{2,x}^{+} \\ \hat{E}_{2,y}^{+} \\ \hat{E}_{2,x}^{-} \\ \hat{E}_{2,y}^{-} \end{pmatrix}$$

ИЛИ

$$\begin{pmatrix} \hat{E}_{1,x}^{+} \\ \hat{E}_{1,y}^{+} \\ \hat{E}_{1,y}^{-} \\ \hat{E}_{1,y}^{-} \end{pmatrix} = \begin{pmatrix} \mathbf{I} & \mathbf{I} \\ \mathbf{G}_{1}^{+} & \mathbf{G}_{1}^{-} \end{pmatrix}^{-1} \begin{pmatrix} \mathbf{I} & e^{ik_{2,z}d_{1}}\mathbf{I} \\ \mathbf{G}_{2}^{+} & e^{ik_{2,z}d_{1}}\mathbf{G}_{2}^{-} \end{pmatrix} \begin{pmatrix} \hat{E}_{2,x}^{+} \\ \hat{E}_{2,y}^{+} \\ \hat{E}_{2,y}^{-} \\ \hat{E}_{2,y}^{-} \end{pmatrix},$$
(19)

где I — единичная матрица 2 \times 2, а остальные матрицы имеют вид

$$\mathbf{G}_{1}^{+} = \begin{pmatrix} -\frac{\xi\eta}{\omega\mu_{1}k_{1,z}} & -\frac{k_{1,z}^{2}+\eta^{2}}{\omega\mu_{1}k_{1,z}} \\ \frac{k_{1,z}^{2}+\xi^{2}}{\omega\mu_{1}k_{1,z}} & \frac{\xi\eta}{\omega\mu_{1}k_{1,z}} \end{pmatrix}, \quad \mathbf{G}_{1}^{-} = \begin{pmatrix} \frac{\xi\eta}{\omega\mu_{1}k_{1,z}} & \frac{k_{1,z}^{2}+\eta^{2}}{\omega\mu_{1}k_{1,z}} \\ -\frac{k_{1,z}^{2}+\xi^{2}}{\omega\mu_{1}k_{1,z}} & -\frac{\xi\eta}{\omega\mu_{1}k_{1,z}} \end{pmatrix}, \\ \mathbf{G}_{2}^{+} = \begin{pmatrix} -\frac{\xi\eta}{\omega\mu_{2}k_{2,z}} & -\frac{k_{2,z}^{2}+\eta^{2}}{\omega\mu_{2}k_{2,z}} \\ \frac{k_{2,z}^{2}+\xi^{2}}{\omega\mu_{2}k_{2,z}} & \frac{\xi\eta}{\omega\mu_{2}k_{2,z}} \end{pmatrix}, \quad \mathbf{G}_{2}^{-} = \begin{pmatrix} \frac{\xi\eta}{\omega\mu_{2}k_{2,z}} & \frac{k_{2,z}^{2}+\eta^{2}}{\omega\mu_{2}k_{2,z}} \\ -\frac{k_{2,z}^{2}+\xi^{2}}{\omega\mu_{2}k_{2,z}} & -\frac{\xi\eta}{\omega\mu_{2}k_{2,z}} \end{pmatrix}.$$

Аналогично рассмотрим границу второй и третьей областей ($z = d_1$). Граничные условия запишутся в следующем виде:

$$E_{2,x}(x, y, d_1) = E_{3,x}(x, y, d_1),$$

$$E_{2,y}(x, y, d_1) = E_{3,y}(x, y, d_1),$$

$$B_{2,x}(x, y, d_1)/\mu_2 = B_{3,x}(x, y, d_1)/\mu_3,$$

$$B_{2,y}(x, y, d_1)/\mu_2 = B_{3,y}(x, y, d_1)/\mu_3.$$

Используя выражения (15)–(18), получим следующие матричные уравнения:

$$\begin{pmatrix} e^{ik_{2,z}d_{1}}\mathbf{I} & \mathbf{I} \\ e^{ik_{2,z}d_{1}}\mathbf{G}_{2}^{+} & \mathbf{G}_{2}^{-} \end{pmatrix} \begin{pmatrix} \hat{E}_{2,x}^{+} \\ \hat{E}_{2,y}^{-} \\ \hat{E}_{2,x}^{-} \\ \hat{E}_{2,y}^{-} \end{pmatrix} = \begin{pmatrix} \mathbf{I} & \mathbf{0} \\ \mathbf{G}_{3}^{+} & \mathbf{0} \end{pmatrix} \begin{pmatrix} \hat{E}_{3,x}^{+} \\ \hat{E}_{3,y}^{+} \\ \mathbf{0} \\ \mathbf{0} \end{pmatrix}$$

или

$$\begin{pmatrix} \hat{E}_{2,x}^+ \\ \hat{E}_{2,y}^+ \\ \hat{E}_{2,x}^- \\ \hat{E}_{2,y}^- \end{pmatrix} = \begin{pmatrix} e^{ik_{2,z}d_1}\mathbf{I} & \mathbf{I} \\ e^{ik_{2,z}d_1}\mathbf{G}_2^+ & \mathbf{G}_2^- \end{pmatrix} \begin{pmatrix} \mathbf{I} & 0 \\ \mathbf{G}_3^+ & 0 \end{pmatrix} \begin{pmatrix} \hat{E}_{3,x}^+ \\ \hat{E}_{3,y}^+ \\ 0 \\ 0 \end{pmatrix}, \quad (20)$$

где

$$\mathbf{G}_{3}^{+} = \begin{pmatrix} -\frac{\xi\eta}{\omega\mu_{3}k_{3,z}} & -\frac{k_{3,z}^{2}+\eta^{2}}{\omega\mu_{3}k_{3,z}} \\ \frac{k_{3,z}^{2}+\xi^{2}}{\omega\mu_{3}k_{3,z}} & \frac{\xi\eta}{\omega\mu_{3}k_{3,z}} \end{pmatrix},$$

Оптика и спектроскопия, 2019, том 126, вып. 3

Из матричных уравнений (19),(20) получаем

$$\begin{pmatrix} \hat{E}_{1,x}^{+} \\ \hat{E}_{1,y}^{+} \\ \hat{E}_{1,x}^{-} \\ \hat{E}_{1,y}^{-} \end{pmatrix} = \begin{pmatrix} \mathbf{I} & \mathbf{I} \\ \mathbf{G}_{1}^{+} & \mathbf{G}_{1}^{-} \end{pmatrix}^{-1} \begin{pmatrix} \mathbf{I} & e^{ik_{2,z}d_{1}}\mathbf{I} \\ \mathbf{G}_{2}^{+} & e^{ik_{2,z}d_{1}}\mathbf{G}_{2}^{-} \end{pmatrix} \\ \times \begin{pmatrix} e^{ik_{2,z}d_{1}}\mathbf{I} & \mathbf{I} \\ e^{ik_{2,z}d_{1}}\mathbf{G}_{2}^{+} & \mathbf{G}_{2}^{-} \end{pmatrix}^{-1} \begin{pmatrix} \mathbf{I} & \mathbf{0} \\ \mathbf{G}_{3}^{+} & \mathbf{0} \end{pmatrix} \begin{pmatrix} \hat{E}_{3,x}^{+} \\ \hat{E}_{x,y}^{+} \\ \mathbf{0} \\ \mathbf{0} \end{pmatrix}$$

или

$$\begin{pmatrix} \hat{E}_{1,x}^+ \\ \hat{E}_{1,y}^+ \\ \hat{E}_{1,x}^- \\ \hat{E}_{1,y}^- \end{pmatrix} = \mathbf{M} \begin{pmatrix} \hat{E}_{3,x}^+ \\ \hat{E}_{3,y}^+ \\ \mathbf{0} \\ \mathbf{0} \end{pmatrix},$$
(21)

где матрица **M** представляется в виде произведения трех матриц $\mathbf{M} = \mathbf{T}_1 \mathbf{T}_2 \mathbf{T}_3$, в котором

$$\mathbf{T}_{1} = \begin{pmatrix} \mathbf{I} & \mathbf{I} \\ \mathbf{G}_{1}^{+} & \mathbf{G}_{1}^{-} \end{pmatrix}^{-1},$$
$$\mathbf{T}_{2} = \begin{pmatrix} \mathbf{I} & e^{ik_{2,z}d_{1}}\mathbf{I} \\ \mathbf{G}_{2}^{+} & e^{ik_{2,z}d_{1}}\mathbf{G}_{2}^{-} \end{pmatrix} \begin{pmatrix} e^{ik_{2,z}d_{1}}\mathbf{I} & \mathbf{I} \\ e^{ik_{2,z}d_{1}}\mathbf{G}_{2}^{+} & \mathbf{G}_{2}^{-} \end{pmatrix}^{-1},$$
$$\mathbf{T}_{3} = \begin{pmatrix} \mathbf{I} & \mathbf{0} \\ \mathbf{G}_{3}^{+} & \mathbf{0} \end{pmatrix}.$$

Отметим, что обобщение формулы (21) для многопленочной структуры из *N* слоев можно произвести по индукции, которая приводит к следующим выражениям:

$$\begin{pmatrix} \hat{E}_{1,x}^{+} \\ \hat{E}_{1,y}^{+} \\ \hat{E}_{1,x}^{-} \\ \hat{E}_{1,y}^{-} \end{pmatrix} = \mathbf{M} \begin{pmatrix} \hat{E}_{N+2,x}^{+} \\ \hat{E}_{N+2,y}^{+} \\ \mathbf{0} \\ \mathbf{0} \end{pmatrix}, \qquad (22)$$

причем матрица **M** имеет вид $\mathbf{M} = \mathbf{T}_1 \left(\prod_{m=2}^{N+1} \mathbf{T}_m\right) \mathbf{T}_{N+2}$, где

$$\mathbf{T}_{1} = \begin{pmatrix} \mathbf{I} & \mathbf{I} \\ \mathbf{G}_{1}^{+} & \mathbf{G}_{1}^{-} \end{pmatrix},$$

$$\mathbf{T}_{m} = \begin{pmatrix} \mathbf{I} & e^{ik_{m,z}d_{m-1}}\mathbf{I} \\ \mathbf{G}_{m}^{+} & e^{ik_{m,z}d_{m-1}}\mathbf{G}_{m}^{-} \end{pmatrix} \begin{pmatrix} e^{ik_{m,z}d_{m-1}}\mathbf{I} & \mathbf{I} \\ e^{ik_{m,z}d_{m-1}}\mathbf{G}_{m}^{+} & \mathbf{G}_{m}^{-} \end{pmatrix}^{-1},$$

$$\mathbf{T}_{N+2} = \begin{pmatrix} \mathbf{I} & \mathbf{0} \\ \mathbf{G}_{N+2}^{+} & \mathbf{0} \end{pmatrix}.$$

Отметим, что обычно интересуются задачей падения заданной волны на многопленочную структуру. Тогда эту падающую волну можно разложить в ряд Фурье и найти функции $\hat{E}_{1,x}(\xi,\eta), \hat{E}^+_{1,y}(\xi,\eta)$. Разделив матрицу **М** в (22) на четыре 2 × 2-матрицы **М**_A, **М**_B, **М**_C и **М**_D:

$$\mathbf{M} = egin{pmatrix} \mathbf{M}_{\mathrm{A}} & \mathbf{M}_{\mathrm{B}} \ \mathbf{M}_{\mathrm{C}} & \mathbf{M}_{\mathrm{D}} \end{pmatrix},$$

получим матричные уравнения

$$\begin{pmatrix} \hat{E}_{1,x}^+ \\ \hat{E}_{1,y}^+ \end{pmatrix} = \mathbf{M}_{\mathbf{A}} \begin{pmatrix} \hat{E}_{N+2,x}^+ \\ \hat{E}_{N+2,y}^+ \end{pmatrix}, \quad \begin{pmatrix} \hat{E}_{1,x}^- \\ \hat{E}_{1,y}^- \end{pmatrix} = \mathbf{M}_{\mathbf{C}} \begin{pmatrix} \hat{E}_{N+2,x}^+ \\ \hat{E}_{N+2,y}^+ \end{pmatrix},$$

с помощью которых по компонентам падающей волны $\hat{E}^+_{1,x}$ и $\hat{E}^+_{1,y}$ можно найти компоненты прошедшей волны:

$$\begin{pmatrix} \hat{E}_{N+2,x}^+\\ \hat{E}_{N+2,y}^+ \end{pmatrix} = \mathbf{M}_{\mathbf{A}}^{-1} \begin{pmatrix} \hat{E}_{1,x}^+\\ \hat{E}_{1,y}^+ \end{pmatrix},$$

и отраженной волны:

$$\begin{pmatrix} \hat{E}_{1,x}^-\\ \hat{E}_{1,y}^- \end{pmatrix} = \mathbf{M}_{\mathrm{C}}\mathbf{M}_{\mathrm{A}}^{-1} \begin{pmatrix} \hat{E}_{1,x}^+\\ \hat{E}_{1,y}^+ \end{pmatrix}.$$

Тогда из (8) векторы напряженности падающего и отраженного электрических полей будут определяться следующими формулами:

$$\mathbf{E}_{1}^{\text{in}}(x, y, z) = \frac{1}{(2\pi)^{2}} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ -\frac{\xi}{k_{1,z}} & -\frac{\eta}{k_{1,z}} \end{pmatrix} \begin{pmatrix} \hat{E}_{1,x}^{+} \\ \hat{E}_{1,y}^{+} \end{pmatrix} \\ \times e^{ik_{1,z}z} e^{i(\xi x + \eta y)} d\xi d\eta,$$

$$\mathbf{E}_{1}^{\text{ref}}(x, y, z) = \frac{1}{(2\pi)^{2}} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ \frac{\xi}{k_{1,z}} & \frac{\eta}{k_{1,z}} \end{pmatrix} \\ \times \mathbf{M}_{C} \mathbf{M}_{A}^{-1} \begin{pmatrix} \hat{E}_{1,x}^{+} \\ \hat{E}_{1,y}^{+} \end{pmatrix} e^{-ik_{1,z}z} e^{i(\xi x + \eta y)} d\xi d\eta,$$
(23)

а напряженность прошедшего электрического поля по аналогии с (10) — формулой

$$\mathbf{E}_{N+2}^{\text{trans}}(x, y, z) = \frac{1}{(2\pi)^2} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ -\frac{\xi}{k_{N+2,z}} & -\frac{\eta}{k_{N+2,z}} \end{pmatrix}$$
$$\times \mathbf{M}_{A}^{-1} \begin{pmatrix} \hat{E}_{1,x}^{+} \\ \hat{E}_{1,y}^{+} \end{pmatrix} e^{ik_{N+2,z}(z-d_{\text{tot}})} e^{i(\xi x+\eta y)} d\xi d\eta,$$
(25)

где $d_{\text{tot}} = \sum_{i=1}^{i} d_i$ — полная толщина многопленочной структуры.

С помощью соотношений (11) и (12) легко можно выписать и выражения для падающего, отраженного и прошедшего магнитных полей (для экономии места мы здесь этого делать не будем).

(24)

Рис. 3. Геометрия падения конической волны. Область j = 1 — полупространство призмы; j = 2 — вспомогательная пленка толщины d_1 из того же материала, что и призма; j = 3 — металлическая пленка толщиной d_2 ; j = 4 — свободное пространство за металлической пленкой.

Задача падения конической электромагнитной волны ограниченной апертуры на плоскослоистую структуру

Рассмотрим (рис. 3) падение на многопленочную структуру конической волны \mathbf{E}^{i} , которую в плоскости z = 0 определим функцией

$$\mathbf{E}_{1}^{+}(x, y, \mathbf{0}) = e^{i\left(-k_{1}\left(\sqrt{x^{2}+y^{2}}-\rho_{0}\right)\sin\alpha+k_{1}z\cos\alpha\right)} \\ \times \left(-\frac{x\cos\alpha}{\sqrt{x^{2}+y^{2}}}\mathbf{e}_{x}-\frac{y\cos\alpha}{\sqrt{x^{2}+y^{2}}}\mathbf{e}_{y}-\sin\alpha\mathbf{e}_{z}\right), \quad (26)$$

где $k_1 = n_1 \omega / c$ — волновое число в первой среде, c — скорость света в вакууме, $n_1 = \sqrt{\varepsilon_1}$ — показатель преломления в первой среде, \mathbf{e}_x , \mathbf{e}_y , \mathbf{e}_z — единичные векторы в направлениях осей X, Y и Z соответственно, α — угол падения волны на плоскость z = 0 в локальноплоском приближении. Вектор напряженности электрического поля волны предполагается ориентированным всегда в плоскости падения (р-поляризация). На рис. 3 показана геометрия задачи в разрезе плоскостью XZ. Рассматриваемые области задачи мы пронумеруем следующим образом: *j* = 1 — полупространство призмы; j = 2 — вспомогательная пленка из того же материала, что и призма толщины d₁ (введение этой пленки даст возможность определить закономерности схождения конической падающей волны); *j* = 3 — металлическая пленка толщиной d_2 ; j = 4 — свободное пространство за металлической пленкой. В такой постановке задачи мы задаем поле падающей конической волны на некотором расстоянии d₁ от металлической пленки. Отметим, что экспериментальные методы создания таких конических волн с радиальной поляризацией хорошо развиты [17–19].

Пусть при *z* = 0 апертура волны ограничена таким образом, чтобы амплитуда волны (26) была постоянной (в локально-плоском приближении амплитуда

равна единице) и отлична от нуля только в кольце $\rho \in [\rho_0 - L/2, \rho_0 + L/2]$ (где $\rho = \sqrt{x^2 + y^2}$ и $\rho_0 > L/2$, причем центральная окружность этого кольца имеет радиус ρ_0). Тогда компоненты Фурье этой волны при z = 0 можно зависать в виде

$$\hat{E}_{1,x}(\xi,\eta) = -\iint \frac{x \cos \alpha}{\sqrt{x^2 + y^2}} \\ \times e^{-ik_1(\sqrt{x^2 + y^2} - \rho_0) \sin \alpha} e^{-i(\xi x + \eta y)} dx dy, \quad (27)$$

$$\hat{E}_{1,y}(\xi,\eta) = -\iint \frac{y \cos \alpha}{\sqrt{x^2 + y^2}} \\ \times e^{-ik_1(\sqrt{x^2 + y^2} - \rho_0) \sin \alpha} e^{-i(\xi x + \eta y)} dx dy.$$
(28)

Интегрирование в (27) и (28) производится по указанному кольцу. Перейдем в (27) к полярным координатам (ρ, φ) , тогда

$$\hat{E}_{1,x}^{\text{in}}(\xi,\eta) = -\int_{0}^{2\pi} \int_{\rho_0 - L/2}^{\rho_0 + L/2} \frac{\rho \cos \varphi \cos \alpha}{\rho} e^{-ik_1(\rho - \rho_0) \sin \alpha}$$

$$imes e^{-i(\xi
ho\cos arphi+\eta
ho\sin arphi)}
ho d
ho darphi=-\cos lpha e^{ik_1
ho_0\sin arphi}$$

$$\times \int_{0}^{2\pi} F(-k_1 \sin \alpha - \xi \cos \varphi - \eta \sin \varphi) \cos \varphi d\varphi, \qquad (29)$$

где

$$F(\chi) = \int_{\rho_0 - L/2}^{\rho_0 + L/2} e^{i\rho\chi} \rho d\rho = \frac{e^{i\chi\rho_0}}{\chi} \bigg\{ 2\rho_0 \sin\bigg(\frac{\chi L}{2}\bigg) + i\bigg(\frac{2}{\chi} \sin\bigg(\frac{\chi L}{2}\bigg) - L\cos\bigg(\frac{\chi L}{2}\bigg)\bigg)\bigg\}.$$

Заметим, что

$$\xi \cos \varphi + \eta \sin \varphi = \sqrt{\xi^2 + \eta^2} \cos(\varphi - \vartheta),$$

где

$$\vartheta = \operatorname{arctg}(\eta/\xi).$$

Отсюда получаем

$$-k_1 \sin \alpha - \xi \cos \varphi - \eta \sin \varphi$$
$$= -k_1 \sin \alpha - \sqrt{\xi^2 + \eta^2} \cos(\varphi - \vartheta)$$

и выражение (29) примет вид

$$\hat{E}_{1,x}^{\mathrm{in}}(\xi,\eta) = -\cos\alpha e^{ik_1\rho_0\sin\alpha}$$

$$\times \int_{0}^{2\pi} F\left(-k_1\sin\alpha - \sqrt{\xi^2 + \eta^2}\cos(\varphi - \vartheta)\right)\cos\varphi d\varphi.$$
(30)

Рис. 4. (*a*) Результаты расчетов по формуле (23) зависимости модуля x — составляющей падающей волны $|E_{1,x}^{in}(x, 0, z)|$ от координаты x для трех фиксированных значений z: z = 0 (*1*), $z = 0.5d_1$ (2), $z = 0.9d_1$ (3); (*b*) зависимости $|E_{1,x}^{in}(x, 0, d_1)|$ (сплошная кривая *I*) и $|E_{1,z}^{in}(x, 0, d_1)|$ (пунктирная кривая *2*) от x в окрестности x = 0.

Аналогично из (28) получаем

$$\hat{E}_{1,y}^{\text{in}}(\xi,\eta) = -\cos\alpha e^{ik_1\rho_0\sin\alpha}$$

$$\times \int_0^{2\pi} F\left(-k_1\sin\alpha - \sqrt{\xi^2 + \eta^2}\cos(\varphi - \vartheta)\right)\sin\varphi d\varphi.$$
(31)

Подставляя (30) и (31) в уравнения (24) и (25), можно найти отраженное электрическое поле (24) в первой среде и прошедшее электрическое поле (25) в полупространстве за пленочной структурой.

Итак, рассмотрим сначала вспомогательную задачу распространения без металлической пленки. Рассмотрим вопрос, как сходится коническая волна к плоскости $z = d_1 = (\rho_0 - L/2) \operatorname{ctg} \alpha$, на которой в дальнейшем будет помещена металлическая пленка. Указанное значение $d_1 = (\rho_0 - L/2) \operatorname{ctg} \alpha$ выбрано таким образом, чтобы на этом расстоянии крайние внутренние лучи конической волны начали интерферировать на оси системы при x = 0. Для определенности примем, что $L = 200 \, \mu$ m, $\rho_0 = 2L$, показатель преломления призмы $n_1 = 1.6$ (т.е. $\varepsilon_1 = 1.6^2$), длина падающей волны в вакууме $\lambda = 633$ nm. Значение угла падения $\alpha = 40.041^\circ$. Это значение α и геометрия падающей волны соответствуют наилучшему возбуждению поверхностной плазмонной волны на поверхности серебряной пленки [8]. На рис. 4, *а* показаны результаты расчетов по формуле (23) зависимости модуля *x*-компоненты падающей волны $|E_{1,x}^{in}(x, 0, z)|$ от *x* для трех фиксированных значений *z*: *a* = 0, *z* = 0.5*d*₁, *z* = 0.9*d*₁. Из полученных зависимостей видно, что амплитуда конической волны увеличивается по мере ее схождения к оси *Z*. Это ясно из геометрических соображений. Кроме того, видно, что на кривой 3 (при *z* = 0.9*d*₁) вблизи *x* = 0 наблюдается интерференция на расстояниях порядка длины волны, которая не разрешается на данном рисунке. Как показали расчеты, при *z* = *d*₁ (геометрическом наложении сходящихся волн) данная интерференция еще более усиливается из-за увеличения амплитуд интерферирующих волн.

Детали интерференции для $z = d_1$ показаны на рис. 4, b, на котором представлены зависимости $|E_{1,x}^{in}(x, 0, d_1)|$ и $|E_{1,z}^{in}(x, 0, d_1)|$ в окрестности x = 0. Из полученных зависимостей видно, что, конечно, коническая волна не фокусируется в строгом смысле этого слова. В окрестности x = 0 получаются интерференционные кольца с близкой амплитудой в максимумах.

Итак, после рассмотрения вспомогательной задачи падения конической волны на пленку исследуем далее поле поверхностной волны на свободной границе пленки.

Вычисление сфокусированного поля на свободной границе пленки и обсуждение полученных результатов

Рассмотрим возбуждение конической волной (26) поверхностных плазмонных волн на свободной поверхности металлической пленки многопленочной структуры, показанной на рис. 3. Предполагается, что пленка 3 серебряная, а длина падающей волны в вакууме, как и ранее, равна 633 nm. Параметры сред, показанных на рис. 3, на рабочей длине волны представлены в таблице.

Было вычислено распределение электрического поля на свободной поверхности металлической пленки

Рис. 5. Интерференционная картина фокусировки радиально сходящейся поверхностной плазмонной волны на свободной границе серебряной пленки: $|E_{4,x}^{\text{trans}}(x, 0, d_1 + d_2)|$ (1) и $|E_{4,z}(x, 0, d_1 + d_2)|$ (2). Величины нормированы на амплитуду падающей волны в призме при z = 0.

Порядковый номер среды, <i>j</i>	Название слоя	Относительная диэлектрическая проницаемость	Толщина пленки
1	Призма	1.6 ²	Полубесконечная среда
2	Слой материала призмы	1.6^{2}	$d_1 = (\rho_0 - L/2) \operatorname{ctg} \alpha = 357 \mu \mathrm{m}$
3	Серебряная пленка	$arepsilon_m = -18.2 + i0.5$	53.8 nm
4	Свободное пространство (воздух)	1	Полубесконечная среда

 $(z = d_{tot} = d_1 + d_2)$ по формуле (25). Результаты распределения модулей x- и z-составляющих напряженности электрического поля в области фокуса в плоскости XZ показаны на рис. 5. Электрическое поле симметрично относительно поворотов вокруг оси Z. В области фокуса $(x, y, z) = (0, 0, d_1 + d_2)$ на поверхности пленки наблюдается максимум поверхностной волны, причем z-составляющая напряженности поля заметно выше радиальных составляющих. Особо следует отметить большую величину поля в максимуме фокуса, 2633 в единицах амплитуды падающей в призме волны в плоскости z = 0. Даже если сравнивать это значение с максимальным значением *z*-составляющей напряженности падающего электрического поля на границе пленки и призмы, т.е. $|E_{1,z}^{in}(0, 0, d_1)|$, то поле усиливается более чем на два порядка. Такое большое усиление поля определяется следующими причинами:

— ширина падающей волны $L = 200 \,\mu\text{m}$ в направлении, перпендикулярном оси, выбиралась достаточно большой — чтобы амплитуда поверхностной волны достигала значения, близкого к максимальному значению [8];

- ўгол падения $\alpha = 40.041^{\circ}$ соответствует оптимальному углу возбуждения поверхностной волны в плоской задаче с ограниченным падающим пучком [8];

— точка схождения внутренних лучей падающей волны к внутренней поверхности пленки $(x, y, z) = (0, 0, d_1)$ соответствует максимальному полю поверхностной волны на другой стороне пленки, исходя из результатов решения плоской задачи [8];

– электрическое поле падающей волны поляризовано в плоскости падения (в плоскости, проходящей через ось задачи Z), что обеспечивает возбуждение только радиально сходящейся поверхностной волны с той же симметрией.

Расчеты показали, что если менять расстояние d_1 , то максимальное значение напряженности поля в фокусе на свободной поверхности пленки слабо меняется при изменении d_1 в окрестности значения ($\rho_0 - L/2$) сtg α . Практически здесь фокальное поле равно максимальному значению. Поэтому настройка на фокальный максимум полученной системы не должна представлять проблемы.

Заключение

Предложен теоретический метод исследования дифракционных явлений при фокусировке радиально сходящейся поверхностной плазмонной волны. Найдены условия оптимальной фокусировки при возбуждении системы конической волной с *p*-поляризацией. Найдены фокальные распределения поля на свободной поверхности металлической пленки и величины усиления электрического поля в фокусе.

Полученный результат имеет прикладное значение в таких приложениях, как создание локальной оптической эмиссии электронов с поверхности металлических пленок [20,21], локальной генерации высших оптических гармоник [22]. Полученные результаты помогут оптимизировать устройства по возбуждению на металлическом острие поверхностной плазмонной ТМ-волны, сходящейся к его вершине и создающей на ней гигантское усиление поля [23].

Список литературы

- De Angelis F., Das G., Candeloro P. et al. // Nature Nanotech. 2010. V. 5. P. 67.
- [2] Giugni A., Torre B., Toma A. et al. // Nature Nanotech. 2013.
 V. 8. P. 845.
- [3] Giugni A., Allione M., Torre B. et al. // J. Opt. 2014. V. 16.
 P. 114003.
- [4] Rui G., Chen W., Lu Y. et al. // J. Opt. 2010. V. 12. P. 035004.
- [5] López-Tejeira F., Rodrigo S.G., Martín-Moreno L. et al. // New J. Phys. 2008. V. 10. P. 033035.
- [6] De Angelis F., Patrini M., Das G. et al. // Nano Lett. 2008.
 V. 8. P. 2321.
- [7] Lezec H.J., Thio T. // Opt. Express. 2004. V. 12. N 16. P. 3629.
- [8] Петрин А.Б. // Опт. и спектр. 2018. Т. 125. № 6. С. 830.
- [9] Piliarik M., Homola J. // Opt. Express. 2009. V. 17. N 19.
 P. 16505.
- [10] Liedberg B., Nylander C., Lundstrom I. // Sensors and Actuators. 1983. V. 4. P. 299.
- [11] Liedberg B., Nylander C., Lundstrom I. // Biosensors & Bioelectronics. 1995. V. 10. P. i–ix.
- [12] Garabedian R., Gonzalez C., Richards J. et al. // Sensors and Achrators A. 1994. V. 43. P. 202.
- [13] Петрин А.Б. // Опт. и спектр. 2018. Т. 125. № 3. С. 375.
- [14] Sommerfeld A. // Annalen der Physik. 1909. V. 333. P. 665.
- [15] *Бреховских Л.М.* Волны в слоистых средах. М.: Наука, 1973.

- [16] Новотный Л., Хехт Б. Основы нанооптики. Пер. с англ. Под ред. Самарцева В.В. М.: Физматлит, 2009.
- [17] Налимов А.Г., О'Фаолейн Л., Стафеев С.С., Шанина М.И., Котляр В.В. // Компьютерная оптика. 2014. Т. 38. № 2. С. 229.
- [18] Стафеев С.С., Котляр В.В. // Компьютерная оптика. 2017. Т. 41. № 2. С. 147.
- [19] Ma Y. // Optical Review. 2012. V. 19. N 2. P. 39.
- [20] Racz P., Irvine S.E., Lenner M. et al. // Appl. Phys. Lett. 2011. V. 98. N 11. P. 111116.
- [21] Welsh G.H., Wynne K. // Opt. Express. 2009. V. 17. P. 2470.
- [22] Kim S., Jin J., Kim Y. et al. // Nature. 2008. V. 453. N 5. P. 757.
- [23] Giugni A., Allione M., Torre B. et al. // J. Opt. 2014. V. 16. P. 114003.