14

Рентгеновские компьютерные методы исследований структурной целостности семян и их значение в современном семеноведении

© М.В. Архипов,^{1,3} Н.С. Прияткин,^{1,¶} Л.П. Гусакова,¹ Н.Н. Потрахов,² А.Ю. Грязнов,² В.Б. Бессонов,² А.В. Ободовский,² Н.Е. Староверов²

¹ Агрофизический научно-исследовательский институт,

195220 Санкт-Петербург, Россия

² Санкт-Петербургский государственный электротехнический университет "ЛЭТИ" им. В.И. Ульянова (Ленина), 197376 Санкт-Петербург, Россия

³ Северо-Западный центр междисциплинарных исследований проблем продовольственного обеспечения,

196608 Пушкин, Санкт-Петербург, Россия

¶e-mail: prini@mail.ru

(Поступило в Редакцию 29 апреля 2018 г.)

Рассмотрены рентгеновские компьютерные методы исследования, — проекционная микрофокусная рентгенография и микрофокусная рентгеновская компьютерная томография, — применяемые для изучения проблемы скрытой дефектности семян и исследования ее влияния на посевные качества. Приведены описание и основные характеристики технических средств, используемых для получения цифровых двумерных и трехмерных (томографических) рентгеновских изображений семян, обсуждаются возможные способы применения их количественной ЭВМ-программной обработки и анализа. Сформулированы выводы о возможностях методов проекционной микрофокусной рентгенографии и микрофокусной рентгеновской компьютерной томографии для изучения особенностей внутренних структур семени, связанных с нарушением его целостности.

DOI: 10.21883/JTF.2019.04.47324.170-18

Введение

Семена как биологические объекты являются сложными многокомпонентными, многопараметрическими нелинейными системами, а в физике для описания таких объектов отсутствует понятийный аппарат. Поэтому при изучении факторов, влияющих на формирование и жизнеспособность семян, имеет смысл рассматривать, прежде всего, их интегральные характеристики как самостоятельного целостного растительного организма и лишь в дальнейшем переходить к исследованию отдельных компонентов, обеспечивающих функционирование системы в целом.

При переходе от организменного уровня оценки к популяционному важное значение приобретает гетерогенность семян, поскольку она приводит к неоднородности будущих организмов, которые, в свою очередь, дадут разнокачественные семена [1].

Современный уровень научных исследований в семеноведении требует применения инструментальных физических методов, позволяющих получить детальную информацию как о внешних, так и внутренних характеристиках структурной целостности семени. На сегодняшний день рентгенография является единственным стандартизованным инструментальным методом, применяемым для решения данной задачи [2–5]. Метод позволяет проводить прижизненные исследования растительных объектов, в том числе семян, не нарушая их структуры и не снижая их жизнеспособности [6]. Анализ публикаций последних лет показывает устойчивую мировую тенденцию к переходу от визуальной оценки цифровых рентгеновских изображений семян к автоматическому анализу с получением количественных характеристик исследуемых объектов [7–10].

Исследования анатомического строения семян с использованием "виртуальной гистологии" на основе метода компьютерной фазово-контрастной микротомографии [11], позволяющего оценивать структурные изменения семян не только на организменном, но и на органнотканевом уровне [12]. Основным преимуществом микрофокусной рентгеновской компьютерной томографии (в зарубежной литературе — микротомографии) по сравнению с методом проекционной микрофокусной рентгенографии является гарантированная визуализация скрытых дефектов в области зародыша у семян округлой формы и сравнительно большой толщины, например, сои, кукурузы и др. [13]. Использование метода компьютерной микротомографии в сочетании с количественной программной обработкой 3D-изображений, позволяющих рассчитать в том числе процент площади, объемную долю и пористость различных структур и органов семени [14,15], в перспективе может служить эффективным дополнительным инструментом для определения физиологической зрелости и жизнеспособности семян.

Основная задача настоящей работы включает в себя рассмотрение следующих вопросов:

 — физико-технические основы методов, используемых для получения цифровых рентгеновских и компьютерных микротомографических изображений семян; характеристики современных аппаратных решений, используемых для получения цифровых рентгеновских и компьютерных микротомографических изображений семян;

 обсуждение основных способов визуализации и анализа цифровых рентгеновских и компьютерных микротомографических изображений семян;

 оценка энергии прорастания, всхожести и компьютерная морфометрия проростков как интегральных показателей для оценки биологической полноценности семян;

 сравнительная оценка возможностей методов цифровой микрофокусной рентгенографии и компьютерной микротомографии для изучения особенностей внутренних структур семени, связанных с нарушением его целостности.

1. Основная часть

1.1. Физико-технические основы методов, используемых для получения цифровых рентгеновских и компьютерных микротомографических изображений семян

Размеры отдельного семени большинства овощных культур и тем более отдельных деталей его структуры составляют от нескольких сотых долей миллиметра до нескольких миллиметров. В связи с этим широко известный в медицинской диагностике контактный способ получения рентгеновских изображений [16] не позволяет в настоящее время обеспечить качество изображения семян, достаточное для обнаружения основных дефектов их внутреннего строения. Для решения этой задачи может быть использован так называемый микрофокусный способ получения рентгеновских изображений [17].

1.1.1. Контактный способ сьемки. При съемке контактным способом (рис. 1) используется источник рентгеновского излучения I с протяженным фокусным пятном d_1 , эффективный размер которого составляет около 1 mm.

Объект съемки 2 располагается на достаточно большом расстоянии f от источника излучения l и вплотную ("контактно") к приемнику изображения 3. Из рисунка видно, что в условиях стандартной — контактной рентгенографии размер фокусного пятна d, а также расстояние между источником излучения и объектом fсущественно влияют на качество (нерезкость H_r) изображения. При этом расстояние f выбирается, исходя из требований к нерезкости получаемых снимков, с учетом конкретных размеров фокусного пятна рентгеновской трубки d_1 и толщины объекта. Уменьшение расстояния f(фокусного расстояния) приводит к ухудшению качества снимка вследствие увеличения H_r . Также даже незначительное удаление приемника изображения от объекта

Рис. 1. Рентгенооптическая схема съемки в стандартной рентгенографии — контактный способ.

съемки: уменьшение f_1 при неизменном f — приводит к значительному ухудшению качества снимка вследствие увеличения H_r . Очевидно, что для уменьшения нерезкости изображения необходимо увеличивать расстояние между объектом и источником излучения. В общем случае отношение расстояний f и f_1 определяет коэффициент увеличения изображения объекта m по сравнению с его истинными геометрическими размерами

$$m = f/f_1$$

Соответственно при контактной съемке $f \approx f_1$ и $m \approx 1$.

1.1.2. Способ рентгеновской съемки с увеличением изображения. При съемке с увеличением изображения используется источник излучения I с так называемым точечным фокусным пятном d_2 (рис. 2). Практика рентгенографии показывает, что для большинства рентгенодиагностических задач коэффициент увеличения изображения не превышает 5–7 раз [18]. В этом случае для получения резких увеличенных изображений биологических тканей размер фокусного пятна должен составлять менее 0.1 mm (или $100 \,\mu$ m). Соответственно методика съемки биологических объектов с помощью таких источников излучения в соответствии с ГОСТ 22091.9–86 получила название "микрофокусная рентгенография", а способ съемки с увеличением изображения — "микрофокусный способ".

В этом случае объект съемки располагается на определенном расстоянии как от источника излучения l, так и от приемника изображения 3. Независимо от того, в каком положении находится объект съемки в пространстве между фокусным пятном источника излучения и плоскостью приемника, резкость полученного изображения в указанном диапазоне значений коэффициента его увеличения сохраняется — $H_r \rightarrow 0$.

Рис. 2. Рентгенооптическая схема съемки — способ с увеличением изображения.

Рис. 3. Увеличенное оптическое изображение тест-объекта (семя гороха).

Для демонстрации преимуществ микрофокусной рентгенографии по сравнению со стандартной рентгенографией в качестве тест-объекта было использовано семя гороха, содержащее структурные элементы размером от нескольких десятков микрометров (рис. 3).

Рентгеновские снимки тест-объекта, полученные по методике стандартной рентгенографии на аппарате с протяженным фокусным пятном без увеличения (контактно) и увеличением изображения, представлены на рис. 4.

Из рисунка видно, что при удалении тест-объекта от приемника изображения (с ростом коэффициента увеличения изображения) информативность получаемых снимков существенно уменьшается по сравнению с контактным снимком вследствие возникающей нерезкости изображения. На рис. 5 представлены рентгеновские снимки того же тест-объекта, полученные по методике микрофокусной рентгенографии на аппарате с точечным фокусным пятном также без увеличения изображения — контактно и с увеличением изображения *m*.

На микрофокусных снимках с увеличением изображения по аналогии с оптической микроскопией не только сохраняется резкость изображения, но и по мере роста коэффициента его увеличения обнаруживаются новые детали строения объекта, ранее не различимые на контактном снимке.

Описанные отличительные особенности способа съемки с увеличением изображения в микрофокусной рентгенографии от контактного способа в стандартной рентгенографии получили название "эффект увеличения глубины резкости" [19]. Преимущества микрофокусного способа рентгеновской съемки семян по сравнению со стандартным — контактным способом дополнительно проиллюстрированы рентгеновскими изображениями карточки семян артишока (рис. 6) [20].

Поскольку геометрические размеры семян артишока составляют несколько миллиметров, с целью дальнейшего анализа исходное рентгеновское изображение каждого семени, полученное контактным способом съемки на аппарате с протяженным фокусным пятном, рассматривается, например, с помощью лупы или микроскопа. На рис. 6, *b* представлены оптически увеличенные рентгеновские изображения семян. Для сравнения на рис. 6, *c* представлены увеличенные рентгеновские изображения этих же семян, полученные микрофокусным способом съемки.

Чтобы подчеркнуть принципиальное отличие механизмов увеличения рентгеновского изображения объекта исследования: оптическое или электронное (с помощью компьютера) в контактном способе и геометрическое в микрофокусном способе, последний принято также называть способом съемки "с прямым рентгеновским увеличением" [18].

Очевидно, что даже при визуальной оценке резкость, контраст и соответственно количество обнаруживаемых деталей строения семени на снимке с прямым рентгеновским увеличением существенно больше, чем на оптически увеличенном контактном снимке.

Для реализации метода микрофокусной съемки семян специалистами Агрофизического научно-исследовательского института и Санкт-Петербургского государственного электротехнического университета "ЛЭТИ" им. В.И. Ульянова (Ленина) разработан совместно аппаратно-программный комплекс на основе передвижной рентгенодиагностической установки ПРДУ-02 для контроля качества семян и зерна [21]. В состав установки ПРДУ-02 (рис. 7) входят: рентгенозащитная камера для проведения рентгенографических работ; источник рентгеновского излучения моноблочного типа РАП70М-0.1H-1; приемник рентгеновского изображения на основе экрана с фотостимулируемым люминофором, либо многофункционального портативного плоскопанельного детектора для цифровой рентгенографии;

Рис. 4. Рентгеновские снимки тест-объекта (семя гороха), полученные на аппарате с протяженным фокусным пятном: *a* — без увеличения изображения; *b*-*d* — с коэффициентом увеличения изображения *m*, равным 2, 4, 8 соответственно [19].

Рис. 5. Рентгеновские снимки тест-объекта, полученные на аппарате с точечным фокусным пятном: *a* — без увеличения изображения; *b*-*d* — с коэффициентом увеличения изображения *m*, равным 2, 4, 8 соответственно.

Рис. 6. Рентгенограммы семян артишока, полученные: *a* — при контактной съемке; *b* — фрагмент контактной рентгенограммы с последующим оптическим увеличением; *c* — тот же фрагмент карточки при прямом рентгеновском увеличении.

Рис. 7. Рентгенодиагностическая установка ПРДУ-02.

управляющая рабочая станция с универсальным [22], либо специализированным [23] программным обеспечением для анализа цифровых рентгеновских изображений семян.

Установка ПРДУ-02 позволяет получать одновременно изображения от нескольких единиц до нескольких сотен семян с увеличением до десяти крат. Этого достаточно, чтобы выявить основные типы дефектов семян: невыполненность, дефекты зародыша, травмированность, скрытую заселенность и поврежденность насекомыми, скрытое прорастание семян и др.

Использование микрофокусного источника рентгеновского излучения позволяет получать проекционные изображения с повышенным пространственным разрешением за счет использования прямого геометрического увеличения в процессе съемки. Эта отличительная особенность микрофокусных рентгеновских аппаратов, кроме классической рентгенографии, также может быть использована при получении томографических изображений, что дает начало развитию отдельной области техники — микрофокусной рентгеновской компьютерной томографии или микротомографии [24].

С целью отработки методик применения микрофокусной рентгеновской компьютерной томографии и экспериментальной проверки требований по точности юстировки элементов томографической системы сотрудниками кафедры электронных приборов и устройств Санкт-Петербургского государственного электротехнического университета "ЛЭТИ" разработан макет микрофокусного рентгеновского компьютерного томографа семейства MPKT (рис. 8) [25].

В качестве источника излучения в МРКТ-01 использован моноблочный рентгеновский аппарат РАП150М-01H-5 (ЗАО "ЭЛТЕХ-Мед", Санкт-Петербург) на основе отпаянной микрофокусной рентгеновской трубки БС-16 (АО "Светлана-Рентген", Санкт-Петербург). Основные технические характеристики томографа МРКТ-01 представлены в табл. 1.

Малые размеры фокусного пятна, достигаемые за счет использования двойной системы фокусировки электронного пучка, позволяют получать рентгеновские изображения с геометрическим увеличением до 200 раз. Эффективный размер вокселя томографических изображений, полученных в таких условиях, достигает 1 µm [25].

Рис. 8. Микрофокусный рентгеновский компьютерный томограф МРКТ-01: *а* — внешний вид; *b* — источник и приемник излучения с системой перемещения объекта.

Анодное напряжение, kV	40-150
Анодный ток, mA	0.01-0.2
Размер фокусного пятна, µm	< 5
Разрешающая способность, µт	1
Эквивалентная толщина объекта томографии (по алюминию), mm	30
не менее	
Габариты объекта томографии, mm не более	300 imes 150 imes 150
Потребляемая мощность, W	500
Габариты и вес томографа, не более, mm, kg	$1800 \times 1200 \times 800,500$

Таблица 1. Основные технические характеристики томографа МРКТ-01

Основные способы визуализации и анализа цифровых рентгеновских и компьютерных микротомографических изображений семян

На рис. 9 представлены примеры "сырых" необработанных цифровых рентгеновских изображений семян пшеницы, полученных с использованием передвижной рентгенодиагностической установки ПРДУ-02.

Автоматическая обработка цифровых рентгеновских изображений, реализованная с помощью программного обеспечения для анализа изображений "ARGUS-BIO" (ООО "АргусСофт", Санкт-Петербург), основана на:

— базовом анализе цифровых рентгеновских изображений, позволяющем количественно оценить размерные (площадь проекции, длина, ширина и др.), геометрические (фактор круга, фактор эллипса, округлость и др.) и яркостные (средняя яркость, среднеквадратическое отклонение яркости, оптическая плотность) [26] характеристики рентгенограмм семян. Наиболее успешно данный принцип реализован при анализе цифровых рентгеновских изображений семян, имеющих дефект "невыполненность, часто встречающийся, в частности, у семян древесных лесных пород (рис. 10).

На рис. 11. представлен пример анализа цифровых рентгеновских изображений кедрового стланика. Последовательность анализа изображений включает в себя выделение области интереса (рис. 11, a), автоматическое выделение объектов интереса по порогу яркости (рис. 11, b), автоматическое измерение выделенных объектов интереса, их классификация (рис. 11, c). В данном случае объекты классификация (рис. 11, c). В данном случае объекты классификация осуществлена по параметру "Средняя яркость".

Численные значения показателя "Средняя яркость" по каждому измеренному объекту приведены в табл. 2.

— дифференцированном анализе цифровых ренттеновских изображений, позволяющем количественно оценить основные геометрические и денситометрические характеристики не только семени в целом, но и его отдельных структур и органов. Данный принцип реализован при анализе цифровых рентгеновских изображений крупных семян древесных лесных пород (семейства кедровые), имеющих достаточную контрастность

Рис. 9. Цифровые рентгеновские изображения семян пшеницы (3-х кратное рентгеновское увеличение): *a* — семя без дефектов, *b* — семя со скрытым дефектом биогенного происхождения — *1* (пораженность эндосперма грибной инфекцией), *c* — семя со скрытым дефектом биогенного происхождения — *2* (пораженность зародыша грибной инфекцией), *d* — семя со скрытым дефектом техногенного происхождения (трещиноватость эндосперма).

Рис. 10. Томографические изображения семян пшеницы. Фронтальные виртуальные сечения (верхний ряд), сагиттальные виртуальные сечения (нижний ряд): *a* — семя без дефектов, *b* — семя со скрытым дефектом биогенного происхождения — *1* (пораженность эндосперма грибной инфекцией); *c* — семя со скрытым дефектом биогенного происхождения — *2* (пораженность зародыша грибной инфекцией); *d* — семя со скрытым дефектом техногенного происхождения (трещиноватость эндосперма).

Рис. 11. Основные этапы компьютерной обработки цифровых рентгеновских изображений на примере семян кедрового стланика, выполненные в программном обеспечении "ARGUS-BIO".

Таблица 2. Денситометрические характеристики семян кедрового стланика, полученные путем интегрального анализа цифровых рентгеновских изображений

Показатель, единицы	№ семени					
измерения	1	2	3	4	5	6
Средняя яркость, единицы яркости	133.91	102.27	109.88	67.88	75.16	126.84
Класс объекта	Normal	Normal	Normal	Empty	Empty	Normal

Рис. 12. Пример программной обработки цифровых рентгеновских изображений семян сосны кедровой, выполняемой путем интерактивного нанесения нескольких контуров, соответствующих отдельным структурам и органам семени: *a* — внешний контур, соответствующий наружной оболочке (кожуре); *b* — внутренний контур кожуры; *c* — контур, соответствующий области эндосперма; *d* — контур, соответствующий области ложа; *e* — контур, соответствующий области зародыша. Верхний ряд — семя, имеющее дефектный зародыш и эндосперм; нижний ряд — семя без дефектов.

для интерактивного программного выделения контуров, соответствующих различных структурам и органам семени.

На рис. 12 представлен пример дифференцированного анализа цифровых рентгеновских изображений семян

сосны кедровой: семя № 1, имеющее скрытые дефекты внутренней структуры, и семя № 2 — без скрытых дефектов. По нанесенным контурам в программе автоматически производятся геометрические и денситометрические измерения.

Таблица 3. Количественные характеристики отдельных структур и органов семян, полученные путем дифференцированного анализа цифровых рентгеновских изображений

№ п/п		Значения показателей	
	показатель, единицы измерения	Семя № 1	Семя № 2
1	Площадь проекции зародыша, mm ²	10.61	13.07
2	Средняя яркость проекции зародыша, единицы яркости	118.46	143.13
3	Отношение площадей проекции зародыша и проекции ложа, %	42.66	48.52
4	Относительная площадь проекции зародыша, %	5.32	7.00
5	Фактор эллипса области проекции зародыша, относительные единицы	0.86	0.929
6	Площадь проекции эндосперма, mm ²	44.31	65.20
7	Относительная площадь области эндосперма, %	34.67	49.37
8	Относительная площадь области отслоения оболочки, %	28.27	15.62

Рис. 13. Пороговое выделение неповрежденной и поврежденной областей семени пшеницы.

Основные характеристики, полученные по результатам дифференцированных измерений цифровых рентгеновских изображений семян, приведены в табл. 3.

Количественный анализ компьютерных микротомографических изображений применим, в частности, с позиции оценки объемной доли выявленного дефекта и может быть выполнен с использованием программного обеспечения СТАп. Основные этапы обработки микротомографических изображений семян включают в себя: предварительную фильтрацию исходных изображений (сглаживание шумов) и пороговое выделение неповрежденной и поврежденной областей семени (рис. 13). Далее диапазоны пороговых значений экстраполируются на весь массив исходных микротомографических изображений (> 1000 шт.). На основании анализа массива исходных изображений осуществляется автоматический расчет объемной доли поврежденной области семени, %.

По данным измерений в программе СТАп объемная доля пораженной ткани (общая пористость) семени составила 8.55%.

3. Оценка энергии прорастания, всхожести и компьютерная морфометрия проростков как интегральных показателей для оценки биологической полноценности семян

Комплексная методика оценки качества семенного материала включает в себя морфометрические измерения семян, состоящие из следующих этапов [27]: определение энергии прорастания, всхожести [28]; измерение длины и/или массы ростков и корней; ранжирование ростовых показателей по классам. Для морфометрических измерений семян наиболее удобен способ проращивания в рулонах. Преимуществами оценки посевных качеств семян (рулонный способ проращивания) в сочетании с компьютерной морфометрией проростков являются:

 простота соблюдения нумерации семян в опыте, необходимой для сопоставления рентгеновских и ростовых показателей;

Рис. 14. Цифровые рентгеновские изображения семян пшеницы после проведенного теста на проращивание.

№ п/п	Показатель	Микрофокусная рентгенография	Компьютерная микротомография		
1.	Информативность метода				
1.1.	Гарантированная визуализация скрытых дефектов семени всех видов растений	-/+*	+		
1.2.	Возможность количественной оценки изображений	+	+		
1.3.	Возможность получения характеристик дефектности индивидуального семени	+	+		
2.	Ресурсоемкость				
2.1.	Скорость получения изображения одного образца	< 2 min 100 шт. семян	$\sim 60 { m min}$ одно семя		
2.2.	Требования к ресурсам ПК	Средние	Высокие		
2.3.	Экономичность методики	Средняя	Низкая		
3.	Сохранение жизнеспособности объекта исследований	+	+		

Таблица 4. Сравнительная оценка возможностей методов цифровой микрофокусной рентгенографии и компьютерной микротомографии для исследований качества семян

Примечание: * зависит от вида растения и способа его укладки при рентгеновской съемке.

— высокая точность измерений, в том числе — длины изогнутых объектов (зародышевых побегов и корней);

 возможность быстрого документирования большого количества исходных экспериментальных данных (сканированных изображений) с последующим анализом в удобное для исследователя время.

Измерение ростовых показателей (длина зародышевого побега и корня) осуществляются в программном обеспечении "ARGUS-BIO". Полученные данные сопоставляются с оценкой внутренней дефектности семян, выполненные с использованием метода рентгенографии [27]. Цифровые сканированные изображения семян пшеницы после проведенного теста на проращивание представлены на рис. 14. Полученные данные свидетельствуют, что скрытые дефекты семян, отмеченные на рис. 9 и 10 (*b*, *c* и *d*), привели к потере их жизнеспособности и утрате посевных качеств. Морфометрические измерения семени пшеницы без дефектов (рис. 14, *a*) показали следующие результаты: энергия прорастания "+", всхожесть "+", длина зародышевого побега — 21.20 mm, количество зародышевых корней — 3 шт., длина максимального зародышевого корня — 13.11 mm.

Заключение

Сравнительная оценка возможностей методов цифровой микрофокусной рентгенографии и компьютерной микротомографии для изучения особенностей внутренних структуры семени, связанных с нарушением его целостности, представлена в табл. 4.

С учетом преимуществ метода микрофокусной рентгенографии (высокая скорость получения изображений, сравнительная экономичность), а также определенных ограничений по информативности метода при исследованиях семян некоторых видов растений [13], можно рекомендовать метод, прежде всего, для решения прикладных (рутинных задач) исследований качества семенного материала:

 первичный скрининг, выявление и идентификация скрытых дефектов семян различных категорий, определение доли этих дефектов в исследуемых партиях семенного материала для оценки их потенциальной всхожести [29];

 обнаружение зараженности семян вредителями в скрытой форме, в том числе, относящихся к объектам карантинного контроля [30];

— коррекция применяемых агротехнологий и культуры производства на основе рентгенографического анализа с целью сведения внутренней дефектности семян до минимального уровня [27].

При условии получения нескольких проекций рентгеновских изображений для одних и тех же семян информативность метода микрофокусной рентгенографии может быть повышена [31].

Высокая информативность метода компьютерной микротомографии с учетом факторов, лимитирующих ее широкое применение в семеноведении (временные затраты на проведение исследований и стоимость оборудования), позволяет рекомендовать данный метод для решения фундаментальных задач семеноведения в том числе контроля результатов селекционного процесса [32]. При этом необходимо принимать во внимание и более углубленно исследовать возможное влияние рентгеновского излучения как на сами семена, так и на присутствующую на них микрофлору [33,34].

Авторы выражают признательность сотруднику Ресурсного центра "Рентгенодифракционные методы исследования" Санкт-Петербургского государственного университета А.М. Кулькову за проведенный компьютерный анализ микротомографического изображения семени пшеницы.

Список литературы

- Батыгин Н.Ф. Онтогенез высших растений. Всесоюз. Акад. с.-х. наук им. В.И. Ленина. М.: Агропромиздат, 1986. 100 с.
- [2] ОСТ 56-94-88. Семена древесных пород. Методы рентгенографического анализа. М., 1988.

- [3] Международный стандарт ИСО 1162-75 "Зерно и зернобобовые. Определение зараженности и поврежденности вредителями методом рентгенографии". 1980. 5 с.
- [4] ГОСТ 28666.4-90 (ИСО 6639/4-87) Зерновые и бобовые.
 Определение скрытой зараженности насекомыми. Ч. 4. Ускоренные методы.
- [5] Методика анализа семян. М., 1995. 399 с.
- [6] Архипов М.В., Потрахов Н.Н. Микрофокусная рентгенография растений. СПб.: Технолит, 2008. 192 с.
- [7] Narvankara D.S., Singha C.B., Jayasa D.S., White N.D.G. // Biosystems Engineering, 2009. Vol. 103. P. 49–56.
- [8] Pinto T.L.F., Cicero S.M., França-Neto J.B., Forti V.A. // Seed Sci. Technol. 2009. Vol. 37. N 1. P. 110–120.
- [9] Gomes-Junior F.G., Yagushi J.T., Belini U.L., Cicero S.M. // Seed Sci. Technol. 2012. Vol. 40. N 1. P. 102–107.
- [10] Silva V.N., Cicero S.M., Bennett M. // Seed Sci. Technol. 2013. Vol. 41. N 2. P. 225–234.
- [11] Rousseau D., Widiez T., Di Tommaso S., Rositi H., Adrien J., Langer M.E., Olivier C., Peyrin F., Rogowsky P. // Plant Methods. 2015. 11:55. P. 1–10. DOI: 10.1186/s13007-015-0098-y
- [12] Cloetens P., Mache R., Schlenker M., Lerbs-Mache S. // Proc. National Academy of Science of the United States of America. 2006. Vol. 103. N 39. P. 14626–14630. DOI: 10.1073/pnas.0603490103
- [13] Gomes-Junior F.G., van Dujin B. // Seed Testing International. 2017. N 154. P. 48–52.
- [14] Trigui G., Boudehri-Giresse K., Le Corre L. How does Microtomography provide access to full seed morphology? Current applications and future prospects / 31th ISTA Congress – Seed Symposium. Tallinn, Estonia, 15–17 June, 2016. P. 66.
- [15] Ham H., du Plessis A., le Roux S.G. // New Zealand J. Forestry Sci. 2017. Vol. 47. P. 1–8. doi.org/10.1186/s40490-016-0084-9
- [16] Блинов Н.Н., Леонов Б.И. Рентгеновские диагностические аппараты: в 2 т. М.: ВНИИИМТ, НПО "Экран", 2001. Т. 2. 140 с.
- [17] *Мазуров А.И., Потрахов Н.Н.* // Медицинская техника. 2011. № 5. С. 30–34.
- [18] Васильев А.Ю. Рентгенография с прямым многократным увеличением в клинической практике. М.: ИПТК "Логос" ВОС, 1998. 148 с.
- [19] Мусаев Ф.Б., Потрахов Н.Н., Архипов М.В. Рентгенография семян овощных культур. СПб.: ЛЭТИ, 2016. 206 с.
- [20] Потрахов Н.Н. // Вестн. новых мед. технологий. 2007. Т. XIV. № 3. С. 167–169.
- [21] Пат. РФ № 85292, МПК А01С 1/02. Устройство для рентгенодиагностических исследований зерна и семян / Архипов М.В., Демьянчук А.М., Великанов Л.П., Потрахов Н.Н., Грязнов А.Ю., Потрахов Е.Н. Заявлено 13.04.2009; зарег. 10.08.2009; опубл. 10.08.2009. Бюл. № 22.
- [22] Прияткин Н.С., Колесников Л.Е., Архипов М.В., Гусакова Л.П., Кузнец С.М. Перспективы использования методик автоматизированного анализа изображений в лесном семеноводстве и лесной фитопатологии. / Тезисы V Междунар. науч.-практ. конф. "Инновации и технологии в лесном хозяйстве" ITF-2016, СПб, ФБУ "СПбНИИЛХ" 31 мая–2 июля 2016 г. СПб.: СПбНИИЛХ, 2016. С. 116.
- [23] Желудков А.Г., Белецкий С.Л., Потрахов Н.Н. // Хлебопродукты. 2016. № 5. С. 58–61.
- [24] Бессонов В.Б., Ободовский А.В., Клонов В.В., Кострин Д.К. // Евразийский союз ученых. 2014. № 5–3 (5). С. 12–15.

- [25] Ободовский А.В., Бессонов В.Б., Ларионов И.А. Смещение фокусного пятна рентгеновской трубки с прострельным анодом при длительных экспозициях / Материалы IV Всероссийской научно-практической конференции производителей рентгеновской техники. СПб.: Изд-во СПбГЭТУ "ЛЭТИ", 2017. С. 68–71.
- [26] Архипов М.В., Прияткин Н.С., Колесников Л.Е. // Известия Санкт-Петербургского гос. аграрного ун-та. 2016. № 44. С. 21–27.
- [27] Архипов М.В., Гусакова Л.П., Великанов Л.П., Виличко А.К., Желудков А.Г., Алферов В.Б. Методика комплексной оценки биологической и хозяйственной пригодности семенного материала. Методические рекомендации. СПб.: АФИ, 2013. 52 с.
- [28] ГОСТ 12038-84. Семена сельскохозяйственных культур. Методы определения всхожести.
- [29] Архипов М.В., Прияткин Н.С., Потрахов Н.Н., Гусакова Л.П., Журавлева Е.В. Системный подход к оценке разнокачественности семян зерновых культур на основе использования современных методов интроскопической диагностики // Труды Кубанского гос. аграрного ун-та. 2015. Вып. 3. № 54. С. 79–83.
- [30] Архипов М.В., Алексеева Д.И., Великанов Л.П., Гусакова Л.П. Интроскопический метод ускоренного определения скрытой заселенности зерна карантинными вредителями: методические рекомендации // СПб.: Агрофизический НИИ РАСХН, 2005. 24 с.
- [31] Grundas S., Velikanov L., Archipov M. // Int. Agrophysics. 1999. Vol. 13. P. 355–361.
- [32] Прияткин Н.С., Архипов М.В., Гусакова Л.П. Возможности и перспективы методов исследования скрытой неоднородности семян и их реализация в селекции, семеноводстве и защите растений. / В сборнике: Тенденции развития агрофизики: от актуальных проблем земледелия и растениеводства к технологиям будущего Материалы Международной научной конференции, посвященной 85летию Агрофизического НИИ. 2017. С. 810–814.
- [33] Zappala S., Helliwell J.R., Tracy S.R., Mairhofer S., Sturrock C.J., Pridmore T., Bennett M., Mooney S.J. // PLOS ONE. 2013. Vol. 8. N 6. P. 1–8. doi.org/10.1371/journal.pone.0067250
- [34] Ikram N., Dawar S., Imtiaz F. // J. Plant Pathology & Microbiology. 2015. S3:003. https:/doi.10.4172/2157-7471.S3-003