05,08,13

Вихреподобные образования на дефектах магнитоодноосных пленок

© Р.М. Вахитов¹, А.А. Ахметова¹, Р.В. Солонецкий²

 ¹ Физико-технический институт, Башкирский государственный университет, Уфа, Россия
 ² Уфимский государственный авиационный технический университет, Уфа, Россия

E-mail: VakhitovRM@Yahoo.com

(Поступила в Редакцию 4 сентября 2018 г. В окончательной редакции 5 октября 2018 г.)

> Теоретически исследуются магнитные неоднородности, образующиеся на колумнарных дефектах типа потенциальная яма в магнитоодноосных пленках. Показано, что при определенных условиях на таких дефектах возникают вихреподобные образования с распределением намагниченности, имеющим три участка вращения магнитных моментов. Из анализа структуры и свойств вихреподобных неоднородностей в зависимости от материальных параметров следует, что они в основном определяются размерами дефектов и глубиной потенциальной ямы. Приведены экспериментальные данные, касающиеся их существования.

DOI: 10.21883/FTT.2019.03.47235.248

1. Введение

Среди различных видов дефектов, присутствующих в магнитных материалах, особый интерес представляют дефекты типа "потенциальная яма" [1]. Они характерны тем, что их наличие вносит отрицательный вклад в энергию магнетика, что может привести к образованию на них магнитных неоднородностей различной топологии [2-5]. С ними связан один из основных механизмов возникновения гистерезисных явлений в материалах при их перемагничивании, который проявляется в виде задержки и роста зародышей перемагничивания [2,6]. Из расчетов следует [1,5], что в одноосных пленках на дефектах такого рода могут возникнуть два типа магнитных образований, соответствующих 0⁰ доменным границам (ДГ) и различающихся энергией, шириной и амплитудой (максимальным углом отклонения θ_m вектора намагниченности М от равновесного направления Мо в доменах). Отличия в их структуре существенно сказываются на свойствах этих неоднородностей и позволяют их идентифицировать при экспериментальном исследовании магнитных образований на дефектах пленок. В частности, если их наблюдать в поляризационном микроскопе с помощью магнитооптических методов, то высокоамплитудные неоднородности ($\pi < \theta_m < 3\pi/2$) из-за наличия в их структуре области, в которой магнитные моменты противоположно направлены намагниченности М₀, будут отличаться от малоамплитудной неоднородности ($\theta_m < \pi/2$) наличием ореола [7]. Такую картину действительно можно наблюдать на фотографиях, полученных при сканировании поверхности феррит-гранатовой пленки с последующей фотосъемкой [5]. Однако в реальных магнетиках имеющиеся в них дефекты являются, по крайней мере, двумерными объектами. Следовательно, результаты, полученные в рамках одномерной теории [1], могут дать не совсем

адекватное описание магнитных образований на двумерных дефектах. Из предварительных расчетов следует [8], что в магнитоодноосных пленках на колумнарных дефектах [9] типа "потенциальная яма" при определенных значениях параметров материала могут существовать вихреподобные магнитные неоднородности.

Известно, что вихревые состояния в магнетиках, являющиеся разновидностью 2D-топологических солитонов, теоретически были предсказаны задолго до их экспериментального обнаружения. Аналитические решения, описывающие структуру магнитного вихря, были впервые предложены в работе [10]. Они послужили отправной точкой для дальнейших исследований в этой области, среди которых можно отметить [11-14]. Однако после экспериментального обнаружения магнитных вихрей в пермаллоевых наноточках [15] интерес к ним еще сильнее возрос [16], что было связано с открывшимися перспективами их применения в устройствах магнитной памяти с высокой плотностью записи информации и произвольного доступа (MRAM). Кроме того, магнитные вихри привлекают внимание своей необычной структурой и наличием нетривиальных статических и динамических свойств [16]. В связи со сказанным, представляет также интерес изучение вихреподобных магнитных состояний, образующихся на колумнарных дефектах типа потенциальная яма, в одноосных ферромагнитных пленках.

Необходимо отметить, что исследования по изучению взаимодействия магнитных вихрей с дефектами, присутствующими в магнитных наноточках, проводились и не однократно [17–20], так как они влияют на свойства данных вихрей: на их траекторию, на размеры и т.д. Однако, в предлагаемой постановке задачи, в которой наличие дефектов в магнетике является условием существования магнитных вихрей, в работах [17–20] не рассматривались. Кроме того, дополнительным стимулом для проведения данных исследований может послужить тот факт, что подобные дефекты можно создавать целенаправленно, например, с помощью сфокусированного лазерного облучения участков поверхности магнитной пленки, меняющего значения его параметров. В частности, в работе [21] в местах локального воздействия было обнаружено зарождение вертикальных блоховских линий, а в [22] в облученных участках пленки наблюдались кольцевые структуры.

2. Магнитные образования на колумнарном дефекте. Основные уравнения

Рассмотрим неограниченную одноосную ферромагнитную пленку (толщиной D), содержащую дефект в форме сквозного цилиндра (колумнарный дефект [9]). Учитывая симметрию магнетика, выберем цилиндрическую систему координат (r, φ, z) с центром O, совпадающим с центром окружности колумнарного дефекта и расположенным в середине (по толщине) пленки. Соответственно, материальные параметры образца (А — обменный параметр, К_и — константа одноосной анизотропии, *M_s* — намагниченность насыщения) и единичный вектор намагниченности $\mathbf{m} = \mathbf{M}/M_s$ зависят только от переменной r. Нетрудно показать, что магнитные неоднородности, имеющие место в таком магнетике, имеют блоховскую структуру [23] и, следовательно, вектор т будет описываться только одним углом θ , отчитывающимся от оси Ог. Однако такая ситуация может измениться в ультратонких пленках, когда $D \ll \Delta_0$ [24], где Δ_0 характерный размер ДГ в одноосных ферромагнетиках [25]. В силу сказанного будем считать, что $D \gg \Delta_0$.

Тогда энергия магнитных неоднородностей рассматриваемого магнетика с учетом обменного взаимодействия (характеризуемого обменным параметром A), одноосной анизотропии (K_u) и размагничивающих полей, обусловленных конечностью пленки, запишется в виде:

$$E = 2\pi D \int_{0}^{\infty} \left\{ A \left[\left(\frac{d\theta}{dr} \right)^{2} + \frac{\sin^{2}\theta}{r^{2}} \right] + K_{u} \sin^{2}\theta \right. \\ \left. + \frac{2M_{s} \cos\theta}{D} \int_{0}^{\infty} \left\{ M_{s}' \cos\theta' [k_{0} \mathbf{K}(k_{0}) - k\mathbf{K}(k)] \sqrt{\frac{r'}{r}} dr' \right\} r dr,$$

$$(1)$$

где

$$k_0 = \frac{2\sqrt{rr'}}{r+r'}, \quad k = \frac{2\sqrt{rr'}}{\sqrt{(r+r')^2 + D^2}},$$
$$K(s) = \int_0^{\pi/2} \frac{d\varphi}{\sqrt{1 - s^2 \sin^2 \varphi}}$$

— полный эллиптический интеграл I-го рода, s — его модуль, $M'_s = M_s(r'), \, \theta' = \theta(r').$

В качестве модели дефекта рассмотрим структурную неоднородность магнетика, материальные параметры $P = \{A, K_u, M_s\}$ которой изменяются скачком в области дефекта [1,26] следующим образом

$$P = \begin{cases} P_1, & r \ge R_0 \\ P_2, & r \le R_0, \end{cases}$$
(2)

где $P_i = \{A_i, K_{ui}, M_{si}\}$ — материальные параметры вне колумнарного дефекта (i = 1) и в области дефекта (i = 2).

Соответствующее уравнение Эйлера–Лагранжа, описывающее распределение намагниченности в области дефекта, примет вид

$$\frac{1}{r}\frac{d}{dr}\left(Ar\frac{d\theta}{dr}\right) - \sin\theta\cos\theta\left(K_{u} + \frac{A}{r^{2}}\right) + \frac{2M_{s}}{D^{2}}$$
$$\times \sin\theta \int_{0}^{\infty} M'_{s}\cos\theta'[k_{0}\mathbf{K}(k_{0}) - k\mathbf{K}(k)]\sqrt{\frac{r'}{r}}dr' = 0.$$
(3)

Особенностью соотношения (1) для энергии Е, а также уравнения (3), является наличие в выражении для обменной энергии второго слагаемого, которое по характеру зависимости от угла θ можно отнести к одноосной анизотропии. Это вполне логично, так как обменное взаимодействие заставляет соседние спины быть направленными коллинеарно друг другу, что приводит к уширению ДГ. Однако если микромагнитная структура, образующаяся в пленке, обладает цилиндрической симметрией, то ДГ по форме является уже круговой. В этом случае обменное взаимодействие для части магнитных моментов, находящихся внутри цилиндрической области, ограниченной ДГ, приводит к их обменному "сжатию", что выражается в наличии вышеуказанного слагаемого, которое вносит положительный вклад в одноосную анизотропию. Наличие такого вклада обуславливает при определенных условиях возможность существования магнитных вихрей [10,16], а также цилиндрических магнитных доменов [27]. Кроме того, как известно [27], условием существования последних в одноосных ферромагнитных пленках считается выполнение неравенства Q > 1 ($Q = K_u/2\pi M_s^2$ — фактор качества), так как при Q < 1 размагничивающие поля заставляют спины ложиться в плоскость пленки. Однако в работе [28] было показано, что существование таких доменов возможно и в пленках с Q < 1 (вплоть до значений $Q \approx 0,75$), что связано с вкладом обменного взаимодействия в одноосную анизотропию. Это исследование (ранее не получившее адекватного объяснения) как раз говорит о важной роли, которую играет данное слагаемое в теории микромагнитных структур, имеющих аксиальную симметрию.

Особенности структуры вихреподобной неоднородности, образующейся на колумнарных дефектах

Численный анализ интегро-дифференциального уравнения (6) с учетом (4), проведенный методом, предложенным в [5] и апробированным в [29], позволяет найти распределение намагниченности т в области колумнарного дефекта, и его характеристики: характерные размеры магнитной неоднородности и ее энергию. При этом необходимо отметить, что все параметры, имеющие размерность длины, приведены к величине $\Delta_1 = \sqrt{A_1/K_{\mu 1}}$ (здесь $\Delta_1 = \Delta_0$). Из расчетов следует, что эта неоднородность на дефекте представляет вихреподобное образование (рис. 1) с ядром (кор) в центре $(m_{7}(0) = -1)$ и с пологим участком вращения магнитных моментов в области дефекта, в котором происходит задержка их вращения вблизи плоскости, параллельной поверхности пленки ($z = \pm D/2$, $r < R_0$). Вне области дефекта $(r > R_0)$ на графике зависимости $m_z = m_z(r)$ имеет место резкий подъем, соответствующий тому, что магнитные моменты на этом участке наискорейшим образом стремятся сориентироваться вдоль оси Ог $(m_z = 1)$. В результате в структуре вихреподобного магнитного образования можно выделить три характерных участка вращения магнитных моментов: центральное ядро (кор), в котором основную роль играют одноосная анизотропия обменного происхождения и магнитостатические поля, пологий (средний) участок, где доминирует легкоплоскостная анизотропия дефекта, и участок, расположенный на границе дефекта, где происходит ускоренное вращение магнитных моментов из-за преобладающего влияния одноосной анизотропии типа легкая ось. Соответственно, на графике (рис. 1) имеются

Рис. 1. Распределение намагниченности в вихреподобном образовании с полярностью $m_z(0) = 1$ (штрихпунктирная линия) и $m_z(0) = -1$ (сплошная линия) при следующих значениях материальных параметров: $K_{u2} = -K_{u1}$, $R_0 = 7$, $A_2 = A_1$, Q = 5, $M_{s2} = M_{s1}$, D = 10. Здесь штриховыми линиями обозначены касательные к соответствующим точкам перегиба.

Рис. 2. График зависимости энергии вихреподобного образования с полярностью $m_z(0) = -1$ (сплошная линия) и $m_z(0) = 1$ (штриховая линия) от радиуса дефекта при следующих значениях материальных параметров: $K_{u2} = -K_{u1}$, $A_2 = A_1$, Q = 2, $M_{s2} = M_{s1}$, D = 10.

три точки перегиба (P_1, P_2, P_3) , из которых крайняя справа (P_3) , соответствующая большему значению r и расположенная в граничном участке, будет определять размер R_v вихреподобного состояния согласно соотношению [30]

$$R_{v} = r_{3} + \frac{1 - m_{z}(r_{3})}{m'_{z}(r_{3})},$$
(4)

где r_3 — есть радиальная координата точки P_3 , $m'_z(r_3)$ — значение производной функции $m_z(r)$ по переменной r при $r = r_3$. В данном случае R_v определяется как координата точки пересечения касательной, проведенной через крайнюю справа точку перегиба r_3 , с прямой $m_z(r) = 1$. Такое магнитное образование с тремя точками перегиба в литературе иногда называют "перетяжкой" [31]. В магнетиках с доменной структурой она играет роль зародыша новой фазы при спин-переориентационном фазовом переходе I рода. В рассматриваемом случае перетяжка является характерной чертой структуры вихреподобной неоднородности.

Следует отметить, что возможно существование еще одного типа магнитной неоднородности, представляющей также вихреподобное образование на дефекте, но с другой полярностью кора ($m_z(0) = 1$, (рис. 1)). Они различаются энергетически (рис. 2): неоднородность первого типа ($m_z(0) = -1$) является энергетически более выгодной, чем неоднородность второго типа ($m_z(0) = 1$). При этом в точке пересечения графиков их энергий, которая находится на оси $O-R_0$, неоднородность с полярностью ($m_z(0) = 1$) исчезает и ее энергия зануляется. Разность их энергий ΔE определяется величиной их магнитостатической энергии, заключенной в области, занимаемой кором. Поэтому она зависит как от радиуса дефекта R_0 , так и от фактора качества Q: с возрастанием Q эта разность быстро уменьшается и при Q > 10асимптотически стремится к некоторому предельному

Рис. 3. График зависимости разности энергий вихреподобных образований с полярностью $m_z(0) = 1$ и $m_z(0) = -1$ от радиуса дефекта. Значения материальных параметров (за исключением Q) те же, что и на рис. 2. Линия I соответствует Q = 2, линия 2 - Q = 5, линия 3 - Q = 20.

значению (рис. 3). В то же время при увеличении R_0 , разность ΔE увеличивается, хотя и незначительно.

Размер кора R_C можно определить как координату точки пересечения касательной, проведенной через точку перегиба P_1 графика функции $m_z = m_z(r)$ с прямой $m_z = 0$ (рис. 1). В данном случае величина R_C находится по той же формуле [30], что и соотношение (4)

$$R_C = r_1 - \frac{m_z(r_1)}{m_z'(r_1)} \tag{5}$$

Прежде всего, отметим, что не при всех значениях параметров материала и характеристик дефекта возможно существование трех точек перегиба и тем самым образование вихреподобной микромагнитной структуры с тремя участками вращения магнитных моментов, о которых говорилось выше. В частности, из расчетов следует, что при небольших значениях параметров R_0 и $|K_{u2}|$ в структуре магнитного образования на дефекте будет одна точка перегиба, то есть перетяжка отсутствует. В данном случае энергия вихреподобного образования лежит в положительной области ее значений, что говорит о невозможности его существования на колумнарном дефекте в рассматриваемых пленках.

Согласно расчетам (рис. 4) радиус кора R_C вихреподобного образования с возрастанием размера дефекта R_0 резко увеличивается вплоть до $R_0 \sim 7\Delta_1$, а затем асимптотически стремится к некоторому предельному значению $R_{\rm np}$, величина которого меняется в зависимости от глубины потенциальной ямы K_{u2} и фактора качества Q. Очевидно, величина $R_{\rm np}$ определяется конкуренцией обменного взаимодействия, размагничивающих полей кора и поля, создаваемого легкоплоскостной анизотропией колумнарного дефекта, причем первый и третий фактор оказывает существенное влияние при малых значениях радиальной переменной, а второй и третий факторы при больших r. Зависимость размера кора от глубины потенциальной ямы K_{u2} ведет несколько иначе: с увеличением $|K_{u2}|$ радиус кора уменьшается: сначала резко, а потом асимптотически приближается к своему предельному значению. Такая зависимость объясняется тем, что вращательные моменты легкоплоскостной анизотропии стремятся повернуть магнитные моменты в сторону плоскости пленки: чем больше глубина потенциальной ямы, тем легче они ложатся в плоскость. В этом случае касательная к графику зависимости $m_z = m_z(r)$ пологого участка вращения магнитных моментов (рис. 1) стремится быть параллельной плоскости z = 0 (в пределе).

Размер вихреподобного образования определяется, прежде всего, размером дефекта R_0 и глубиной потенциальной ямы K_{u2} . Как видно из графиков зависимостей R_v от R_0 (рис. 5), при определенном значении размера дефекта имеется скачкообразный характер этой зависимости, который связан с изменением топологии

Рис. 4. График зависимости размера кора вихреподобного образования с полярностью $m_z(0) = -1$ от радиуса дефекта при следующих значениях материальных параметров: $K_{u2} = -K_{u1}$, $A_2 = A_1$, Q = 5, $M_{s2} = M_{s1}$, D = 10. Здесь линия 1 соответствует $K_{u2} = -0.2K_{u1}$, $2 - K_{u2} = -0.5K_{u1}$, $3 - K_{u2} = -K_{u1}$, $4 - K_{u2} = -5K_{u1}$.

Рис. 5. График зависимости размера вихреподобного образования от радиуса дефекта. Значения материальных параметров, обозначения кривых и полярность кора те же, что и на рис. 4.

вихреподобной неоднородности и образованием на ней перетяжки. Значение радиуса, при котором происходит такой переход, существенно зависит от величины Ки2: чем больше глубина потенциальной ямы, тем при меньших размерах дефекта такой переход имеет место. Поскольку энергия магнитной неоднородности до перехода положительна, то условия для ее существования отсутствуют. В этом случае найденные предельные значения радиуса перехода могут служить нижней границей области существования вихреподобного состояния R₀. При дальнейшем возрастании R₀, величина R_v также увеличивается, становясь линейной функцией от R_0 . Это согласуется с эмпирически установленной закономерностью [1,4,5,26], утверждающей, что магнитная неоднородность, образующаяся на дефекте, подстраивается под его профиль.

4. Диаграммы устойчивых состояний вихреподобных образований

Очевидно, на устойчивые состояния вихреподобных неоднородностей будет оказывать влияние также размагничивающие поля пленки, вклад которых в энергию магнетика (1) обратно пропорционален фактору качества Q. Анализ его влияния, как и в одномерном случае, рассмотрим на диаграмме устойчивых состояний вихреподобных неоднородностей в переменных $Q-R_0$, которая представлена на рис. 6. Из нее видно, что область устойчивости магнитной неоднородности с полярностью $m_z(0) = -1$ по параметру Q ограничена снизу некоторой кривой $Q = Q_1(R_0)$, для которой максимальная величина Q достигает некоторого значения Q_{max} (при данных параметрах материала $Q_{\text{max}} = 1.4$), а минимальное значение $Q_{\min} \rightarrow 1$ при больших значениях R_0 .

Эта кривая, являющаяся нижней границей области устойчивости вихреподобных неоднородностей, существенно зависит от глубины потенциальной ямы K_{u2} : чем больше $|K_{u2}|$, тем она ближе к критической линии $Q_0 = 1$ и наоборот. Найденная закономерность обусловлена характером влияния величины K_{u2} на устойчивые состояния вихреподобных образований: при возрастании $|K_{u2}|$, уменьшается энергия дефекта. Соответственно возрастают вращательные моменты, обусловленные легкоплоскостной анизотропией и удерживающие вихреподобное образование на дефекте, и тем самым его устойчивость относительно внешних возмущений возрастает.

Кривая $Q = Q_1(R_0)$ практически не зависит от M_{s2} , а если есть такая зависимость, то при малых D, точнее при $D \ll \Delta_1$ [24]. Однако, в этом случае модель уже не описывает вихреподобную неоднородность, образующуюся на колумнарном дефекте.

В то же время, как показывают расчеты, граница области устойчивости зависит от параметра A_2 : при его возрастании (по сравнению с A_1) кривая $Q = Q_1(R_0)$ смещается вверх и, наоборот, при понижении A_2 , она смещается вниз. Такое поведение кривой в зависимости

Рис. 6. Диаграмма области устойчивости вихреподобного образования с полярностью $m_z(0) = -1$. Здесь $K_{u2} = -K_{u1}$, $A_2 = A_1$, $M_{s2} = M_{s1}$, D = 10.

от A_2 объясняется тем, что обменное взаимодействие вносит положительный вклад в энергию (1) и при увеличении A_2 этот вклад возрастает, что сказывается на области устойчивости вихреподобных образований.

Слева область устойчивости ограничена другой кривой $Q = Q_2(R_0)$, которая также зависит от K_{u2} и M_{s2} , в частности, при возрастании $|K_{u2}|$ эта кривая смещается влево поближе к оси ординат Q и, следовательно, область устойчивости вихреподобных образований расширяется в полном соответствии с ранее сказанным. Подобным же образом ведет эта кривая при возрастании параметра M_{s2}. В этом случае размагничивающие поля вихреподобного образования с полярностью кора $m_{7}(0) = -1$ вносят отрицательный вклад в энергию магнетика. В частности, для однородного состояния магнетика их вклад в энергию (1) приводит к перенормировке константы одноосной анизотропии: $K'_u = K_u - 2\pi M_s^2$. Учитывая, что в области дефекта $K_u = K_{u2} < 0$, то при возрастании параметра M_{s2} увеличивается глубина потенциальной ямы. При наличии доменной структуры этот вклад в энергию также отрицателен, однако в выражении для К' коэффицент во втором члене будет уже другим [27].

5. Обсуждение результатов

Из приведенных расчетов структуры и устойчивости вихреподобных образований следует, что они могут возникать в магнитоодноосных пленках на колумнарных дефектах типа потенциальная яма. Топология и размеры этих неоднородностей существенно зависят от характеристик дефекта (A_2 , K_{u2} , M_{s2} , R_0) и прежде всего от его радиуса и глубины потенциальной ямы. По структуре они представляют магнитную неоднородность, подобную магнитному вихрю, но имеющую более сложное распределение вектора **m**, содержащее три характерных участка вращений магнитных моментов: кор, пологий (средний) и граничный участки. Микромагнитную структуру, подобную описанной выше неоднородности, предположительно наблюдали в работе [5]. Следует отметить также работу [32], в которой вполне обоснованно утверждается о наблюдении вихреподобных образований на дефектах типа потенциальная яма, создаваемых искусственно. В данной работе исследовались многослойные пленки Co/Pt с перпендикулярной анизотропией, предварительно облученные сфокусированным пучком ионов Не⁺ локальных участков поверхности образца. В этом случае в участках, подвергшихся облучению, будет иметь место пониженное значение константы перпендикулярной анизотропии, характер которой зависит от дозы облучения [33]. Таким способом в многослойной пленке [32] была сформирована регулярная структура колумнарных дефектов, представляющих потенциальную яму для вихреподобных образований. Изображения последних, полученные методом магнито-силовой микроскопии, качественно совпадают с вихреподобными структурами, изученными здесь. К сожалению, их количественное сравнение не представляется возможным, так как исследуемые в [32] образцы представляли собой многослойные пленки, в то время как программа, основанная на уравнениях (5) и (6) может быть использована только для монокристаллических пленок. Тем не менее, не представляет особых трудностей усовершенствовать применяемые здесь методы и таким образом рассчитать возможные вихреподобные образования в сверхрешетке Co/Pt [32]. Однако данная задача требует отдельного исследования.

Следует отметить, что в работе [32] был также проведен численный анализ на основе открытого программного кода микромагнитного моделирования ООММF [34] и были получены возможные микромагнитные структуры, возникающие на дефектах в сверхрешетке Co/Pt. Они соответствуют вихреподобным неоднородностям различной топологии (цилиндрические магнитные домены, магнитные вихри с полярностью кора $m_z(0) = -1$ и $m_z(0) = 1$ и др.), что находится в удовлетворительном согласии с экспериментальными данными [32].

6. Заключение

В заключении отметим, что особенностью исследуемых неоднородностей является возможность их существования в различных материалах, в которых имеется одноосная анизотропия. Такими материалами могут быть эпитаксиально выращенные пленки ферритов-гранатов и ферритов шпинелей, пленки гексаферритов [6], сплавы вида GdFeCo [35] и т.д., в том числе и многослойные пленки типа Co/Pt [34]. Для некоторых из них (например, для пленок ферритов-гранатов) существует развитая технология их синтезирования, причем с требуемыми значениями материальных параметров [6]. Последнее позволяет получить пленки такого состава, в которых могут существовать вихреподобные образования с необходимыми свойствами.

Кроме того, данные неоднородности, могут возникать в пленках, толщина которых может меняться в достаточно широком диапазоне величин. Это объясняется тем, что единственным параметром, определяющим размеры пленок и, соответственно, размеры вихреподобных образований на дефектах является ширина ДГ Δ_1 , которая для некоторых материалов может составлять величину $\Delta_1 \sim (50-100) \, \text{nm}$ [36]. В то же время толщина пленок не может быть настолько малой величиной, при которой $D \ll \Delta_1$. В этом случае рассматриваемая модель из-за усиливающегося влияния размагничивающих полей уже не описывает вихреподобные образования с блоховским распределением вектора m. Тем не менее, если провести дополнительный анализ и учесть неелевский вклад в структуру данных неоднородностей, то можно значительно расширить границы применимости расчетов, т.е. использовать их и для ультратонких пленок. Однако рассмотрение такой задачи выходит за рамки данной работы.

Список литературы

- [1] Р.М. Вахитов, Е.Б. Магадеев. ФММ 115, 306 (2014).
- D. Gall. In: Handook of Magnetism and Advanced Magnetic Materials. V. 2. Micromagnetism / Eds H. Kronmuller, S. Parkin. John Willey & Senc. Ltd. N.Y. (2007). P. 1023.
- [3] В.В. Федотова, А.П. Гесь, Т.А. Горбачевская. ФТТ 37, 2835 (1995).
- [4] В.К. Власко-Власов, Л.И. Дедух, М.В. Инденбом, В.К. Никитенко. ЖЭТФ 84, 277 (1983).
- [5] Р.М. Вахитов, Т.Б. Шапаева, Р.В. Солонецкий, А.Р. Юмагузин. ФММ 118, 571 (2017).
- [6] С. Тикадзуми. Физика ферромагнетизма. Магнитные характеристики и их практические применения. Мир, М. (1987). 419 с.
- [7] Р.М. Вахитов, Е.Б. Магадеев, А.Р. Юмагузин, Р.В. Солонецкий. ФТТ **57**, 1462 (2015).
- [8] R.M. Vakhitov, R.V. Solonetsky, A.A. Akhmetova. Book of Abstracts. Moscow International Simposium on Magnetism (1-5 July, 2017, Moscow). PrintLETO. (2017). P. 380.
- [9] Ryan V. Mityushev, V.M. Vinokur, L. Berlyand. Sci. Rep. 5, 7821 (2015).
- [10] А.А. Белавин, А.М. Поляков. Письма в ЖЭТФ 22, 245 (1975).
- [11] И.Е. Дзялошинский, Б.А. Иванов. Письма в ЖЭТФ **29**, 592 (1979).
- [12] А.С. Ковалев, А.М. Косевич, К.В. Маслов. Письма в ЖЭТФ 30, 321 (1979).
- [13] N.A. Usov, S.E. Peshany. JMMM 118, 2290 (1993).
- [14] A. Bogdanov, A. Hubert. JMMM 138, 255 (1994).
- [15] T. Shinjo, T. Okuno, R. Hassdorf, K. Shigeto, T. Duo. Science 289, 930 (2000).
- [16] K.Y. Guslienko, J. Nanosci. Nanotechnol. 8, 2745 (2008).
- [17] M. Rahm, J. Biberger, V. Umansky, D.J. Weiss. Appl. Phys. 95, 6708 (2004).
- [18] A.R. Pereira. J. Appl. Phys. 97, 094303 (2005).

- [19] F.A. Apolonio, W.A. Moura-Melo, F.P. Crisafuli, A.R. Pereira, R.L. Silva. J. Appl. Phys. **106**, 084320 (2009).
- [20] D. Toscano, S.A. Leonel, P.Z. Coura, F. Sato, R.A. Dias, B.V. Costa. Appl. Phys. Lett. 101, 252402 (2012).
- [21] А.С. Логгинов, А.В. Николаев, Е.П. Николаева, В.Н. Онищук. ЖЭТФ 117, 571 (2000).
- [22] K.H. Prabhakara, M.D. Davydova, K.A. Zvezdin and et al. Book of abstracts. PrintLETO, Moscow. (2017). P. 748.
- [23] Е.Б. Магадеев, Р.М. Вахитов. ФТТ 53, 944 (2011).
- [24] Е.Б. Магадеев, Р.М. Вахитов. ТМФ 171, 511 (2012).
- [25] A. Hubert, R. Schafer. Magnetic Domains. Springer, Berlin, Heidelberg, N. Y., 3rd Printing (2009). 707 p.
- [26] A. Sakuma. JMMM 88, 369 (1990).
- [27] A.H. Bobeck, Della Torre E. Magnetic bubbles. Amsterdam. N.Y., North Holland, (1975).
- [28] W.J. DeBonte. J. Appl. Phys. 44, 1793 (1973).
- [29] Р.М. Вахитов, Р.В. Солонецкий, И.Б. Ларионов. ФТТ 59, 1089 (2017).
- [30] B.A. Lilley. Phil.Mag. 41, 792 (1950).
- [31] К.П. Белов, А.К. Звездин, А.М. Кадомцева, Р.З. Левитин. Ориентационные переходы в редкоземельных магнетиках. Наука, М. (1979). 320 с.
- [32] M.V. Sapozhnikov, S.N. Vdovichev, O.L. Ermolaeva, N.S. Gusev, A.A. Fraerman, S.A. Gusev, Yu.V. Petrov. Appl. Phys. Lett. **109**, 042406 (2016).
- [33] T. Devolder, J. Ferre, C. Chappert, H. Bernas, J.-P. Jamet, V. Mathet. Phys. Rev. B 64, 064415 (2001).
- [34] M.J. Donahue, D.G. Porter. OOMMF User's Guide Version 1.0, National Institute of Standards and Technology, Gaithersburg, MD (1999).
- [35] W. He, H.-L. Liu, H.-Y. Wu, J.-W. Cai, Z.-H. Cheng. Appl. Phys. Lett. 106, 042401 (2015).
- [36] А.М. Балбашов, Ф.В. Лисовский, В.К. Раев и др. / Элементы и устройства на цилиндрических магнитных доменах. Справочник / Под ред. Н.Н. Евтихиева, Б.Н. Наумова. Радио и связь, М. (1987). 488 с.

Редактор Т.Н. Василевская